
Executive control processes underlying multi-item working 
memory

Antonio H. Lara1,2 and Jonathan D. Wallis2,3

1Department of Neuroscience, Columbia University, Kolb Research Annex, 1051 Riverside Drive, 
New York, NY 10032

2Helen Wills Neuroscience Institute, University of California at Berkeley, 132 Barker Hall, MC 
#3190, Berkeley, CA 94720-3190, USA

3Department of Psychology, University of California at Berkeley, 3210 Tolman Hall, MC #1650, 
Berkeley, CA 94720-1650, USA

Abstract

A dominant view of prefrontal cortex (PFC) function is that it stores task-relevant information in 

working memory. To examine this and determine how it applies when multiple pieces of 

information must be stored, we trained two macaque monkeys to perform a multi-item color 

change-detection task and recorded activity of neurons in PFC. Few neurons encoded the color of 

the items. Instead, the predominant encoding was spatial: a static signal reflecting the item's 

position and a dynamic signal reflecting the animal's covert attention. These findings challenge the 

notion that PFC stores task-relevant information. Instead, we suggest that the contribution of PFC 

is in controlling the allocation of resources to support working memory. In support of this, we 

found that increased power in the alpha and theta bands of PFC local field potentials, which are 

thought to reflect long-range communication with other brain areas, was correlated with more 

precise color representations.

Introduction

The prefrontal cortex (PFC) is implicated in maintaining information in working memory. 

PFC neurons show sustained and selective activity during the memory period of working 

memory tasks 1, 2, and this activity encodes task relevant information 3, 4. Working memory 

is capacity limited compared to long-term memory (an average person can store no more 

than four items 5) and this capacity limit contributes to higher cognitive functions like 

reading, fluid reasoning6 and intelligence7. Although much work has been done in human 

psychophysics to try to understand how subjects maintain multiple pieces of information in 

working memory 5, 8-11 there has been comparatively little work to determine the neuronal 

mechanisms underlying the phenomenon 12-14. The majority of studies examining the firing 
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rate of PFC neurons during working memory performance have (with only a couple of 

exceptions 15, 16) used a single memorandum and so little is known about how neurons 

maintain multiple items in working memory.

To address this, we recorded single unit activity from the PFC of two rhesus macaque 

monkeys while they performed a multi-item color change detection task adapted from the 

human psychophysics literature (Fig. 1). We parametrically varied the color difference 

between the items, which enabled us to estimate the precision with which the items were 

maintained in working memory, and determine how that precision correlated with neural 

signals. Surprisingly, we found little evidence that the firing of PFC neurons related to 

encoding the color of the items in working memory. Instead, PFC activity at the level of 

both single neurons and local field potentials (LFPs) related to the spatial position of the 

items. Furthermore, this activity influenced the precision with which color information was 

stored. These results suggest that, rather than storing information in working memory itself, 

PFC may be more important for allocating resources when the capacity limits of working 

memory are taxed.

Results

Behavior

Subjects performed well above chance for one-item and two-item trials. To determine 

whether subjects could discriminate all colors, we calculated the performance for one-item 

trials for which sample and test colors were highly discriminable (ΔE ≥ 80). Subjects 

performed near ceiling level for all colors (Fig. 2a). We also calculated subject's 

performance for different values of ΔE for one- and two-item trials (Fig. 2b). Subjects' 

performance improved as the size of ΔE increased and was better for one-item trials. In 

addition, we calculated the precision with which subjects maintained stimuli in working 

memory using a change-detection approach. We modeled subject's probability of detecting a 

change in color using a variable precision model (see Methods). Consistent with our 

previous results, we found that precision for one-item trials (0.034 ± 0.001) was 

significantly higher than two-item trials (0.023 ± 0.001, t-test, t77 = 6.4, p < 1 × 10-7).

Behavioral index of covert attention—During the sample period, subjects made 

microsaccades in the direction of one or both of the items 17. For most trials, we could 

determine the direction of the microsaccade by measuring when the eye velocity exceeded a 

threshold (see Supplementary Fig. 1). On average, we detected at least one microsaccade on 

84% of trials. The pattern of microsaccades was quite stereotyped and suggested that 

subjects attended to items in a specific order (Supplementary Fig. 1). We also noticed that 

subjects' median reaction times (RT) were faster when the test item was at a particular 

location. We calculated the degree of agreement between microsaccade direction and RT 

using Fleiss' Kappa. The two measures showed significant agreement for 68 out of 78 (87%) 

recording sessions. Thus, we used both RT bias and microsaccade direction to obtain a 

single behavioral index of covert attention (see Methods), which allowed us to assign each 

trial an attended and unattended location. Performance on two-item trials was higher when 

covert attention was directed to the item that was subsequently tested (congruent) compared 
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to the direction that was not tested (incongruent). Subjects were more likely to detect that 

the color of the item had changed when attention was directed towards that item (congruent 

performance: 78% ± 0.5%, incongruent performance: 71% ± 0.5%, t-test, t77 = 4.5, p < 

0.0001) and information about the sample item was stored more precisely (congruent 

precision: 0.027 ± 0.002, incongruent precision: 0.018 ± 0.001, t-test, t77 = 4.9, p < 0.0001).

