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Abstract

Whole-genome data has become significantly more accessible over the last two decades.

This can largely be attributed to both reduced sequencing costs and imputation models

which make it possible to obtain nearly whole-genome data from less expensive genotyping

methods, such as microarray chips. Although there are many different approaches to impu-

tation, the Hidden Markov Model (HMM) remains the most widely used. In this study, we

compared the latest versions of the most popular HMM-based tools for phasing and imputa-

tion: Beagle5.4, Eagle2.4.1, Shapeit4, Impute5 and Minimac4. We benchmarked them on

four input datasets with three levels of chip density. We assessed each imputation software

on the basis of accuracy, speed and memory usage, and showed how the choice of imputa-

tion accuracy metric can result in different interpretations. The highest average concordance

rate was achieved by Beagle5.4, followed by Impute5 and Minimac4, using a reference-

based approach during phasing and the highest density chip. IQS and R2 metrics revealed

that Impute5 and Minimac4 obtained better results for low frequency markers, while Bea-

gle5.4 remained more accurate for common markers (MAF>5%). Computational load as

measured by run time was lower for Beagle5.4 than Minimac4 and Impute5, while Minimac4

utilized the least memory of the imputation tools we compared. ShapeIT4, used the least

memory of the phasing tools examined with genotype chip data, while Eagle2.4.1 used the

least memory phasing WGS data. Finally, we determined the combination of phasing soft-

ware, imputation software, and reference panel, best suited for different situations and anal-

ysis needs and created an automated pipeline that provides a way for users to create

customized chips designed to optimize their imputation results.

Introduction

Genome wide association studies (GWAS) remain one of the most critical and powerful meth-

ods of identifying key genes and variants that play a role in many common human diseases [1,

2]. Identification of disease-associated variants in GWAS is dependent on successful tagging of

millions of common variants in the human genome, and the ability to make inferences about

genotypes of rare variants which are often not in linkage disequilibrium (LD) with common
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variants [1, 2]. Commercial single nucleotide polymorphism (SNP) genotyping arrays can con-

tain up to 2.5 million markers, but none provide complete coverage of the human genome [3].

Despite the advances of the last two decades which have led to increasingly rapid and extensive

genotyping, it is still prohibitively expensive to obtain whole genome sequencing (WGS) for

the tens of thousands of individuals in GWAS [4, 5]. Individual GWAS may also use distinct

chips with different markers. To combine these GWAS for meta analysis, we require a method

by which to identify genotypes at all markers utilized in each of these studies [6]. Thus, we con-

tinue to rely on imputation, the process of probabilistically estimating non-genotyped alleles

for individuals in GWAS samples.

Genotype imputation is a method that infers the alleles of un-genotyped single-nucleotide

polymorphisms (SNPs) based on linkage disequilibrium (LD) with directly genotyped markers

using a suitable reference population [7]. It is predicated on the idea that seemingly unrelated

individuals from the human population sampled at random can share short stretches of DNA

within chromosomes derived from a shared ancestor [8]. Imputation can be used to improve

SNP coverage and increase the statistical power of GWAS [9, 10]. Genotype imputation also

facilitates fine mapping of causal variants, plays a key role in the meta-analyses of GWAS, and

can be utilized in downstream applications of GWAS such as estimation of disease risk [9].

However, an important limitation of imputation is that only variants that were previously

observed in a reference panel can be imputed [9]. Furthermore, rare variants are often poorly

represented in reference panels making accurate imputation of rare and infrequent variants

difficult. In addition, the choice of whether to pre-phase the data can impact imputation.

Finally, imputation accuracy, sensitivity and computational efficiency are greatly affected by

the choice of imputation software or tool [9].

Over the last twenty years, multiple research groups have developed and published a number

of phasing and imputation models, the majority of which are based on the Li and Stephens Hid-

den Markov Model (HMM) [10]. First described in 2003, it was applied to haplotype estimation

methods, termed "phasing", and used to handle large stretches of chromosome where individual

haplotypes share contiguous, mosaic stretches with other haplotypes in the sample [8, 9]. Unlike

previous coalescent approaches, it was computationally tractable, and methods based on the Li &

Stephens HMM were soon shown to be more accurate and efficient than other methods [8, 11].

Landmark and popular phasing algorithms are listed in Table 1, as a brief tabular history of the

field. Currently, the most commonly used Li and Stephens HMM-based software’s are BEAGLE,

EAGLE, and SHAPEIT for phasing, and BEAGLE, IMPUTE and MINIMAC for imputation.

Imputation accuracy is measured by several key sets of metrics which can be classified into

two overarching types: statistics that compare imputed genotypes to ‘gold standard’ genotyped

data and statistics produced without reference to true genotypes [32]. Concordance rate,

squared correlation (R2), and Imputation Quality Score (IQS) are examples of the first type

[32, 33]. In practice, the purpose of imputation is to predict SNPs for which we do not have

genotyped data; statistics of the second type are typically relied upon during imputation, and

generally output by the various imputation programs. Although the rapid increase in the num-

ber of deeply sequenced individuals will soon make it possible to assemble increasingly large

reference panels that greatly increase the number of imputable variants, the choice of phasing

and imputation software currently has a significant impact on accuracy [34].

