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Summary

Dietary restriction (DR) is a robust intervention that extends

lifespan and slows the onset of age-related diseases in diverse

organisms. While significant progress has been made in attempts

to uncover the genetic mechanisms of DR, there are few studies

on the effects of DR on the metabolome. In recent years,

metabolomic profiling has emerged as a powerful technology

to understand the molecular causes and consequences of natural

aging and disease-associated phenotypes. Here, we use high-res-

olution mass spectroscopy and novel computational approaches

to examine changes in the metabolome from the head, thorax,

abdomen, and whole body at multiple ages in Drosophila fed

either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR)

diet. Multivariate analysis clearly separates the metabolome by

diet in different tissues and different ages. DR significantly

altered the metabolome and, in particular, slowed age-related

changes in the metabolome. Interestingly, we observed interact-

ing metabolites whose correlation coefficients, but not mean

levels, differed significantly between AL and DR. The number and

magnitude of positively correlated metabolites was greater

under a DR diet. Furthermore, there was a decrease in positive

metabolite correlations as flies aged on an AL diet. Conversely,

DR enhanced these correlations with age. Metabolic set enrich-

ment analysis identified several known (e.g., amino acid and NAD

metabolism) and novel metabolic pathways that may affect how

DR effects aging. Our results suggest that network structure of

metabolites is altered upon DR and may play an important role in

preventing the decline of homeostasis with age.

Key words: Drosophila; aging; metabolome; metabolomics;

bioinformatics; dietary restriction.

Introduction

Aging is a complex biological process that results in a gradual decline in

physiological function and increases the prevalence of chronic diseases

(Young, 1997; Kennedy et al., 2014). The effects of aging on survival

and pathology can be reversed through genetic, pharmacological, and

environmental perturbations (Fontana et al., 2010; Kapahi et al., 2010).

The most reliable of these is dietary restriction (DR), which can extend

lifespan in yeast, nematodes, fruit flies, rodents, and potentially

nonhuman primates (reviewed in Fontana et al., 2010).

Researchers have proposed several biological processes to explain

how DR extends lifespan. For instance, DR enhances autophagy,

mitochondrial biogenesis, lipid metabolism, proteostasis, and stem cell

function, while reducing oxidative stress and inflammation (Lopez-Lluch

et al., 2006; Aris et al., 2013) and reversing the age-related decline in

stem cell function and increase in inflammation (Horrillo et al., 2011;

Cerletti et al., 2012). Genetically, the TOR, Sir 2, and insulin signaling

pathways have been implicated in mediating the effects of DR on

lifespan (Kapahi et al., 2004; Mair & Dillin, 2008).

The use of high-throughput ‘-omic’ approaches in genomewide

expression studies demonstrates the power of systems biology

approaches to increase our understanding of global changes with aging

and anti-aging manipulations (Pletcher et al., 2005). Here, we extend

these approaches and analyses through the use of high-resolution

metabolomic profiling in several tissue types at several ages in response

to AL and DR diets in the fruit fly, Drosophila melanogaster.

The metabolome is particularly valuable in studies on mechanisms of

DR. In particular, the metabolome integrates information from multiple

levels of organization, including the genome, the transcriptome, the

proteome, the environment, and their interactions (Chan et al., 2010;

Jones et al., 2012). Metabolic profiles vary with age in worms (Fuchs

et al., 2010), flies (Sarup et al., 2012; Hoffman et al., 2014), mice

(Tomas-Loba et al., 2013), marmosets (Soltow et al., 2010), and humans

(Menni et al., 2013). Furthermore, recent studies suggest that DR might

reverse the effects of aging on the metabolome (Avanesov et al., 2014).

In light of these studies, it is clear that metabolomic profiling offers

tremendous potential to understand the causes and consequences of

aging (Mishur & Rea, 2012).

In addition to identifying effects of DR on levels of individual

metabolites, we can also infer underlying mechanisms by identifying

the effect of DR on metabolomic network structure. Such ‘differential

correlation network’ approaches are relatively common in transcriptomic

studies (e.g., Tesson et al., 2010). Numerous studies have shown that the

underlying structure of molecular networks can shift dramatically under

changing conditions, in particular, in the presence of disease (Amar et al.,

2013). In fact, close analysis of network structure not only has diagnostic

potential, but might also point toward specific mechanisms underlying

causes of aging. For example, Southworth et al. (2009) used this

approach to identify NFjB as a critical transcription factor in the loss of

network connectivity with age in mice. Changes in network connectivity

can occur regardless of changes in mean levels and thus include

metabolites that would otherwise be ignored (Amar et al., 2013).