Neuronal Results

Maintenance of information in working memory—We recorded 507 neurons from 

ventrolateral PFC of two subjects (214 from subject G and 293 from subject I). We focused 

on this region since it is the area of PFC that most strongly connects with regions of the 

temporal lobe that are color-selective 18, 19. We first characterized neuronal responses for 

one-item trials. To test whether neurons encoded color, for each neuron we calculated its 

firing rate at each time point in the trial using a 200-ms sliding window, and performed a 

one-way ANOVA grouping trials into 20 groups according to the color of the sample item. 

We found that only 6% (32/507) neurons showed color selectivity (Fig. 3a). However, this 

potentially underestimates the incidence of color selectivity since we treated each color 

independently, which does not reflect how color is encoded in the brain 23. In order to 

increase our chances of detecting color encoding, we grouped adjacent colors into four 

groups of five colors each. In addition, we systematically varied the boundaries of the 

groups until we found the grouping that provided the maximum color selectivity as 

measured by η2 (Supplementary Fig. 2). Using this more liberal approach (which 

deliberately inflated our alpha level), we found that there was still only a small proportion of 

neurons (78/507 or 15%) that significantly encoded color (Fig. 3b). Nor was the incidence of 

color selectivity improved by modeling color tuning as a von Mises distribution 

(Supplementary Fig. 3a).

In contrast to the low incidence of neurons encoding the color of the item, many neurons 

(286/507 or 56%) encoded its location (Fig. 3c). To ensure that the low number of color-

selective neurons we observed was not due to the fact that on some trials the item appeared 

in a non-optimal location, we repeated our analysis, but this time restricting it to those trials 

where the item was in the neuron's preferred location and again using the grouped colors. 

This did not appreciably increase the incidence of color selectivity (45/507 color-selective 

neurons or 9%, Supplementary Fig. 3b). Another explanation for the low incidence of color-

selective neurons might be that we did not record from the appropriate area of PFC. To 

ensure that this was not the case, we recorded from many other areas of PFC including 

dorsolateral PFC, orbitofrontal cortex and the frontal eye fields (Supplementary Fig. 4). 

There was no evidence that any of these areas had a larger incidence of color-selective 

neurons than ventrolateral PFC. Thus, despite surveying a large area of PFC, only a very 

small percentage of neurons in the PFC encoded color information in working memory.

We next used a dimensionality reduction technique, de-mixed Principal Component 

Analysis or dPCA 20, to examine whether color was encoded in the pattern of firing across 

the population of recorded PFC neurons. This technique, like PCA, transforms high 

dimensional data into a more tractable, lower dimensional representation where the first few 

dimensions (principal components) are the most informative (capture the most variance in 
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the neuronal population's firing rate). However, dPCA also considers the relationships 

between experimental parameters in order to segregate the proportion of variance 

attributable to different parameters. The projections of the data into the top 16 dPCs, which 

captured around 60% of the total variance in the population, are shown in Fig. 4. found that, 

consistent with previous observations 21, time had the largest influence on the variance of 

PFC firing rates; 13 of the top 16 components were dominated by time, either on its own or 

in conjunction with the location parameter. The strong time-dependent modulation of firing 

rate, that is independent of other experimental parameters, can be seen in the four most 

informative dimensions (Fig. 4a-d). The location of the stimulus was also strongly encoded. 

Three of the top 16 dPCs, were dominated by location and accounted for 24% of the 

variance. Two of these three location dPCs encoded whether the stimulus appeared in either 

the upper or lower half of the display (Fig. 4e) or on the left or right (Fig. 4g). In addition, 

some projections showed an interaction of time and location, encoding a different subset of 

locations during the sample and delay, such as Fig. 4h. Notably, none of the top 16 dPCs 

were dominated by color. In fact, color only accounted for 0.5% of the variance (Fig. 5).

Finally, we determined the amount of information that we could decode about color or space 

using a correlation based linear classifier approach, which has recently been used to examine 

PFC neural encoding 22, 23. The results from this analysis were similar to those from the 

dPCA analysis. We were able to decode spatial information robustly throughout the trial and 

at a level approaching 100% accuracy during the sample epoch (Supplementary Fig. 5). In 

contrast, we could barely decode any information about color: it briefly exceeded chance 

during the sample epoch and returned to chance levels throughout the delay.

In summary, there was no evidence that PFC encoded the color of the stimulus, either at the 

single neuron or population level, despite the fact that this was the critical requirement of the 

task. Instead, neurons encoded the item's location.

Control processes underlying multi-item working memory—The strong encoding 

of spatial information in PFC neurons, as well as the dynamics in firing rate evident both at 

the single neuron (Fig. 3) and population level (Fig. 4) suggested that PFC was making an 

important contribution to performance of the task, albeit not in the maintenance of color 

information in working memory. To determine the nature of this contribution, we examined 

whether we could predict neuronal firing rates on two-item trials based on the position of the 

items (as determined by activity on one-item trials) and the subject's spatial attention (as 

determined by our behavioral measures of covert attention). We performed a sliding 

multiple-linear regression where we modeled the two-item response (r2) as: r2 = β0 + β1x1 + 