While several studies have evaluated and compared imputation models, or phasing models,

or imputation models in combination with different reference panels, no recent studies have

compared imputation and phasing algorithms in combination with different reference panels

and datasets, in tandem, and evaluated the relative computational efficiency and accuracy of

each combination [34, 35]. Previous studies which have examined differences between phasing

and imputation tools have worked with earlier iterations of these or similar tools. A 2018
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comparison of phasing tools by Choi et al. [36] examined switch error rates and percent of var-

iants phased using either the Haplotype Reference Consortium or the 1000 Genomes Project

as a reference panel, by then state-of-the-field tools: Eagle2, SHAPEIT, Beagle, Illumina’s Hap-

CUT, and less popular tools such as CPT, Moleculo and Fosmid [36].

In this study, we evaluate the latest versions of the most commonly used tools for phasing

and imputation in terms of accuracy, computational speed and memory usage, using 2 differ-

ent versions of the 1000 Genome Project as reference panels and four different microarray

chip datasets as inputs (S1 Table). We combine each tool for phasing with a method for impu-

tation to understand which combination achieves the best overall results and which method is

the best at imputing rare variants. Our goal was to determine the combination of phasing and

imputation software and reference panel that is best suited for different situations and needs.

Methods

Data

We used four different chip datasets, with differing marker density and input dataset sizes.

The first chip dataset Estonian Biobank (EBB) was composed of 2280 unrelated individuals, a

Table 1. A brief history of phasing and imputation tools.

Software Published Based on Features Complexity

Phasing PHASE v 1.0 [12] 2001 Coalescent

approximation

Improved error rates are reduced by >50% relative to its nearest

competitor

quadratic O

(n2)

HAPI-UR [13] 2012 Li & Stephens HMM Used windows of sites instead of specific markers; led to higher accuracy linear O(nm)

Eagle 2 [14] 2016 Li & Stephens HMM pBWT on a large reference panel condensed into a set of compact tree

structures that losslessly model haplotype structure

linear O(nm)

Phasing &

Imputation

fastPHASE [8] 2006 Li & Stephens HMM Faster but less accurate than Phase linear O(nm)

Beagle v. 1.0 [15] 2007 Li & Stephens HMM Uses bifurcating tree structure (aka haplotype-cluster model) quadratic O

(n2)

Beagle v. 2.0, 3.0

[16, 17]

2009 Li & Stephens HMM Uses bifurcating tree structure (aka haplotype-cluster model) quadratic O

(n2)

Beagle v. 4.0 [18] 2018 Li & Stephens HMM Abandoned bifurcating model to adopt a flexible choice of haplotypes for

reference similar to IMPUTE 2

quadratic O

(n2)

Beagle v. 5.2 [19] 2021 Li & Stephens HMM Introduction of progressive phasing algorithm to handle hundreds of

millions of markers

linear O(nm)

IMPUTE 2 [20] 2009 Li & Stephens HMM Flexible choice of haplotypes for reference panel; quadratic

computational complexity meant inefficient

linear O(nm)

IMPUTE 4 [21] 2018 Li & Stephens HMM Speed up haplotype imputation step quadratic O

(n2)

IMPUTE 5 [22] 2019 Li & Stephens HMM Uses positional BWT to choose haplotypes for each window linear O(nm)

MACH [23] 2010 Li & Stephens HMM An iteratively updated phase of each study sample linear O(m+n)

SHAPEIT 1 [24] 2011 Li & Stephens HMM Flexible choice of the panel but computationally efficient linear O(n+m)

SHAPEIT 2 [25] 2013 Li & Stephens HMM Combined best aspects of SHAPEIT 1 and IMPUTE 2 to increase

accuracy and efficiency

quadratic O

(mn2)

SHAPEIT 3 [26] 2016 Li & Stephens HMM Increased scalability from SHAPEIT 2 quadratic O

(n2)

SHAPEIT 4 [27] 2018 Li & Stephens HMM pBWT to choose haplotypes for local window linear O(nm)

Imputation Minimac [28] 2012 Li & Stephens HMM Pre-phased imputation linear O(nm)

Minimac 2 [29] 2014 Li & Stephens HMM Improved version and bug fixing linear O(nm)

Minimac 3 [30] 2015 Li & Stephens HMM State-space reduction to reduce computational complexity and cost linear O(nm)

Minimac4 [31] 2018 Li & Stephens HMM Improved version and bug fixing linear O(nm)

A timeline and brief description of landmark and popular phasing and imputation algorithms and their computational complexities

https://doi.org/10.1371/journal.pone.0260177.t001
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whole genome sequencing (WGS) dataset converted into chip data, EBB is a volunteer-based

sample of the Estonian resident adult population (aged�18 years) (dbGAP Accession Num-

ber: phs001230.v1.p1). The second (Affymetrix) was composed of 3450 unrelated individuals

from The 1000 Genomes Project genotyped with the Affymetrix 6.0 900K array (Affymetrix,

ThermoFisher), the third one (Omni) of 2318 unrelated individuals from the 1000 Genomes

Project genotyped with the Omni 2.5 chip by Illumina 2.4 Million unphased SNP markers,

and the forth one (Customized) was a subset of the Affymetrix and Omni chip and consisted

of the intersection of the Affymetrix and Omni chips with another chip, GSA version 3 with

direct-to-consumer booster by Illumina (S1 Fig). This Customized chip is the intersection of

commonly used chips, resulting in a low-density chip with fewer overall sites, to allow us to

assess imputation and phasing accuracy when the input data is limited to a relatively small

number of SNPs.