We used our metabolomic data to ask whether DR reverses age-

related changes in the metabolome, and whether DR alters correlations

between metabolites. We find that (i) DR significantly alters the levels of

various individual metabolites; (ii) DR reverses age-related changes in a

large fraction of the metabolome; (iii) although the mean levels of many

metabolites are unchanged by diet, diet dramatically affects their
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correlation with other metabolites; and (iv) DR significantly alters the

correlation structure of the metabolome network and slows or reverses

age-related changes in network structure. Our results show that high-

resolution metabolomic and network analyses serve as novel, powerful

models which provide insights into the mechanisms that underlie the

protective effects of DR on healthspan and lifespan in diverse organisms.

Results

Changes in the metabolome upon DR

As seen in many previous studies, we found that DR in w1118 female

mated flies extended mean and median lifespan (Fig. 1A). High-

resolution nontargeted metabolomic analyses were carried out in 10-

day-old w1118 flies in head, abdomen, and thorax separately. We found

928 metabolites that were significantly affected by DR at this age, of

which 646 were unique to the abdomen, 115 unique to the head, and

42 unique to the thorax (Fig. 1B).

Thorax and whole fly samples were collected at three ages, 10 days

of age when neither AL nor DR fed flies have begun to die, 20 days of

age when AL fed flies have just begun to die, and 40 days of age when

DR fed flies start to die and AL fed flies are close to their median lifespan

(Fig. 1A). In thorax and whole fly samples, the number and overlap of

metabolites that changed at the different ages is shown in a Venn

diagram (Fig. 1C,D). We found that between 10% (thorax) and 23%

(whole fly) of all metabolites were affected by DR at one or more of the

three sample ages (10, 20, and 40 days). Principal component analysis

(PCA) clearly distinguished flies on different diets for both thorax

(Fig. 1E) and whole fly (Fig. 1F) samples, in both young (10 days) and old

(40 days) flies.

For each tissue- and age-specific list of metabolites affected by DR,

we carried out metabolite set enrichment analysis (MSEA) using the

mummichog program, which identifies and maps metabolites to

pathways (Tables 1 and 2) (Li et al., 2013). These samples included

the four tissue types (head, abdomen, thorax, and whole body) from day

10 and two types (thorax and whole) from days 20 and 40 for a total of

(A) (B)

(C) (D)

(E) (F)

Fig. 1 Multivariate and tissue-specific

changes in the metabolome. (A) Lifespan

curve of wild-type w1118 nonvirgin female

flies fed a 0.5% yeast (DR) or 5% (AL) diet.

Vertical dotted lines indicate ages at which

samples were collected (biological

replicates n = 6). Whole flies and thorax

were collected at all three ages. Heads and

abdomen were collected at 10 days of age

only. (B–D) Venn diagram of numbers of

metabolites altered by DR (simple linear

model testing at P < 0.01, which is less

than FDR = 0.1 in all cases) in head,

abdomen, and thorax at 10 days of age (B)

in the thorax (C) and whole fly (D) at 10,

20, and 40 days of age. (E–F) Principal
component analysis of thorax (E) and whole

fly (F) samples from young (10 days) and

old (20 and 40 days combined) flies.

Ellipses indicate 75% confidence interval.
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eight conditions. This comparison enabled us to identify metabolite

pathways whose response to DR changed in a tissue- and/or age-specific

manner.

The metabolite set for amino acids was most robustly altered,

showing a decline in response to DR in every tissue and at every age.

No other metabolic set was enriched in all eight conditions. However,

in thorax and whole fly at 20 and 40 days of age, three metabolic

sets, beta-alanine biosynthesis, S-adenosyl-L-methionine cycle, and

methionine degradation I (to homocysteine) were downregulated

upon DR. The abdomen had the greatest number of metabolites

significantly affected by DR, and some metabolic sets were uniquely

enriched in the abdomen. For example, TCA cycle variation and

uridine-50phosphate biosynthesis pathways were downregulated, while

the pentose phosphate pathway, gluconate degradation, trehalose

degradation, and UDP-galactose biosynthesis metabolic sets were

increased uniquely in the abdomen (Tables 1 and 2). Together, these

data suggest that DR affects some metabolic pathways consistently

across conditions, while other metabolic pathways are only altered in

a single tissue or with age.

Validation of putative metabolites in an independent sample

To validate the changes in metabolites in our dataset, we conducted a

metabolomic screen using the metabolomic services at Metabolon,

which utilizes internal standards to validate metabolites. We then

compared the Metabolon-generated list of validated metabolites with

our putative metabolites (identified with themummichog program) from

10-day-old flies fed either a DR or AL diet (Table S5). The diet effect on

29 metabolites that were matched by m/z with mummichog and

independently by Metabolon was highly significantly correlated

(F1,27 = 28.9, P = 1.1 9 10�5, Fig. S4). Among the metabolites that

increased under DR in both experiments were carnitine, acetylcarnitine,

and adenine, while those that decreased in both experiments included

kynurenine, leucine, tryptophan, betaine, and pantothenate.