β2x2 + β3x3. For each two-item trial, we calculated the mean firing rate that was elicited at 

each of the two positions on one-item trials. The larger of the two firing rates (i.e. the firing 

rate elicited by the neuron's more preferred location) constituted parameter x1, while the 

smaller of the two firing rates constituted parameter x2. Parameter x3 coded which of the two 

items the animal first attended, as indicated by our behavioral measures of covert attention 

(see above). It was equivalent to x1 – x2 if the animal first attended to the item in the 

neuron's preferred location, and x2 – x1 if the animal first attended to the item in the neuron's 

less preferred location. Supplementary Fig. 6 illustrates the coding scheme. The beta 

associated with parameter x3 would be positive if a neuron's firing rate correlated with the 
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location indicated by our behavioral measure of attention and negative if it correlated with 

the alternative location. Since we defined the third regressor or with respect to the neuron's 

location preference, we only analyzed neurons that had a significant spatial preference on 

the one-item trials. Additionally, because we did not explicitly manipulate where the animal 

attended, we only performed this analysis using those neurons whose spatial selectivity was 

not highly co-linear with the location of spatial attention as measured by the variance 

inflation factor (vif ≤ 2.5). These constraints meant that our analysis was restricted to 258 

neurons.

Overall, the model provided a good fit to the neuronal data. Out of the 258 neurons, 215 

(83%) were significantly fit by the model (evaluated at p < 0.01). On average, a neuron's 

one-item response to the preferred item had a stronger on effect its two-item response 

compared to the less preferred item (Fig. 6a). The response of a neuron on the two-item 

trials is, at least in part, a weighted sum of the response to the two items when presented 

individually, with the item in the neuron's preferred location contributing more to the 

neuron's response then the item in the neuron's less preferred location (Fig. 6b). The slope of 

the regression line through the population is 0.55 indicating that the item in the neuron's 

preferred location is approximately twice as important in driving the neuron's response 

compared to the item in the neuron's less preferred location.

In addition, we found that the two-item response correlated with the locus of spatial 

attention. This relationship between the two-item response and attention was more complex 

than the encoding of the spatial location of the items. Neurons were positively as well as 

negatively correlated with the locus of attention. The neuronal population was initially 

significantly biased towards a positive correlation, which then switched to a negative 

correlation (Fig. 6c). This pattern of results could arise for two reasons. One possibility is 

that there are two populations of neurons, one of which quickly encodes the attended 

location, the other of which more slowly encodes the other location. Alternatively, there 

may be a single population in which neural activity initially correlates with the attended 

location and then shifts to correlate with the other location. To differentiate these 

possibilities we divided our population into neurons in which the β3-value was maintained 

across the sample and delay epochs (Fig. 6d, 135/215 neurons) and those in which the sign 

of the β3-value switched (Fig. 6e, 80/215 neurons), as well as according to whether the 

neurons initially encoded x3 with a positive or negative relationship, reflecting encoding of 

the attended or unattended location respectively. For those neurons that maintained the same 

β3-value, there was no evidence of any difference in the mean time that positive or negative 

neurons first encoded x3 (positive: 294-ms ± 14-ms, negative: 326-ms ± 19-ms, t-test, t144 = 

-1.85, p > 0.07). For those neurons that switched the β3-value, there were significantly more 

positive neurons (53/80) than negative neurons (27/80, binomial test, p < 0.005).

In summary, the spatial information encoded by PFC neurons served multiple functions. The 

majority of neurons encoded the location of the two items on the screen. We were able to 

decode this information since it was a linear combination of the neurons' responses to one 

item. In addition, a substantial population of neurons encoded the subjects' attention. The 

activity of these neurons initially correlated with the location of the attended item and then 
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correlated with the alternative item, consistent with the subject shifting their attention from 

one item to the other.

We performed several additional analyses, using variants of our regression model, to 

examine whether there were other ways to characterize the spatial coding. First, we 

examined whether there was additional variance in neural firing rates that could contribute 

to the precision with which information was stored. We captured this by adding a dummy 

coded parameter that indicated whether the final response of the subject was correct or 

incorrect. There was little evidence that this parameter was encoded (Supplementary Fig. 7), 

showing that trial-to-trial variance in the activity of single PFC neurons did not contribute to 

performance over and above the effects captured by covert attention. Second, we examined 

the relationship of our model to the biased competition model that has been proposed to 

account for attentional effects in posterior sensory cortex. Contrary to this model, the 

encoding of the spatial location of the items did not depend on whether the first attended 

stimulus was the neuron's preferred or unpreferred stimulus (Supplementary Fig. 8). This 

supports our original conclusion. PFC spatial signals consist of a static encoding of the 

spatial location of the stimuli and a dynamic modulation associated with the attentional 

locus.

Neural signature of working memory load and precision—Studies using 

magnetoencephalography 24 and event related potentials 12, 14 have shown that oscillatory 

brain activity in certain frequency bands can predict working memory capacity. To examine 

whether oscillatory brain activity could predict the precision of working memory 

representations, we performed a time-frequency decomposition of the local field potentials 

(LFPs) that we recorded at the same time as our single neuron data. We found clear changes 

in the power of these signals relative to baseline activity during the performance of our 

working memory task (Fig. 7). The largest differences in power were concentrated around 

three different frequency bands: 1–7 Hz (theta), 8–16 Hz (alpha) during the sample epoch, 

and 20–35 Hz (beta/gamma) during the delay epoch. Thus, we focused our analysis on these 

frequency bands. We examined whether the power at these frequency bands could predict 

the precision with which items were maintained in working memory. We focused on the 

two-item trials since it was here that we expected to see the greatest variance in precision. 