Data called from EBB, Affymetrix and Omni data were normalized using BCFtools [37].

The resulting chip data was processed separately for each chromosome. Chromosome 20 was

chosen for use in all downstream analyses as it is generally representative of autosomal chro-

mosomes. Sample data were converted to GRCh38 with Picard Toolkit. 2019. Broad Institute.

GitHub Repository. https://broadinstitute.github.io/picard, to match the reference panels,

multiallelic sites were split, variants left-normalized to the reference genome, and duplicate

variants removed (Fig 1). Finally, because Beagle does not allow skipping imputation of spo-

radic missing data, variants with missing genotype information were removed from both the

chip datasets, the WGS EBB data and the reference panels.

Finally, we converted the WGS EBB data (1,071,486 variants for chr20) in chip genotype

size using a variant filtering with GSA chip data (15,635 variants for chr20), we kept only the

variants in common, resulting in 13,990 variants left for chr20. We will refer to this new data-

set as EBB chip data.

Reference panel collection and sample selection

We drew our reference panels for imputation and phasing from the “The 1000 Genomes Proj-

ect” (1000GP). We used the phase 3 low coverage WGS which has a mean depth of 7X as one

reference panel and the high coverage WGS, with a mean depth of 30x, as a second reference

panel [38, 39]https://www.zotero.org/google-docs/?broken=OoRgs5. We refer to these as the

1000GP-Phase3 and 1000GP-30x reference panels.

We selected 2280 unrelated individuals from the EBB collection. Imputation accuracy was

assessed by looking at the concordance between the imputed EBB chip data and the whole

genome sequences for these 2280 samples from the original WGS EBB dataset.

Further, in order to test imputation accuracy between different populations, we randomly

selected 190 unrelated individuals (S2 Fig) taken from the set of 1686 individuals found in all

three collections—the Omni, Affymetrix and WGS 1000 Genomes Project sample collections

[39] as shown in S2 Fig. Our sample consisted of 5 males and 5 females per population, for 19

different populations and 5 super-populations (S3 Fig). These 190 individuals, and their rela-

tives, were removed from the reference panels and used to create chip datasets for testing.

Imputation accuracy was assessed by looking at the concordance between the imputed chips’

data and the whole genome sequences for these 190 samples.

Quality control of reference panels

For both 1000GP reference panels and EBB data, we used BCFtools [37] to split multiallelic

sites, remove duplicates and missing data, and align variants to the reference genome. Both the

1000GP-30x and 1000GP-Phase3 panels were preprocessed by prepending the contig name
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with the prefix ‘chr’. We created another 1000GP-30x where filtered out all the non-common

variants that weren’t inside the WGS EBB data because imputation accuracy could not be

assessed for those. Two additional steps were performed for the 1000GP-Phase3 panel to con-

vert it to GRCh38 with Picard liftover, and discard rare variants singletons and doubletons to

evaluate if their removal increased imputation accuracy for common variants (MAF>5%).

This last operation was done only for the reference panel in chip data Affymetrix, Omni, Cus-

tomized, while for EBB data we kept all the variants in common between these 2 reference pan-

els and looked at the imputation accuracy differences between 1000GP-Phase3 and 1000GP-

30x. The workflow for the quality control and pre-processing of the reference panels is shown

in Fig 1.

Phasing and imputation pipeline

The EBB, Affymetrix, Omni and Customized chips were used as inputs for 9 combinations of

phasing and imputation tools to assess which combination performed best for our sample set

(Fig 2), using one of the two reference panels. Phasing was performed using both reference-

free and reference-based approaches for each method, to compare their respective imputation

accuracy. This yielded a total of 144 combinations of 4 input chip datasets, 3 phasing tools, ref-

erence-based or reference-free phasing approach, 2 imputation reference panels, and 3 impu-

tation tools (S1 Table).

The haplotype phasing software we compared are: Eagle2 v2.4.1 [14], Beagle5 v5.4 [18], and

Shapeit4 v4.2.1 [27]. All phasing software was launched with default parameters using 4 cores

for each analysis on an Intel Corporation 82371AB/EB/MB PIIX4 ACPI 64-bit 32Gb RAM

and the saved log file was used to evaluate the total run time. The imputation methods we

tested are: Beagle5 v5.4 [18], Impute5 v1.1.5 [22] and Minimac4 v1.0.0 [30].