DR attenuates age-dependent changes in metabolites in old flies

We hypothesized that DR would reverse the effect of age on the

metabolome as early as 10 days of age. In particular, we asked whether

the effect of diet on each metabolite would reverse the effects of age on

that metabolite. For example, if metabolite i increases with age, would

Table 1 Metabolic sets decreased on DR

Metabolic Sets Decreased Head Abdomen Thorax10 Thorax20 Thorax40 Whole10 Whole20 Whole40 Frequency

Amino acids X X X X X X X X 8

Beta-alanine betaine biosynthesis X X X X X X 6

S-adenosyl-L-methionine cycle X X X X X 5

Choline biosynthesis III X X X X 4

Isoleucine biosynthesis from threonine X X X X 4

Methionine degradation I (to homocysteine) X X X X 4

Phenylethanol biosynthesis X X X 3

Phosphatidylcholine biosynthesis X X X 3

Serotonin and melatonin biosynthesis X X X 3

Asparagine biosynthesis III X X 2

Citrulline-nitric oxide cycle X X 2

NAD Biosynthesis from 2-amino-3-carboxymuconate

semialdehyde

X X 2

Phenylalanine degradation I X X 2

Purine deoxyribonucleosides degradation X X 2

Tryptophan degradation to 2-amino-3-carboxymuconate

semialdehyde

X X 2

Valine degradation X X 2

2-methylbutyrate biosynthesis X 1

4-hydroxyproline degradation I X 1

5-aminoimidazole ribonucleotide biosynthesis I X 1

Aspartate degradation II X 1

Catecholamine biosynthesis X 1

Dopamine degradation X 1

Folate transformations X 1

FormylTHF biosynthesis X 1

Glutathione redox reactions I X 1

Glutathione redox reactions II X 1

Isoleucine degradation I X 1

Proline degradation I X 1

Spermidine biosynthesis X 1

Spermine biosynthesis X 1

TCA cycle variation III (eukaryotic) X 1

Urate biosynthesis X 1

Urate biosynthesis X 1

Uridine-50-phosphate biosynthesis X 1

Uridine-50-phosphate biosynthesis X 1
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DR decrease the level of that metabolite, effectively reversing the effect

of age? This pattern is explored in Fig. 2. Points representing metabolites

for which diet reverses the effect of age would appear in the top-left and

bottom-right quadrants. Those for which diet exacerbates the effects of

age would appear in the top-right and bottom-left quadrants. At 20 and

40 days of age, we saw a dramatic DR-mediated reversal in the effects

of age on metabolite abundance (Fig. 2B, Fig. S2). However, at 10 days

of age, we saw no relationship between diet-specific and age-specific

changes in metabolite levels (Fig. 2A).

Effect of DR on metabolite correlations

Based on previous work in mice (Southworth et al., 2009) that identified

changes in network connectivity with age, we hypothesized that for some

metabolites, diet might not change the mean concentration across

samples, but instead might influence their correlation with other

metabolites. To this end, we sought pairs of metabolites, neither of

which change mean values in response to changes in diet, but whose

correlation coefficients with other each other did change significantly

between AL vs. DR diets. We saw that differential correlation was

relatively common and occurred inmanyways. For example, some pairs of

metabolites were positively correlated in DR and negatively correlated in

AL, while other pairs showed the opposite trend. Representative pairs and

examples of the different correlation patterns are in Fig. 3 and Fig. S3.

DR changes network correlation connectivity

Motivated by the finding that diet affected the correlation pattern of

pairs of metabolites, we then looked at metabolome-wide effects of

diet on network structure, using differential coexpression ‘DiffCoEx’

analysis. We found striking differences in the correlation network of

the metabolome between AL and DR conditions (Fig. 4). Under DR

conditions, correlations between metabolites trended toward more

positive correlations compared with correlations under AL conditions

(Fig. 4C). Using DiffCoEx, we identify modules consisting of multiple

metabolites that shared common, diet-specific, differential correlation

patterns. We then asked whether each module was enriched for

metabolites in specific metabolic pathways. Among the enrichment

patterns that we identified (Tables S3 and S4), we found modules

enriched for NAD biosynthesis, salvage pathway for guanine, and

degradation of purine ribonucleotides (turquoise); arginine degrada-

tion and isoleucine biosynthesis (brown); and mannose degradation,

glycogen degradation, and UDP-galactose biosynthesis (magenta). (We

note that color assignment to specific modules is arbitrary for each

analysis).

To complement our DiffCoEx analysis, we also identified groups of

metabolites whose correlation network structure showed no change in

comparison between both diet conditions, using an approach we call

‘SimCoEx’ (see Experimental procedures ). We identified some metabolic

pathways that were enriched in the SimCoEx modules but not in the

DiffCoEx modules, including glutamate metabolism (blue) and isoleucine

degradation (red). To display the network connections in more detail, we

present select DiffCoEx and SimCoEx modules, including the DiffCoEx

black module (Fig. 4B) and the SimCoEx black and red modules (Fig. 5B).