For each session, we divided the trials into three 500 ms epochs: sample, early and late-

delay (first and second halves of the delay period respectively). For each epoch, we 

calculated the average power in each band on a trial-by-trial basis and split trials into high 

and low power trials with respect to the median power. We estimated the precision with 

which the two colors were stored using the same behavioral model as described above but 

using only high or low-power trials. We normalized these precision values with respect to 

our precision estimate obtained using data from all trials. The results are shown in Fig. 7c-e. 

On average, for the lower two frequency bands (theta and alpha), higher LFP power led to 

more precise working memory representations during both the sample and delay, whereas in 

the higher frequency band (beta/gamma) the effect was reversed, with precision lower for 

high-power trials compared to low power trials, and occurred only during the delay.

Increased power in the alpha and theta bands has been associated with long-range 

communication between brain areas 25, 26, and so we hypothesized that, in the current task, it 
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might reflect the mechanism by which PFC maintains color information in posterior sensory 

cortex. This could be accomplished by using spatial representations to increase the precision 

of color information at specific locations. If this were the case, we might expect stronger 

alpha/theta power on those electrodes containing spatially selective neurons. To determine 

whether this was the case, we first performed a time-frequency decomposition of the LFP 

signal on each recorded channel. We then averaged this signal across those channels that 

contained neurons encoding spatial information (the 215 neurons described in Fig. 6) and 

those channels that did not contain spatially selective neurons. We then subtracted these two 

signals (spatial – non-spatial). The results of this analysis for one-item and two-item trials 

are shown in Figs. 8a and 8b respectively. For both kinds of trials, there was a significant 

alpha/theta power increase on spatial channels relative to non-spatial channels, particularly 

at the onset of the sample epoch and the onset of the delay epoch. Long-range 

communication between PFC and posterior sensory cortices may be particularly important 

during initial processing of the stimuli and initiating their maintenance in working memory.

Discussion

Several theories argue that an important PFC function is encoding task relevant 

information 22, 27. In the current task, the most important requirement was to maintain 

information about color, yet this information was not encoded by PFC neurons. Instead, 

neurons encoded the spatial location of stimuli. These findings are counter to the notion that 

PFC represents task relevant information and suggest that spatial information is potentially a 

key feature around which PFC control signals are organized.

Storing precise sensory representations in working memory

Our results contrast with a recent study by Buschman and colleagues, which reported many 

PFC neurons encoding color during a working memory task 15. There are several 

methodological differences that might account for this. The Buschman study used a small 

set of six colors, which were selected to be highly discriminable from one another and were 

not isoluminant, and at any given spatial position only one of two colors was possible 

(Buschman, personal communication). In contrast, we used a larger set of colors that 

covered a circular, isoluminant space, any color could appear at any spatial position, and 

there was a range of color changes at test, some of which were relatively subtle. Thus, the 

Buschman task could be solved in a categorical manner by assigning stimuli to broad 

categories of color and then detecting whether there was a change, consistent with previous 

research that PFC neurons can encode arbitrary categories in working memory 28, whereas 

our task required a precise representation of color. These distinctions make sense from a 

computational perspective. A principal function of sensory cortex is discrimination: enabling 

one to perceive subtle differences between stimuli. In contrast, a principal function of PFC is 

categorization and abstraction which involves ignoring subtle differences between stimuli as 

irrelevant. Thus, our task favors neural representations of color in sensory cortex while the 

Bushman task favors PFC. This division of labor makes sense since the alternative would 

require PFC to replicate in frontal cortex all of the computational capabilities of sensory 

cortices in terms of representing sensory information.
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Similar ideas have been proposed by human neuroimaging studies using multivariate pattern 

analysis to decode where information is stored during working memory. These studies 

suggest that information is stored in posterior sensory cortex rather than PFC 29-31. Indeed, 

whether information is stored in sensory cortex or PFC can depend upon task demands. If 

subjects are required to remember sensory information then information is stored in sensory 

cortex, whereas if they must maintain category information, it is stored in PFC 32. These 

findings can also be explained by the precision of sensory information required by the task. 

When a precise sensory representation is required information is stored in sensory cortex, 

but when information is abstract and requires a less precise sensory representation 

information is stored in PFC. Thus, there is agreement between our findings and those from 

human neuroimaging. Furthermore, our results show that negative results in PFC in 

neuroimaging studies are not simply artifacts of the decoding procedure or the BOLD signal. 

Even at the level of single PFC neurons, there was no evidence that PFC neurons were 

encoding precise sensory representations in working memory.

One task that did require a precise representation of the memoranda is the vibrotactile 

discrimination task of Romo and colleagues 33. Monkeys reported whether the second of 

two sequentially presented vibrotactile stimuli was of higher or lower frequency than the 

first. PFC neurons precisely encoded the frequency of the first stimulus in working memory 

until the delivery of the second stimulus, potentially challenging our ideas. However, the 

observed neural responses (monotonic encoding) do not unambiguously relate to the 

memorandum. They could reflect the probability that the subject is going to report whether 

the first stimulus was higher or lower than the second. If the first stimulus is of low 

frequency it is more likely the subject will be selecting the ‘lower’ response, while the 

opposite is true if the first stimulus is of high frequency. Such encoding is not outlandish. 