Each input chip dataset was processed using Imputation_score.sh an automated pipeline

we built in bash that combines the phasing and imputation software and evaluates accuracy at

each step to speed up the process of analysis and comparison. The inputs to the pipeline are

the chip data file, a reference panel, the number of threads to use and the chromosome to pro-

cess. The pipeline first checks that the correct version of the reference panel already exists for

each imputation software and if the input file is available both in BCF format and in VCF for-

mat. This means that the original reference panel is converted to bref3 for Imputation with

Beagle5.4 using bref3.29May21.d6d.jar, to m3mv for Minimac4 using Minimac3 and to imp5

for Impute5 using imp5Converter_1.1.5_static. If any of these files don’t exist, they are

Fig 1. Pre-processing of the HD genotype chips, reference panels and WGS EBB data. Pre-processing of the HD genotype chips, reference panels and WGS

EBB data downloaded from the International Genome Sample Resource (IGSR) and Estonian Biobank Estonian Genome Center respectively. Steps highlighted

in orange are specific to the 1000GPphase3 reference panel only; steps highlighted in red are specific to EBB data only and steps highlighted in cyan (light blue)

are specific for chip Affymetrix and Omni to isolate only a portion of the dataset to perform analysis on it. All other steps were performed for both reference

panels and datasets.

https://doi.org/10.1371/journal.pone.0260177.g001
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automatically created by the pipeline. After this initial check, the pipeline begins phasing the

haplotypes using Eagle2.4.1, Beagle5.4 and Shapeit4. Each of these softwares was run twice with

default parameters, once with the reference panel and once without, using 4 threads on chromo-

some 20 with recombination rates drawn from the genetic map. This step generated 2 phased

VCF files for each software, yielding a total of 6 phased VCF files. After phasing, VCF files were

moved to imputation with Beagle5.4, Minimac4 and Impute5. All were run using default

parameters with a genetic map for the recombination rate and 4 threads. There are options to

speed up both Minimac4 and Impute5, but these tend to reduce the accuracy rate. To maximize

the accuracy of each tool and preserve the validity of the comparison, we ran them with the

default parameters, avoiding the steps required to optimize for computational load.

Accuracy measurement

Imputation accuracy was assessed by comparing the imputation data resulting from each of

the different combinations of phasing tool, imputation tool, and choice of reference, against

the WGS dataset of the chosen 190 target samples for Affymetrix Omni and customized chip

and against the WGS EBB dataset of the chosen 2280 target samples for the EBB chip data.

Variables considered were population/ancestry, sex, choice of tools, choice of reference, use of

a reference panel, chip density, and the effect of MAF. We also looked at computational effi-

ciency and memory usage. To check the effects of MAF on imputation accuracy, we used R2 as

the metric of choice as it can distinguish between different MAF stratifications and is the most

widely used metric for assessing imputation accuracy [40]. We also used IQS [32].

Phasing accuracy was evaluated using 540 children from the 1000GP-30x reference panel.

These 540 children were phased using trioPhaser, a mendelian inheritance logic, to improve

genomic haplotypes phasing. To ensure the greatest possible phasing accuracy, trioPhaser

Fig 2. Workflow of the analysis, combinations tested. Affymetrix, Omni, Customized, and EBB input chip datasets were analyzed using

the 36 combinations of 3 different phasing software, 2 phasing approaches, 3 imputation software, and 2 imputation reference panels.

EBB input chip dataset was analyzed using the 36 combinations of 3 different phasing software, 2 Reference panels, 2 phasing approaches

and 3 imputation software.

https://doi.org/10.1371/journal.pone.0260177.g002

PLOS ONE A comparative analysis of current phasing and imputation software

PLOS ONE | https://doi.org/10.1371/journal.pone.0260177 October 19, 2022 6 / 22

https://doi.org/10.1371/journal.pone.0260177.g002
https://doi.org/10.1371/journal.pone.0260177


phases by parent’s genomes (mother and father) to identify switch errors by comparing the

phasing of the children against the phased parent chromosomes; for a total of 1620 individuals

analyzed. These 540 phased children have been used as a ground truth set to determine phas-

ing accuracy in our analysis. In addition, a new reference panel (non-representative reference

panel) was generated to assess reference-based phasing performance against the reference-free

approach. It was composed of 2280 individuals from the Estonian BioBank and all unrelated

individuals from the 1000GP-30x (932 individuals), for a total of 3212 individuals and 502,377

variants. Only the variants in common between EBB and 1000GP-30x were selected, in order

to assess the phasing accuracy.

Imputation and phasing accuracy were evaluated using a custom, faster version of the

imputation accuracy calculation software available on Github the accuracy metrics described

in the work of Ramnarine et al. 2015 [32]. A detailed report with the concordance ratio (Po),

F-measure score, square correlation (R2) and imputation quality score (IQS) was generated

and written to the output file. To accurately assess IQS and R2 results, we removed all variants

with MAF equal to 0 in our target population (allele count equal to 0) of 2280 individuals from

the analysis; IQS is zero when MAF is equal to zero and is not indicative of accuracy or impu-

tation quality. The entire code for accuracy metrics can be found in the script Simpy.py (sec-

tion Data Available).

Results

Genotyping data

After performing quality control on chromosome 20, 13,990 variants with a genotyping call

rate of 100% remained in the EBB chip dataset, 17,861 variants with a genotyping call rate of

100% remained in the Affymetrix chip dataset, and 37,334 variants with a genotyping call rate

of 100% remained in the Omni Illumina dataset. In total, 4,911 SNP markers overlapped

between Omni and Affymetrix chips. The customized chip had 5963 markers shared between

the GSA and the Affymetrix and Omni chips. The number of variants shared between the chip

datasets is shown in Fig 3.