These metabolic pathways may provide insights into the key metabolites

or metabolic reactions that cause aging in a similar manner that

differential coexpression analysis in transcriptomic data has found

transcription factors important in aging (Southworth et al., 2009).

Age changes network connectivity

As we observed that DR reverses the effects of age on metabolite

abundance, we hypothesized that changes in network structure with

age are different in DR and AL fed flies. Accordingly, we used DiffCoEx

to identify modules of differentially correlated metabolites at 10 days of

Table 2 Metabolic sets increased on DR

Metabolic Pathways Increased Head Abdomen Thorax10 Thorax20 Thorax40 Whole10 Whole20 Whole40 Frequency

Catecholamine biosynthesis X X X X 4

Lipoate biosynthesis and incorporation II X X X X 4

Degradation of purine ribonucleosides X X X 3

Beta-alanine betaine biosynthesis X X 2

Dopamine degradation X X 2

FormylTHF biosynthesis I X X 2

Glycogen degradation I X X 2

Purine deoxyribonucleosides degradation X X 2

Tyrosine degradation I X X 2

4-hydroxyphenylpyruvate biosynthesis X 1

Aerobic respiration – electron donors reaction list X 1

Citrulline-nitric oxide cycle X 1

NAD biosynthesis from 2-amino-3-carboxymuconate

semialdehyde

X 1

Pentose phosphate pathway (nonoxidative branch) X 1

Pentose phosphate pathway (oxidative branch) X 1

Pentose phosphate pathway (partial) X 1

Salvage pathways of adenine X 1

Salvage pathways of guanine X 1

Superpathway of gluconate degradation X 1

Trehalose degradation II (trehalase) X 1

Tryptophan degradation to 2-amino-3-carboxymuconate

semialdehyde

X 1

UDP-galactose biosynthesis (salvage pathway from

galactose using UDP-glucose)

X 1
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age vs. 40 days of age for both DR and AL fed flies. The DiffCoEx figures

(Fig. 6A, C) suggest that under DR, correlation coefficient strength

increases with age, while under AL conditions, the strength of

correlations decreases with age. These diet-specific differences in age-

related changes are reflected in histograms of the correlation coefficients

(Fig. 6B, D). Thus, it appears that DR attenuates the age-related decline

in the metabolome-wide correlations among metabolites.

Similar results were obtained with two different columns

We analyzed metabolite profiles for samples run on two kinds of column

—an anionic exchange (AE) column and a nonpolar (C18) column. The

patterns we found did not differ between columns. For simplicity, the AE

column results were presented. Analyses of metabolite profiles from the

C18 column are presented in the supplemental figures (Fig. S1–S3) and

Tables (S1–S4).

Discussion

Over the past 70 years, researchers have put substantial effort into the

study of mechanisms by which DR extends lifespan (Mair & Dillin, 2008;

Niccoli & Partridge, 2012). Despite this work, we know little about the

functional mechanisms that determine how and why DR extends

healthspan and lifespan. This gap in our knowledge motivated us to

focus on the effects of DR on the metabolome, which includes the
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Fig. 2 Effect of age and diet on the metabolome. Each point represents a

metabolite. The axes show the b coefficient from the linear models of metabolite

concentration vs. age (comparing 10 and 40 days under AL) on the y-axis and diet

[comparing AL and DR at 10 days (A) or 40 days (B)] on the x-axis. Positive values

represent metabolites that increase under DR conditions or with age. Metabolites

shown are significantly (FDR = 0.025) altered by age (blue circles), diet (green

circles), or both diet and age (orange circles) in the thorax. Metabolites in the top-left

andbottom-right quadrants represent those forwhichDR reverses the effects of age.
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Fig. 3 Pairs of thorax metabolites in (A) and (B) whose mean values are

unaffected by diet (P > 0.05) but whose correlations are significantly different

between DR and AL. The upper panels show the relationship between two

metabolites under AL (red) and DR (blue) conditions. The correlations are

significantly different in both cases (A: ANCOVA F1,19 = 34.7, P = 1.13 9 10�5; B:

ANCOVA F1,19 = 24.8, P = 8.32 9 10�5). The lower panels show the effect of diet

on the absolute levels of each metabolite (none are statistically significant).
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building blocks of so many functional pathways in an organism. Previous

studies have found that DR alters not just physiological traits, such as

starvation resistance (Katewa et al., 2012), mitochondrial activity (Zid

et al., 2009; Katewa et al., 2012), and spontaneous activity (Parashar &

Rogina, 2009), but also the transcriptome (Pletcher et al., 2002;

Whitaker et al., 2014). The work presented here brings needed

attention to the metabolome.

In mice and other vertebrate species, studies hint at the possibility

that DR might influence lifespan or healthspan in part through

preventing age-related changes in the metabolome. For example, De

Guzman et al. (2013) found 77 of 7000 serum features that differed

between young and old AL mice, 15 of which were attenuated by DR.