For example, PFC neurons encode the confidence of an animal in its response with a very 

precise monotonic relationship 34. Furthermore, this interpretation could explain why 

‘working memory’ activity in the vibrotactile discrimination task was stronger in premotor 

cortex than PFC: the neural firing rate relates more to the preparation of a particular 

response than working memory per se 35. Our task avoids these issues, because the sensory 

space was circular and so subjects could not infer anything about the test stimulus from the 

sample stimuli.

There are two other explanations that might account for a lack of color encoding. First, a 

confound in much PFC research is task difficulty: more difficult tasks reliably activate 

PFC 36, so a lack of PFC activity could reflect an easy task. However, our task was very 

challenging for the subjects, pushing their limits perceptually (the difficulty of the color 

discrimination) and cognitively (the number of items that had to be remembered). Thus, we 

have a surprising result on two counts: a lack of PFC encoding for a key behavioral variable 

during the performance of a challenging task. Second, it may be that color working memory 

is restricted to a small specialized patch of PFC. Neuroimaging data have suggested a 

modular organization within monkey PFC for face processing 37 and color might 

conceivably be similarly organized.
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Controlling the allocation of cognitive resources

Although PFC neurons did not encode color information, they were not silent during 

performance of our task. The spatial location of items was strongly encoded, as was a signal 

correlating with subjects' covert attention. An important question is what function these 

signals serve. They could be a top-down attentional signal that helps prioritize processing to 

certain items in the visual field. In support of this, subjects' performance was better for the 

item whose location correlated with our behavioral and neural measures of covert attention. 

Neuroimaging studies have observed spatially topographic representations in PFC 38, 39 and 

spatial selectivity when top-down attentional control is required 40. Indeed, a recent study 

using multivariate pattern analysis showed that a region of inferior PFC contained a spatially 

topographic representation that could be decoded whenever a subject performed either a 

spatial working memory task or a task requiring shifts of covert spatial attention 41. Our 

results show that these working memory and attention signals are multiplexed even at the 

level of single PFC neurons. The contrast between PFC encoding of spatial and color 

information suggests that they serve qualitatively different roles, consistent with 

psychophysical and neurophysiological evidence that spatial and feature-based attention are 

dependent on dissociable mechanisms 42-44.

Our results also suggest a mechanism by which PFC could implement these attentional 

effects on information in posterior sensory cortex. The precision with which information 

was stored in working memory correlated with increased power in theta and alpha bands of 

the LFP, and decreased power in beta and gamma bands. Synchrony in theta and alpha is 

associated with long-range communication between brain areas, whereas synchrony in 

higher frequencies is associated with local processing 25. Thus, increased working memory 

precision is associated with increased long-range processing, consistent with the notion that 

PFC is controlling the representation of information in posterior sensory cortex, rather than 

storing that information itself. Indeed, neurophysiological recordings have shown increased 

theta and alpha synchrony in frontal cortex and posterior sensory cortex during working 

memory tasks 25, 26, 45, 46, and increased synchrony in these areas correlates with increased 

working memory capacity 24, 46. More generally, it has been proposed that theta acts as a 

carrier frequency for top-down control. Theta-gamma coupling has been observed between 

different cortical areas across a range of cognitive tasks 47. Increased theta has been seen in 

human cortex when attention is shifted 48 and increased theta-gamma coupling is seen in 

human hippocampus when multiple items must be held in working memory 49. In addition, 

in rats, theta coherence between hippocampus and PFC is seen when an animal makes a 

choice, with increasing coherence producing more precise neural representations of task-

relevant information 50.

In sum, the increased alpha/theta we observed in PFC might by a mechanism that could co-

ordinate communication between PFC and either the hippocampus and/or posterior sensory 

areas and enable PFC to influence the precision with which information is stored in working 

memory. These ideas are necessarily speculative since we only recorded from PFC, but 

future studies could directly test these hypotheses by simultaneously recording from PFC, 

posterior sensory cortex and the hippocampus. We did look for evidence of theta-gamma 
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coupling within PFC, but found little of note, although this is perhaps not surprising as 

cross-frequency coupling tends to be observed between brain areas.

Conclusion

Our results pose a challenge for some of the dominant theories of PFC function. In a task 

requiring subjects to hold color information in working memory, there was little evidence 

that PFC neurons encoded color. Thus, the notion that PFC neurons encode all types of task 

relevant information needs to be modified. PFC neurons do not appear capable of 

maintaining precise sensory representations in working memory, and may only encode 

sensory information when a coarse representation suffices for task performance (such as 

when highly discriminable stimuli are used) or when the stimuli can be represented at an 

abstract, conceptual level. In contrast, we found that the majority of PFC neurons encoded 

spatial signals and that these signals correlated with the position of the items on the screen 

as well as the subjects' attention to those items. These signals could be used to selectively 

improve the precision of specific sensory representations, coordinated via increased 

synchrony in the theta and alpha bands between PFC and posterior sensory cortex.