Phasing

Accuracy. The phasing accuracy has been evaluated using 540 children coming from trios

in the 1000GP-30x reference panel. We calculated precision and recall to determine which

haplotype estimation software was the most accurate amongst the three we compared: Bea-

gle5.4, ShapeIT4, and Eagle2.4.1. The results were compared with those from the trioPhaser

software. ShapeIT4 had the highest accuracy, on average, with 0.991 precision and 0.9964

recall. On the other hand, Beagle5.4 had the lowest precision at 0.9848, and 0.9942 recall, on

average. Eagle2.4.1 was in the middle with 0.98899 precision and 0.9958 recall (Fig 4).

We tested the effect of using a non-representative reference panel on phasing accuracy to com-

pare against reference-free phasing in the hypothetical scenario where a representative panel is

not available. Non-representative reference panel was used to phase trio children present in the

same release of the 1000GP. In this test case, using a non-representative reference panel, we found

that reference-free phasing accuracy was higher than reference-based phasing (Table 2).

Speed and memory usage in phasing. The phasing of the 540 children coming from trios

in the 1000GP-30x reference panel required on average 2722 secs (~45mins) CPU time (Fig

5A) and ~8 Gb of memory usage (Fig 5B). During phasing, Eagle2.4.1 and ShapeIT4 used less

memory than Beagle5.4, while Beagle5.4 was faster.

In Affymetrix, Omni and Customized chip data during phasing, Eagle2.4.1 and ShapeIT4

used less memory than Beagle5.4 and were less affected by the input size of the chip (Fig 6).
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Averaged across the datasets, Eagle2.4.1 was the slowest phasing software while ShapeIT4 was

the fastest.

The EBB chip dataset required 4x more memory usage and 4.7x more CPU time compared

to the other 3 datasets. The increased number of samples highlighted differences between the

tools with respect to computational efficiency in phasing. With smaller datasets, where the

number of individuals was low, Eagle2.4.1 was the slowest phasing tool Fig 6A, but as the size

of the dataset increased (2280 instead of 190), Shapeit4 required increasingly greater runtime

for phasing, exceeding the run time of Beagle5.4 (Fig 7A).

We were also interested to see how these phasing softwares dealt with a bigger number of

variants; thus, we used the WGS EBB dataset to include an additional whole genome sequenc-

ing phasing test to simulate a real-life scenario. We phased the entire WGS EBB dataset with

2280 individuals and ~1 million variants for chr20. The WGS Estonian Biobank dataset

resulted in 3x more memory usage and 23x more CPU time compared to the EBB chip dataset

(lower number of variants 13,990, same number of individuals 2280). We applied a reference-

free and a reference-based approach using the entire 1000GP-30x data. With more variants

and individuals, ShapeIT had higher CPU time (40232sec ~ 11.2h) (Fig 8A) and memory

usage (19Gb) (Fig 8B) compared to a smaller dataset using a reference-free approach. Fig 8C

and 8D show a reference-based approach.

Imputation

Accuracy and Minor Allele Frequency (MAF) and reference panel. For the EBB chip

data we stratified variants based on MAF and assessed imputation accuracy for common,

Fig 3. Number of shared variants between datasets. Variants in common between the different chips on

chromosome 20.

https://doi.org/10.1371/journal.pone.0260177.g003
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infrequent, and rare variants to obtain a more nuanced understanding of how well each impu-

tation tool performs (Table 3).

Based on the accuracy metric, the False Positive Rate (FPR), and the sensitivity, Beagle5.4

outperformed other imputation tools when MAF was greater than 5%, with Impute5 a close sec-

ond. However, for uncommon variants (MAF�5%), Minimac4 was the better imputation tool,

with the lower FPR. Similar results were obtained using R2 as the metric (Fig 9). When it comes to

reference panels, only with shared variants in common, 1000GP-30x has conducted to slightly

higher results in accuracy, compared to 1000GP-Phase3. The slope of the curve was always higher

for 1000GP-30x (Fig 9). The best phasing and imputation tool combination was ShapeIT4-Mini-

mac4 using EBB chip with reference-based phasing and 1000GP-30x reference panel, resulting in

an average imputation R2 of 0.536. Slightly worse results were obtained for 1000GP-Phase3 with

an average imputation R2 of 0.527 for the same combination tested (S1 Table).

When using Affymetrix, Omni and customized chips the best combination overall was Sha-

peIT4-Beagle5.4 imputed from the Omni chip dataset (S4 Fig), with a reference-based phasing

Fig 4. Precision and recall evaluation of phasing softwares Beagle5.4, ShapeIT4, and Eagle2.4.1. Precision and recall were

evaluated using 540 trio children in the 1000GP-30x reference panel. Trios were selected and phased using trioPhaser software to

ensure the highest accuracy and then the children were used as ground truth for the comparison. ShapeIT4 (pink dot) got the

highest scores over Eagle2.4.1 and Beagle5.4 respectively.

https://doi.org/10.1371/journal.pone.0260177.g004

Table 2. Reference-free and reference-based phasing accuracy based on 502,377 variants.