In dogs, Richards et al. (2013) found the plasma metabolome differ

with age in both DR and AL fed animals, but it was not clear from their

study whether DR attenuated the age-related change in the metab-

olome. Finally, a study in Rhesus macaques found that age and DR

alter the plasma metabolome and may prevent age-related changes in

the metabolome (see Table 3 in Rezzi et al., 2009). While these studies

(A)

(B)

(C)

Fig. 4 Differential coexpression analysis of

all metabolites (ages 20 and 40, and thorax

and whole fly combined, correcting for

batch effects using combat). (A) Correlation

matrix of metabolites significantly

correlated (n = 550) in DR or AL, but not

both diets. Modules of metabolites are

indicated by the colored bars. The black box

highlights the module of metabolites

shown in detail in (B). (B) Detailed

examination of the correlation network of

metabolites in the black module from (A) in

DR (left panel) and AL (right panel).

Individual metabolites are represented by

yellow circles, with positive correlations

(r > 0.5) shown in red and negative

correlations (r < �0.5) shown in blue. (C)

Distribution of correlations between

metabolites in DR (left panel) and AL (right

panel) for thorax. The solid red line

indicates the mean of all correlations.

Across all metabolites in (A), correlations

are significantly higher for DR than AL

(P < 1e-16).
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(A)

(B)

Fig. 5 Similarity coexpression analysis of all

metabolites (ages 20 and 40, and thorax

and whole fly combined, corrected for

batch effects using combat). (A) Correlation

matrix of metabolites which show similarity

correlation between AL and DR (n = 659).

Modules of metabolites are indicated by the

colored bars along bottom and left-hand

side of matrix, with a scale indicating the

strength of correlation between

metabolites. The black boxes outlined in (A)

are modules which are detailed in (B). (B)

The correlation network of metabolites is

examined in detail with the two modules

represented by black circles and red circles

from the correlation matrix modules in (A).

DR (top) and AL (bottom). Individual

metabolites are represented by black and

red circles, respectively, with lines colored

as in Fig. 4B.
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demonstrate the power of metabolomic assays in DR studies, they are

limited by assaying relatively few metabolites, and in some cases, by a

study design that includes young AL animals but not young DR

animals.

A recent metabolomic study by Avanesov et al. (2014) overcomes

some of these shortcomings with the use of two different diets and high-

resolution metabolomic profiles for numerous ages. Their results suggest

that a diet that extends longevity shifts both the transcriptome and the

metabolome toward a younger state, similar to our findings at 20 and

40 days of age. Other similarities include separation by age using

principle component analysis and identification of similar but not

identical enriched metabolite sets. There are some important differences

between this work and our own. Our work used thorax and whole flies

for all time points and included heads and abdomen at 10 days of age to

look at tissue-specific effects of DR. In contrast, Avanesov et al. (2014)

only used whole flies. Other methodological differences exist, including

different mass spectrometry protocols (different columns for separation)

and different fly strains (w1118 vs. Canton S). The main analytical

difference is our inclusion of network analysis to determine the age and

diet effect on correlations between networks; however, we also used

different programs (mummichog vs. MetaboAnalyst) to identify metab-

olites and map them to specific metabolic pathways that may be

enriched. Thus, direct comparisons between the two studies should be

interpreted carefully.

Our metabolite set enrichment analysis with mummichog suggests

numerous interesting avenues for future research. Not surprisingly, given

that the DR approach used here consisted of protein restriction, we saw

a strong and consistent decrease in amino acids in all tissues of DR

relative to AL flies. Interestingly, in both thorax and whole fly at 20 and

40 days, we saw downregulation of the S-adenosyl-L-methionine cycle

pathway. The S-adenosyl-L-methionine pathway provides the cell with

methyl groups for methylation of nucleotides and proteins, a pathway

implicated in age-related diseases (Park et al., 2012). The universal

methyl donor, S-adenosyl-L-methionine synthetase, has been tied to

lifespan in worms (Hansen et al., 2005) and flies (Lin et al., 2005). A

second potential role for the S-adenosyl-L-methionine pathway to

improve health is through the interaction of methionine and AMPK

(Cabreiro et al., 2013). AMPK activation increases lifespan in worms,

flies, and rodents and is the target of the antidiabetic drug metformin. In

worms at least, metformin requires the metabolite methionine to have

its anti-aging effects (Cabreiro et al., 2013), but whether the same

interaction is present in other animal models is unknown. Furthermore,

other intermediates within the methionine metabolism pathway, such as

homocysteine, are implicated in aging or age-related diseases. For
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DR – 40 days

AL – 10 days

AL – 40 days
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Fig 6 Differential coexpression analysis of thorax metabolites from AE column (A,C). Differential correlation matrix shows metabolites correlated between ages in flies fed a

DR (A, N = 872) or AL (C, N = 845) diet. (B,D) The distribution of strength of correlations between metabolites at ages 10 (left) or 40 (right) under DR (B) and AL (D). The

solid red line denotes the mean of all correlations. Note that DR attenuates the age-related decline in correlations among metabolites.
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instance, homocysteine accelerates senescence of primary endothelial

cells with increasing passage number (Zhang et al., 2015) and high levels

of homocysteine are associated with cognitive decline and Alzheimer’s

disease (reviewed Kronenberg et al., 2009). One possible reason for this

downregulation will be reduced amino acids in the diet and thus a

reduced need for amino acid degradation pathways.