Materials and methods

Subjects

Subjects were two male rhesus monkeys (Maccaca mulatta) aged 4 to 5 years and weighing 

11 to 13 kg at the time of the experiment. Subjects' fluid intake was regulated in order to 

maintain motivation to perform the task. During testing subjects sat in a primate chair facing 

a 19-inch LCD computer screen placed at a distance of 32-cm. A pair of computers running 

NIMH Cortex (http://dally.nimh.nih.gov) controlled the timing and presentation of stimuli. 

All procedures were in accord with the National Institute of Health guidelines and the 

recommendations of the U.C. Berkeley Animal Care and Use Committee.

Multiple item change detection task

Subjects were trained on a color change detection task adapted from the human literature 51, 

illustrated in Fig. 1. At the start of the trial a fixation square (0.5° × 0.5° of visual angle) 

appeared in the center of the screen. Subjects had to maintain their gaze within 1.1° of the 

fixation spot for 800-ms. Subsequently, a sample array of 1 or 2 different colored squares 

appeared on the screen for 500-ms. At the end of the sample period, the array disappeared 

and there was a delay of 1000-ms during which subjects had to keep the color of the squares 

in visual working memory. At the end of the delay, one of the squares in the array was 

presented again and subjects had to indicate, using a lever, whether the color at that location 

had changed (move lever down) or remained the same (move lever up). Subjects were free 

to respond as soon as the test square appeared on the screen. Correct responses were 

rewarded with 0.5-ml of juice. Incorrect responses were discouraged with a 4-s timeout. If 

subjects broke fixation at any time prior to their response, the trial was aborted, the entire 

screen turned red for 10-s and a new trial was started. There was a 3-s inter-trial interval.

Stimuli were squares 3.5° × 3.5° of visual angle presented in any of four fixed locations 5° 

away from fixation on a black background. Colors were chosen from the 1976 CIE L a* b* 
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color space. We fixed the luminance at L = 70 and varied the a* and b* parameters to 

produce 20 different colored squares arranged circularly. All 20 colors were used as sample 

and test colors. We restricted, however, the distances between sample and test colors (ΔE) to 

the set ΔE ∈ (0, 40, 50, 60, 70, 80, 90, 100). As a point of reference, adjacent colors in the 

color circle shown in Fig. 1 are separated by 17 units from each other. Additionally, for two 

item trials, in order to prevent any potential confusion, the colors of the squares in the array 

were chosen such that the distance between them was at least 30 units.

Neuronal recordings

We recorded single units simultaneously from PFC using arrays of 8-32 tungsten 

microelectrodes. We randomly sampled neurons; no attempt was made to select neurons 

based on responsiveness. This procedure ensured an unbiased estimate of neuronal activity. 

To determine the number of neurons required to detect color encoding, we performed a 

power analysis and determined that for a desired power of 0.8 and an alpha level of 0.05 we 

needed to record from at least 26 neurons. Typically around 30% of PFC cells show 

selectivity in any given experiment, thus our required sample size is least 87 cells. Ideally 

we aim to replicate our results in a second monkey thus we require a total of at least 174 

cells.

All recording and preprocessing of neural activity was performed prior to analyzing neural 

encoding. Data collection and subsequent analysis were automated, however they were not 

blind to the experimental conditions. Waveforms were digitized and analyzed offline. Our 

recording techniques are described in more detail elsewhere 52.

Analytical Methods

Modeling behavioral performance with a variable precision model—We have 

previously modeled subjects' performance on the color change detection task. We fit a 

variety of models to our data, including those in which working memory capacity was 

modeled as a fixed number of slots, but we found that the best fit was provided by models 

that characterized working memory as a resource to be shared among the stored items 17. To 

estimate the precision of representations in working memory we calculated the probability 

of subjects detecting a change in color as a function of distance between sample and test 

colors. This probability is modeled by 53:

(1)

where Φ is the cumulative distribution function of a normal distribution with mean μ and 

variance σ2 . Equation 1 assumes that subjects have a noisy representation of the sample 

stimulus in working memory and they will respond ‘change’ whenever the difference 

between the test stimulus and the working memory representation exceeds a criterion given 

by μ. In addition, we incorporated a guessing parameter g into this model to account for the 

fact that on some proportion of trials subjects might fail to detect a change for reasons 

unrelated to the precision of the working memory representation, for example, due to a lack 

of motivation or a failure to attend to the stimuli, and instead guess that a change has 
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occurred. On a certain proportion of trials, g, the subject randomly guesses, while on the 

remaining proportion of trials, 1 - g, the subject's behavior can be described by the model 

given by Equation 1. In addition, we added a bias parameter, b. One might expect the 

animal's guesses to be randomly distributed between the ‘change’ and ‘no change’ 

responses, but this is not necessarily the case. The subject could favor one or other response 

when they are not sure of the correct response and the bias parameter captures this. Thus, the 

complete model was:

(2)

In other words, the relationship between the probability of detecting a change as the size of 

the change increases is well fit by a logistic function. The precision with which the animal 

has stored the sample stimulus in working memory determines the slope of the logistic 

function: the noisier the representation the more frequently the animal chooses the incorrect 

response. The guessing parameter controls the asymptote of the logistic function. If the 

difference between the test stimulus and sample stimulus was sufficiently large, the 

asymptote should be 1: with a sufficiently large change the subject always reports a change. 