Method Phasing Software Accuracy %

Reference Based Beagle5.4 93.400

Eagle2.4.1 93.554

ShapeIT4 93.597

Reference Free Beagle5.4 94.176

Eagle2.4.1 94.164

ShapeIT4 94.154

https://doi.org/10.1371/journal.pone.0260177.t002
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approach, and using the 1000GP-Phase3 reference panel, resulting in an average imputation

R2 of 0.839 (S1 Table). The usage of 1000GP-Phase3 brings better results in terms of R2 impu-

tation accuracy compared to the results gained with the 1000GP-30x reference panel in the

same chip data when we discarded rare variants singletons and doubletons. On the other

hand, for the 1000GP-30x reference panel, the best phasing and imputation tool combination

was ShapeIT4-Impute5 using an Omni chip with reference-based phasing, resulting in an aver-

age imputation R2 of 0.728 (S1 Table).

A good alternative metric to R2 is IQS. Fig 10 depicts an increase in IQS with increasing

MAF. Impute5 produced better results at lower MAF than either Beagle5.4 or Minimac4,

while Beagle5.4 imputed better above 5% allele frequency. Ultra-rare variants were imputed

badly with all available software. A similar trend was also observed in Affymetrix, Omni and

customized chip data (S5 Fig).

To get a better overall representation of how MAF affects imputation accuracy and error

rates, we plotted IQS against the Error rate (Fig 11), where each dot represents an imputed var-

iant. The markers clustered according to their MAF and followed a waterfall trend. The results

of this analysis are shown in Fig 11, which illustrates that IQS is generally higher and error

rates overall lower for more common variants. Rare variants, with MAF<1%, tend to have

lower IQS and higher error rates.

Fig 5. CPU run time and memory usage of phasing software in trios dataset. Average run time for phasing (5A). Average memory usage for phasing (5B) in

trios data.

https://doi.org/10.1371/journal.pone.0260177.g005

Fig 6. CPU run time and memory usage of phasing software using chip Omni, Affymetrix and Customized. Average run time for phasing (6A). Average

memory usage for phasing (6B) in chips data.

https://doi.org/10.1371/journal.pone.0260177.g006
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The effect of phasing software choice on imputation accuracy. In EBB chip data choos-

ing ShapeIT4 as the phasing tool for reference-based phasing, followed by any choice of impu-

tation tool, resulted in the highest R2 for either imputation reference panel (S1 Table). For the

Affymetrix and customized chips, ShapeIT4 remained the best choice of phasing tool for refer-

ence-free phasing, with respect to R2; for Omni, Beagle5.4 was the superior phasing tool. How-

ever, when we instead considered IQS as the metric of choice, both Beagle5.4 and ShapeIT4

performed equally well for reference-based phasing for higher density input chip datasets, but

ShapeIT4 outperformed Beagle5.4 for the customized chip dataset, which had low chip density.

For reference-free phasing, with respect to IQS, there was no clear winner between ShapeIT4

and Beagle5.4 (S1 Table). If we consider Concordance as a metric of choice, the Reference

panel 1000GP-30x is the best choice to get higher imputation accuracy in every combination.

Fig 7. CPU run time and memory usage for phasing softwares in EBB chip dataset. Average run time for phasing (6A). Average memory usage for

phasing (6B) in chips data.

https://doi.org/10.1371/journal.pone.0260177.g007

Fig 8. CPU run time and memory usage of phasing software in EBB WGS dataset. ShapeIT CPU time and memory usage are higher with a bigger input data of

variants and individuals. (8A-8B) highlights a reference-free approach while (8C-8D) a reference-based approach.

https://doi.org/10.1371/journal.pone.0260177.g008
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Population, sex, chip density, and phasing approach. Accuracy as measured by concor-

dance (Po) was fairly close across superpopulations, with small differences between frame-

works (Table 4, Fig 12). However, the mean imputation accuracy was lowest in individuals of

African ancestry, and highest in individuals of European and American populations—groups

which both have significant recent European ancestry (Table 4). Furthermore, despite reaching

similar average imputation accuracy, a greater proportion of EUR individuals had very high

imputation accuracy compared with a progressively smaller proportion of target individuals

with higher concordance for East Asian, American, African and South Asian ancestry, respec-

tively (Fig 12B). Thus, although we were able to reach similar mean imputation concordance

Table 3. MAF-stratified comparison of imputation software for EBB data.