Our tissue-specific analysis suggests that DR may regulate different

metabolic processes in different tissues. For example, only in the

abdomen did we see evidence of a DR-mediated increase in the pentose

phosphate pathway and aerobic transport pathways. One important role

of the pentose phosphate pathway is to generate NADPH for reductive

biosynthesis of metabolites such as fatty acids. The Drosophila abdomen

is both a site for de novo lipogenesis (Palm et al., 2012) and lipid export

as the abdomen contains lipid-carrying carnitine moieties (Chintapalli

et al., 2013). We have shown that the turnover of lipid in muscle is

critical for beneficial effects of DR on lifespan and metabolism (Katewa

et al., 2012). While it was beyond the scope of the current study to look

at the effects of DR on all tissues, Chintapalli et al. (2013) performed

metabolomics and lipidomics on ten different fly tissues under a single

diet and show each tissue has a specific metabolite profile. A more

complete analysis of tissue-specific responses to DR and age should

greatly increase our understanding of the underlying mechanisms by

which DR alters the metabolome and ultimately increases healthspan

and lifespan.

While additional tissue-specific data will prove insightful, so will new

analytical and computational approaches to existing data. For example,

rather than focus just on changes in mean values, recent systems biology

studies highlight the value of looking at correlations between variables.

This has most commonly taken the form of transcriptome data,

associating changes in network structure with a variety of diseases

(Amar et al., 2013). Perhaps most relevant to the work we have

presented here, Southworth et al. (2009) found that correlation coef-

ficients among transcripts measured in 13 different mouse tissues

declined with age.

While rare in metabolomic studies, those that have used this

approach do provide novel information into biochemical and metabolic

regulation. For example, Muller-Linow et al. (2007) found that the

structure of the metabolite correlation network in Arabidopsis thaliana

varied with time of day and that networks that were further apart in time

were further apart in structure. Until now, differential metabolome

network analyses have been limited to studies in plants (e.g., DiLeo

et al., 2011; Fukushima et al., 2011). To our knowledge, ours is the first

study to use differential coexpression analysis to look at diet- and age-

related changes in the metabolome captured with high-resolution

metabolomics.

Differential coexpression analysis identified numerous modules of

metabolites whose correlation patterns changed in tandem between AL

and DR conditions. These observations, combined with the well-known

result that DR reduces age-related mortality rate and slows age-related

declines in function, led us to ask how diet influenced age-related

changes in network correlation. As anticipated, we found a loss of

network correlation under ad lib conditions (consistent with Southworth

et al., 2009), but if anything, DR flies showed greater network

correlation at older ages (Fig. 6). In both DR and AL conditions, the

changes in network connectivity occurred in a modular, nonlinear

fashion, suggesting a biologically coordinated mechanism. However,

unlike Southworth et al.’s (2009) result, it is unlikely that transcription

factors can account for changes in correlations between metabolites. We

hypothesize that these changes reflect alterations in flux through specific

metabolic pathways, but the underlying details are likely quite complex.

We would also note that our network is based on relatively few samples.

Increased sample size in future studies will be critical to develop a more

robust portrait of the effects of diet and age on network structure.

As Muller-Linow et al. (2007) point out, one can often observe pairs

of metabolites that are correlated across samples, but which are

apparently unrelated in a map of known metabolic reactions. Future

studies with targeted metabolomic approaches should allow us to

measure the degree of overlap (or lack thereof) for metabolites that

show diet- and age-specific changes in correlation structure. Testing

hypotheses related to these differential correlations is not straightfor-

ward. If we observe levels in a single metabolite that are associated with

a trait of interest, we can try to increase or decrease levels of that

metabolite through genetic (Eisenberg et al., 2014) or pharmacological

(Wang et al., 2014) means. More challenging still, it remains to be seen

whether we can alter age-related changes in metabolite correlations by

feeding two or more metabolites to flies simultaneously, or altering

expression patterns of multiple enzymes associated with metabolites

whose correlations change with age.