However, factors such as lack of motivation or attention could prevent this. Even with a very 

large change between test and sample, the animal may sometimes report that there was no 

change, and so the asymptote would be less than 1. Note that the asymptote of the logistic 

function is varying for reasons that are independent of its slope. The bias term controls the y-

position of the logistic, capturing whether choices are equally distributed between ‘change’ 

and ‘no change’.

We fit the model for one-item and two-item trials separately and estimated the precision of 

stored representations as 1/σ2. We then examined how neural signals correlated with this 

estimate of precision.

Behavioral index of covert attention—For each two-item trial, we found the 

microsaccade direction as described in Supplementary Fig. 1. Separately, for each session 

and each two-item configuration, we calculated the median RT when the test item appeared 

at either of the two locations. We defined the location for which the median RT was fastest 

as the behaviorally preferred location and the location for which the median RT was slowest 

as the unpreferred location. We then classified the attentional bias for each trial, by 

determining whether the RT for that trial was closer to the median RT for the preferred or 

unpreferred location. This provided us with two separate estimates of the attended location 

for each trial, one based on the microsaccade and one based on the RT. There was good 

agreement between the two estimates as measured using Fleiss' Kappa, a measure of 

agreement between classes assigned by two or more classifiers that ranges from 0 (no 

agreement) to 1 (perfect agreement). The two estimates showed significant agreement for 68 

out of 78 (87%) recording sessions. Each estimate had its advantages and disadvantages. 

The microsaccade estimate was unambiguous, but was not present on all trials. In contrast, 

the RT estimate was noisier, but was present on every trial. Therefore, to get a more robust 

estimate we combined them. From this combined measure we determined which location 
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was most frequently classed as attended. For example, consider the configuration shown in 

Supplementary Fig. 1, with items in the upper-right (U) and lower-left (L). Suppose we had 

5 trials with this configuration and for each trial the microsaccade measure gave ms = [U L 

U U U] and the RT measure gave rt = [U U L U U]. We pooled the measures and obtained 

pooled = [ms rt] = [U L U U U U U L U U]. Thus, for this configuration, U was the most 

common pooled location and so for these five trials we assigned the upper-right as the 

attended location.

Single neuron selectivity for one-item trials—To quantify neuronal selectivity in the 

one-item trials we performed a sliding two-way ANOVA on the neuron's average firing rate 

using the color and spatial location of the sample as factors. We used a 200-ms window that 

we shifted in 20-ms steps across the duration of the trial. We defined a selective neuron as 

one where p < 0.005 for three consecutive time bins at any point in the trial. We ensured that 

this criterion was reasonable by assessing the false discovery rate, which we determined by 

calculating the proportion of neurons that reached criterion during the fixation period, before 

the subject had any information about the color and position of the sample stimuli. Our 

criterion yielded 4.93% of selective neurons during the fixation period, which was an 

acceptable false discovery rate. To quantify the amount of information that a neuron 

encoded about each factor, we used the sliding two-way ANOVA to calculate the percentage 

of explained variance (PEV) in the neuron's firing rate that could be attributed to color or 

space: PEVfactor = SSfactor/SStotal, where SS indicates the sum of squares.

Population response for one-item trials—We used a recently developed 

dimensionality reduction technique called demixed Principal Components Analysis (dPCA) 

to look for the common firing patterns present in our population of neurons. Demixed PCA 

is similar to PCA in that it finds the dimensions of the data that account for the most 

variance. However, dPCA also minimizes the number of parameters that contributes to each 

component. Thus, each principal component (or dimension) depends on the least possible 

number of parameters (see 20 for a full theoretical account of this method). Briefly, for all 

neurons we calculated firing rate by counting the number of spikes in non-overlapping 20-

ms time bins for each combination of parameters (also referred as a condition) and 

constructed an N x c x t matrix of responses (Y) where N is the number of neurons, c 

represents the different conditions and t represents time. Each condition was comprised of 

all the trials in which a certain color appeared at a certain location. For this analysis, we used 

the same color grouping that maximized the PEVcolor as described in Supplementary Fig. 2. 

Thus, we end up with a total of 4 spatial locations and 4 color groups for a total of 4 × 4 = 

16 conditions. The goal of dPCA is to find the projection of Y that maximizes the amount of 

variance captured while at the same time depending on the least number of parameters. This 

is achieved by parceling out the overall variance of Y into separate parts that capture the 

variance due to different parameters. A modified Expectation-Maximization algorithm is 

then used to maximize the variance captured by the smallest possible number of parameters 

or mixtures of parameters.

Single neuron response to two-item trials—We performed a sliding regression for 

the two-item trials with a 200-ms window and 20-ms steps to model a single neuron's 
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response to the presentation of two-items using its activity on the one-item trials. Our model 

was of the form: r2 = β0 + β1x1 + β2x2 + β3x3, where r2 is the neuron's average firing rate 

during each two-item trial, x1 and x2 are the mean responses to the more and less-preferred 

locations respectively on the one-item trials and x3 is a regressor that accounts for the locus 

of covert attention with respect to the neuron's spatial preference. Specifically, for each two-

item trial, if attention was directed to a neuron's more preferred location (relative to the other 

possible locations on the screen) the trial was coded as x3 = x1 – x2. Alternatively, if 

attention was directed to the neuron's less preferred location the trial was coded as x3 = x2 – 

x1. See Supplementary Fig. 6 for an illustration of this coding scheme.