MAF Imputation Software Sensitivity % FPR % #Variants

MAF <5% Beagle5.4 99.538 1.252 72,493

Impute5 99.546 1.272 72,493

Minimac4 99.496 1.201 72,493

MAF >5% Beagle5.4 97.951 3.282 429,884

Impute5 97.911 3.303 429,884

Minimac4 97.841 3.408 429,884

MAF<5% indicates all the variants that are below or equal to 5% in minor allele frequencies and MAF>5% indicates all the variants above 5% in minor allele

frequencies. A comparison of the sensitivity and false positive rate (FPR) of the imputation results, for each phasing-imputation combination, stratified in two MAF

categories.

https://doi.org/10.1371/journal.pone.0260177.t003

Fig 9. Imputation performance for chromosome 20 using EBB data with 2280 individuals with 2 reference panels and 2 phasing approaches. Blue colors indicate

Beagle5.4, violets indicate Impute5 and oranges indicate Minimac4.

https://doi.org/10.1371/journal.pone.0260177.g009
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Fig 10. Evaluation of rare variants imputation. Violin plot of IQS against minor allele frequency (MAF) in the EBB dataset.

https://doi.org/10.1371/journal.pone.0260177.g010

Fig 11. Minor allele frequency (MAF) stratification of imputed variants. Dots are clustered following minor allele

frequency stratification. The dots clustered in the right-down corner of the figure have low IQS and high error rate,

while dots in the left-high corner have high IQS and low error rate. Each dot represents the average IQS and error rate

for a specific marker imputed with one phasing tool-imputation tool combination.

https://doi.org/10.1371/journal.pone.0260177.g011
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for each of the different populations, imputation tools performed the best when applied to

EUR populations and the worst for AFR and South Asian populations.

Differences in imputation accuracy by population and phasing approach are shown in Fig

12. The reference-based approach produced better results than the reference-free approach,

for most combinations of imputation and phasing algorithms, based on a comparison of IQS

across all combinations (Fig 12D). There was also a clear relationship between chip density

and imputation accuracy, as measured by concordance; as chip density increased, imputation

accuracy improved. The Omni chip had the greatest chip density and accuracy and the cus-

tomized chip the lowest (Figs 12C and 13). From the shape of the chip distributions, we see

that the vast majority of the Omni dataset was imputed with very high concordance, whereas

less of the Affymetrix input dataset and much less of the Customized chip dataset was imputed

Table 4. Accuracy for different superpopulations in chips Affymetrix, Omni, Customized. Accuracy as measured by concordance (Po) of the imputation results for

each of the five main super populations.

Superpopulation name Mean Std #Individuals

African 0.984396 0.012613 40

American 0.993112 0.005104 40

East Asian 0.991575 0.004868 50

European 0.99274 0.004655 50

South Asian 0.991464 0.004989 10

https://doi.org/10.1371/journal.pone.0260177.t004

Fig 12. Imputation concordance rate over four different features. Stacked density plot of accuracy stratified by (A) sex; (B)

superpopulation; (C) chip data; (D) phasing type (reference-free and reference-based).

https://doi.org/10.1371/journal.pone.0260177.g012
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with similar accuracy. We also compared imputation accuracy by sex as a check to ensure our

QC process does not introduce any artificial differences. Sex had no effect on imputation accu-

racy for autosomal chromosome 20 (Fig 12A). Accuracy for females was on average

0.9907 ± 0.0078 while for males it was 0.9906 ± 0.0080.

Speed and memory usage in imputation. Of the imputation software’s, Minimac4

appeared to be the most computationally efficient in terms of memory but had the slowest run

time, followed by Beagle5.4 and Impute5 using chip data Affymetrix, Omni, Customized (Fig

14B). Memory usage for Impute5 increased drastically with the size of the input dataset used

(EBB chip data with 2280 individuals), while Beagle5.4 and Minimac4 were not significantly

affected (Fig 15). Beagle5.4 had the shortest run time, followed by Impute5 and Minimac4 (Fig

14A). Fig 15 shows the average computational run time for each combination. Phasing with

ShapeIT4 and imputing with Beagle5.4 was the fastest combination, while phasing with

Eagle2.4.1 and imputing with Minimac4 was the slowest.

Minimac4’s remained the most computationally efficient with regard to memory usage for

both large and small sample sizes and Beagle5.4 continued to be fastest, but Impute5’s run

time and memory usage increased exponentially with increased sample size, in absence of

chunking (Fig 15). Fig 16A shows the average computational run time for each combination,

while Fig 16B shows the differences in computation highlighted by the increase in sample size.

Phasing with ShapeIT4 and imputing with Beagle5.4 remained the fastest combination, while

phasing with Eagle2.4.1 and imputing with Impute5 dropped below the Eagle-Minimac com-

bination to become the slowest with 3x more CPU time.

Fig 13. Cluster map of target population against 54 software-reference panel-dataset combinations. This figure

depicts the concordance results for the reference-free and reference-based phasing approaches for each of these

combinations. Higher density chips with a reference-based phasing approach and with populations without African

ancestry obtained better results in terms of imputation accuracy measured by Concordance.

https://doi.org/10.1371/journal.pone.0260177.g013
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Fig 14. CPU run time and memory usage of imputation software for Affymetrix, Omni, Customized datasets. Average run time for imputation (A) tools.

Average memory usage for imputation (B) tools in chips dataset.

https://doi.org/10.1371/journal.pone.0260177.g014

Fig 15. CPU run time and memory usage of imputation software for EBB chip data. Average run time for imputation (A) tools. Average memory usage for

imputation (B) tools in EBB chip data.

https://doi.org/10.1371/journal.pone.0260177.g015

Fig 16. CPU run time of imputation and phasing combinations tested. Average run time for each of the 9 phasing and imputation software

combinations. (A) Run time comparison of each combination in Affymetrix, Omni, Customized datasets. (B) Run time comparison of each combination

in the EBB dataset.

https://doi.org/10.1371/journal.pone.0260177.g016
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Discussion

We performed a rigorous comparison of the most popular phasing and imputation tools cur-

rently used by genomics research groups to examine how the process of genotype imputation

is affected by different factors, including the choice of reference panel, population, chip den-

sity, and allele frequency. We also compared the computational load of different datasets, tools

and software combinations.