We would stress here that we do not yet know the significance of

these correlations, but they may be a reflection of organismal homeo-

stasis. Using the mummichug program (Li et al., 2013), we were able to

identify enriched metabolic pathways in groups of metabolites not only

whose mean values changed with diet, but also whose correlation

network changed with diet (Fig. 3). For example, within turquoise

module in Fig. 3, we identified enrichment for many metabolic

pathways. Some of these pathways are important for amino acid

metabolism including glutamate biosynthesis, glutamine degradation,

arginine degradation, proline biosynthesis, and serine biosynthesis, while

other pathways are important for energy metabolism, including oxida-

tive ethanol degradation, pentose phosphate pathways (oxidative

branch), and glycolysis. Changes in correlation patterns provide addi-

tional insights into the metabolome compared to changes in just the

level of metabolites. For instance, L-carnitine biosynthesis is only

enriched in DiffCoEx analysis, and carnitines have been shown to be

altered with aging (Costell et al., 1989; Hoffman et al., 2014) and dietary

restriction in multiple species, including humans (Redman et al., 2011).

The biological significance of changes in individual correlation

coefficients and in the larger network structure is not entirely known

yet. We speculate that a more highly correlated metabolome could

reflect improved homeostasis and more tightly regulated metabolism.

For example, in response to cold stress, Drosophila selected for cold

adaptability have a more robust metabolic network than flies selected for

cold susceptibility (Williams et al., 2014). Similarly, DR fed flies are more

stress resistant. Many metabolic pathways occur in unique, but

interdependent subcellular compartments. A higher degree of correla-

tion might reflect a metabolome that is more stoichiometrically

balanced, leading to higher efficiency of metabolic reactions. Thus,

higher metabolic network connectivity may indicate an improved ability

to respond to various environmental stressors.

As with any metabolomic analysis, there are some limitations to our

study. First, there is not yet a curated fly metabolome. Of the several

thousand metabolites in our dataset, only 14–21% were assigned

putative chemical definitions in mummichog. Metabolic set enrichment

analysis is limited by the metabolic coverage used to create the

pathways, and likely represents only a fraction of the metabolic

pathways altered by DR. Furthermore, food- or bacterial-derived

metabolites may act as confounding factors (Corby-Harris et al.,

2007). The oldest flies sampled were 40 days old, and thus, we might

have missed important metabolite interactions that occur at older ages.

We flash-froze our samples to best reflect the in vivo metabolome. This
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approach means that individual ‘tissue-specific’ samples actually

combine many different specialized organs and tissues. Lastly, in this

study, we used a widely available laboratory strain, w1118, but we

know from recent studies that there are dramatic differences in

metabolomic profiles among genotypes (Hoffman et al., 2014), and

different genotypes are also likely to respond to DR differently (Forster

et al., 2003).

Our work expands upon the observation that DR reverses transcrip-

tomic changes with age to reversal of metabolomic changes with age.

We also demonstrate the utility of using differential coexpression analysis

in metabolomic studies and speculate that a common stress-resistant

highly connected metabolome may exist in flies. Future work using DR in

combination with both metabolomic and transcriptomic approaches will

further tighten the molecular mechanisms that link metabolites with

organismal phenotype.

Experimental procedures

Animals and rearing protocols

w1118 flies were maintained on standard stock food in a fly room kept at

25 °C and 60% humidity. All studies used female mated flies as they

show the biggest difference in lifespan in response to changes in yeast in

the diet. Flies were treated identically for lifespan and metabolomic

analysis. Twenty-five adult nonvirgin female flies, 0–3 days old, were

transferred to vials containing either 5% (w/v) yeast extract (herein

referred to AL food) or 0.5% (w/v) yeast extract (herein referred to as DR

food) as previously described (Katewa et al., 2012). Flies were trans-

ferred to fresh food three times per a week at which time dead flies were

counted and removed. Median lifespans for DR (n = 164) and AL

(n = 153) were 59.5 and 35 days, respectively.

Twenty-four hours prior to sample collection, flies were transferred to

fresh food. Samples were collected at 10, 25, and 40 days following

placement on different diets. These days were selected to represent a

young, middle-aged, and median lifespan in AL fed flies (Fig. 1A). To

collect the different tissues, flies were snap-frozen in liquid nitrogen and

dissected on dry ice at the same time of day, 1500 h. For all three ages,

each sample (n = 6) contained 15 thoraces, 15 abdomens, or three

whole flies, while 10-day samples also had heads collected (n = 6, 40–50

heads per sample) totaling ~3 mg of tissue. Within each treatment

group, the six biological replicates consisted of populations of flies reared

and raised in distinct bottles and vials.

Metabolomic assays

Sample preparation and analysis were carried out as described previously

(Hoffman et al., 2014). For each biological replicate, acetonitrile extracts

of the tissue were analyzed in a dual column [C18 and anion exchange

(AE)] chromatography–mass spectrometry (LC-MS) platform. Samples

were fractionated after electrospray ionization and subsequently

detected using a Fourier transform mass spectrometer. Non-annotated

mass/charge (m/z) features, column retention time, and ion intensity

were collected as data. Fly standards were derived from a pooled

reference sample stored as a large number of aliquots at �80 °C and run

alongside experimental samples to allow comparison of analytic behavior

over long periods of time. Data from the pooled reference samples were

used for quality control (i.e., to ensure relative consistency among

identical samples within days) and for quality assurance (i.e., to ensure

consistent results between days), but were not used in downstream

statistical analysis.