Local field potential analysis—LFPs were collected with a sampling frequency of 1-

kHz and analyzed offline. Data were band-pass filtered in the range 0 -100 Hz and we 

calculated spectrograms using a multi-taper spectral estimation method from the Chronux 

toolbox (chronux.org) using tapers N = 5 and a time-bandwidth product W = 3. These 

parameters control the smoothing of the spectrogram in time and frequency. Data from one-

item and two-item trials were averaged separately to calculate the spectrograms. We visually 

examined spectra from all channels and heuristically determined the frequency bands of 

interest based on the frequencies that showed the clearest change in power relative to 

baseline during the performance of the task (Fig. 7).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multi-item color working memory task. Subjects fixated on a central fixation spot for 1000-

ms, after which one or two colored squares appeared on the screen for 500-ms. The squares 

could appear at any of four fixed positions on the screen. Subjects were required to keep 

both colors in working memory until a test item appeared 1000-ms later. Subjects indicated 

whether the color at the location of the test item changed or remained the same. The color of 

the test item was systematically varied from very similar to very different with respect to the 

sample item: the size of the color change was calculated as ΔE (see Methods).
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Figure 2. 
(a) Subjects' mean behavioral performance (± s.e.m., error bars are smaller than the marker) 

for one-item trials for which ΔE ≥ 80. The distance from the center to the marker indicates 

mean performance and the color of the marker indicates the color of the item during the 

sample epoch. Subjects performed well above chance (50%) for all colors at detecting 

whether or not the color had changed. (b) Performance for different values of ΔE for one- 

and two-item trials. Performance was significantly worse for two-item trials compared to 

one-item trials (2-way ANOVA, F1,616=180, p < 1 × 10-30). Additionally, performance was 

worse for trials with small ΔE compared to trials with larger ΔE (2-way ANOVA, F3,616= 

99, p < 1 × 10-50) and there was a significant set-size x ΔE interaction (2-way ANOVA, 

F3,616= 11, p < 1 × 10-6).
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Figure 3. 
Percentage of explained variance (PEV) across time for all neurons calculated using a 

sliding ANOVA. Each row represents the PEV of a single neuron. Neurons are sorted based 

on the time they show a significant PEV. Vertical white lines indicate the onset of the 

sample stimulus, the beginning of the delay and the onset of the test stimulus. The PEV on 

one-item trials that is attributable to the color of the item, when colors are either (a) assessed 

independently or (b) grouped. (c) The PEV attributable to the location of the item on one-

item trials.
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Figure 4. 
(a-p). Projections of the 507 neurons into the top 16 dPCs for one-item trials. The color of 

the lines represents the location of the item during the sample period; the different shades of 

the colors represent the color of the item. Colors were grouped into four groups as in the 

previous analysis (Figure 3b). Vertical lines indicate the onset of the sample stimulus, the 

delay and the test stimulus.
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Figure 5. 
Relative contribution of time, item color, item location and non-linear mixtures of these 

parameters to the variance in the population's firing rates for one-item trials to each principal 

component. Only the top 16 dPCs are shown.
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Figure 6. 
Standardized beta values from the sliding regression model. (a) Average β1 and β2 values, 

corresponding to the preferred and non-preferred locations determined from the one item-

conditions. (b) Plot of peak β1 vs. peak β2 for all neurons. The neurons preferred location 

had a larger influence (β1) on the two-item response compared to the less preferred location 

(β2). The solid black line shows a least squares fit. (c) Pseudo-color plot showing the 

distribution of β3-values across the population as a function of time. Each column in the plot 

corresponds to a single distribution of the β3 value for the 215 neurons at that time bin. The 

color bar indicates the number of neurons that had a particular β-value. Only neurons with a 

significant β3 were included. The white asterisks indicate time bins for which the 

distribution of β3 values is significantly different from zero. Average β3 values for (d) the 

subpopulation of neurons for which the β3-value did not switch sign and (e) for the neurons 

for which the β3-value did change sign. The red trace denotes the neurons that had an initial 

positive β3-value while the blue trace indicates those neurons that had an initial negative β3-

value. The shaded color region around the traces denotes the s.e.m.
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Figure 7. 
Average time-frequency power spectrum relative to baseline (500-ms before sample onset) 

for (a) one-item trials and (b) two-item trials. The frequency bands that showed the largest 

change in power are indicated by the horizontal white lines and are labeled on the right 

margin of the plots. Vertical lines indicate the times of sample, delay and test onset. (c-e) 
Normalized precision in three different trial epochs calculated using either high or low 

power trials in three frequency bands. The asterisks indicate a significant difference between 

high and low power trials (t-test, p <0.01).
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Figure 8. 
Average difference in LFP power between electrodes with spatially selective neurons and 

electrodes without spatially selective neurons. Data are shown separately for a) one-item 

trials and b) two-item trials. Black stippling denotes the points where the difference is 

significant (permutation test, p < 0.01).
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