Statistical analysis

All analyses described below were carried out using the open source

software package R (Team 2013).

Quality control

Metabolomic data consisted of separate files with features and counts

from the AE and C18 columns. The C18 column consisted of 34 771

features distinguishable by mass/charge ratio (m/z) and column retention

time, from a minimum m/z = 85.0279778 to a maximum of m/

z = 1976.50254. The AE column included 17 617 features, from m/

z = 86.0605321 to m/z = 1738.34568. Including all tissue types, diets,

and biological and technical replicates, feature counts were available for

321 (C18) and 324 (AE) samples. Feature counts were log-transformed

to approximate Gaussian distribution, and outlier samples were detected

using the flashClust function in R, with a threshold cutoff Zk = �3. One

low yeast concentration thorax sample at age 40 was removed from the

AE column data.

We then removed any metabolomic features with a signal-to-noise

ratio (�xi /rmz(i).tech) < 20, where �xi is mean of the ith analyte and rmz.tech

is the average standard deviation of each technical replicate for the ith

analyte. After taking the mean values of the technical replicates for all

remaining features, we then created separate files by tissue type and,

within each file, eliminated any features with more than 10% missing

samples, imputing the remaining missing values using the emArray

method in the LSimpute package (Bo et al., 2004). Finally, unless

otherwise noted, all features were normalized to have a mean of 0, but

were not rescaled to have unit variance.

Multivariate analysis

For each tissue type, we used principal component analysis, as

implemented in R using the ord function, to determine whether there

was a metabolome-wide signature of diet in the fly.

Univariate analysis

Given the large number of metabolites tested, it is necessary to correct

for potentially large table-wise error, with a high risk of false positives. In

all univariate analysis, we adjusted P-values using the false discovery rate

correction with FDR = 0.05 unless otherwise noted. For each tissue type,

we used a simple linear model to test for significant effects of diet on

metabolic feature concentration.

For whole body- and thorax-specific data, samples were obtained at

three different ages. For these data, we wanted to know the relationship

between the effect of diet vs. the effect of age on feature concentration.

Effect size was defined as the slope of the lines from the model

y ¼ lþ bx þ e; ð1Þ

where y is the concentration of the metabolic feature, l is the mean, x is

age or diet, and b is the slope of the relationship between x and y. Due

to limited sample size, we pooled thorax and whole body data, removing

any batch effects due to differences between thorax and whole body

using the ComBat function in R’s sva package (Leek et al., 2012). In

comparing the relative impact of diet and age simultaneously, to avoid

confounding effects, we tested for the effects of diet on just one age at

a time and tested for the effects of age on just the high yeast

concentration diet.

To determine the joint effect of diet and age on individual features,

we plotted the b values (Eqn 1) for diet against the b values for age.
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Features for which diet reversed the effects of age would be expected to

have opposite sign values for b.

Network structure

In addition to looking at the main effects of diet on the concentration of

individualmetabolites, herewealsowant to identify groups ofmetabolites

whose overall correlation network is influenced by diet. To do so, we apply

the differential coexpression package, DiffCoEx (Tesson et al., 2010),

which takes advantage of the subroutines that make up part of the

Weighted Gene Correlation Network Analysis package (WGCNA, Langf-

elder & Horvath, 2008) in R. WGCNA takes the correlation matrix (aka

adjacency matrix, A) for a set of elements and then applies a clustering

algorithm to identify clusters of similarly correlated elements. The package

identifies modules of strongly correlated elements within a broader

network.DiffCoEx takes twosuchmodules,AandA0,madeupof the same

set of features measured in multiple samples, but across two different

environments E and E0. We can construct a new ‘difference matrix’

D ¼
�

A�A0j j
2

�b
2

; ð2Þ

which is a function of the two original matrices, where b is a scaling

coefficient (Langfelder & Horvath, 2008). We can then carry out

clustering analysis on D to identify groups of metabolites with common

environment-specific changes in correlation network. We identified

groups of metabolites that are significantly preserved across environ-

ments. To do this, we defined a ‘constancy matrix’,

C¼ ð1�DÞ � Aj j � A0j j; ð3Þ
on which we could carry out clustering analysis to reveal groups of

metabolites that show relative constancy in the correlation network.

Metabolites correlated between ages were normalized using the

‘normalize.quantiles’ function in bioconductor.

Metabolite set enrichment analysis

For both main effect and network analysis, to determine whether groups

ofmetabolites that shared common responseswere enriched for particular

metabolic pathways, we used the programMummichog (Li et al., 2013).

Written in Python,Mummichog is a freely available program that provides

putative matches to metabolites based on mass/charge ratios, and carries

out the metabolomic equivalent of gene set enrichment analysis.

See the Supplemental Material for Experimental Details on the

Metabolon Data Analysis.
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