Factors affecting imputation accuracy

Imputation accuracy decreased with chip density; the Affymetrix chip resulted in lower accu-

racy than the Omni chip and the customized chip had the lowest imputation accuracy. While

this was expected, it also shows how our processing and comparison pipeline may help

researchers design better chips by choosing the number and distribution of SNPs for each spe-

cific population and assessing the impact of density and SNP choice on phasing and imputa-

tion accuracy; it can also be used to determine whether different sets of chips are likely to

perform better with certain combinations of phasing and imputation tools.

Next, we assessed both reference-free and reference-based phasing. Although reference-free

phasing was less accurate than reference-based phasing with a reference panel containing

admixed populations, increasing chip density reduced the degree of difference in phasing

accuracy caused by the lack of reference. The difference between reference-free and reference-

based phasing was small, suggesting that reference-free phasing may be acceptable in the

absence of a representative reference panel. Further, the reference-free approach was more

accurate when the reference panel populations did not match the target sample populations

well. Similarly, previous studies comparing phasing accuracy with and without the use of a ref-

erence panel have shown that reference-free phasing, such as with Eagle2.4.1, can even lead to

higher accuracy in cases where the reference panel ancestry and populations do not well match

the sample individuals [14].

Furthermore, the choice of the reference panel may affect imputation accuracy, across all

imputation metrics utilized. Interestingly, during the imputation of chips Affymetrix, Omni,

and Customized, we got slightly better results in terms of R2 imputation accuracy, using

1000GP-Phase3, compared to the results gained with the 1000GP-30x reference panel in the

same chip data when we discarded rare variants singletons and doubletons. This was due to

the panel 1000GP-30x had more rare SNPs and the fact that R2 and IQS are heavily affected by

the degree of uncertainty due to the rare SNPs. Indeed, if we look at the concordance rate, we

will notice that concordance is higher (S1 Table) compared to the 1000GP-Phase3 reference

panel suggesting that R2 and IQS are affected by rare SNPs (present only in the 1000GP-30x

for Chip data Affymetrix, Omni, Customized), but this doesn’t happen to the overall accuracy

that is higher in reference panel 1000GP-30x with the same combinations of tools and phasing

approach (S1 Table). To check if the reference panel 1000GP-Phase3 was better for imputa-

tion, all the analyses with the EBB data, instead, have been conducted using both 1000GP-30x

and 1000GP-Phase3 reference panels only with shared variants in common. We found higher

values of R2 and IQS imputation accuracy for 1000GP-30x compared to the 1000GP-Phase3

reference panel, in all combinations tested. This suggests that the removal of variants single-

tons and doubletons increase the values of R2 and IQS but does not increase the imputation

accuracy itself; this is a practice that should be avoided by scientists to prevent inflating the

imputation accuracy results assessed with R2.

However, the use of concordance can also be confounding, as shown in Table 3. Sensitivity

and False Positive Rate (FPR) are based on concordance rate; they are heavily affected by the

number of variants that we are looking at, while R2 and IQS are less sensitive to these changes
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and in this case will better highlight the overall accuracy. MAF<5% appears to be higher in

concordance compared to the MAF>5%, because the vast majority of the variants will be

imputed correctly as homozygous reference and only few samples will have heterozygous or

homozygous variants imputed wrongly.

Accuracy was further affected by population but not by sex using autosomal chromosomes.

Different populations are characterized by differences in LD as a result of differences in genea-

logical history, and thus have different characteristic LD blocks and LD block sizes, which

affect imputation accuracy [41]. We presume that lower imputation accuracy seen in individu-

als of AFR ancestry is attributable to the smaller LD blocks characteristic of AFR ancestry,

which make it more difficult to correctly impute genotypes.

In agreement with previous research [42], we found that variants with low allele frequency

are generally imputed poorly. In general, imputation works poorly for variants with low MAF

as a function of both bias in the reference panels and bias in the software [42]. We can address

reference-associated bias by significantly increasing the size of the chosen reference panel and

including sufficient population-specific samples in the reference. However, addressing soft-

ware bias would require developing improved imputation algorithms.

Finally, the choice of statistics is important when examining the imputation accuracy of

rare and low frequency variants. We found that IQS and R2 produced similar means and stan-

dard deviations, though this does not necessarily represent similarity of values for particular

SNPs. For rare and low frequency variants, concordance rates produce inflated assessments of

accuracy [43] but reflect the real overall evaluation of an imputation software. The higher con-

cordance rate values could mislead a researcher into assuming that these variants were

imputed well. However, accuracy for less common variants is best measured using IQS and R2

[32].

Choice of phasing and imputation tools

There was a discrepancy in accuracy based on different metrics. Highest average concordance

rate was achieved by Beagle5.4 at 0.986, followed by Impute5 and Minimac4, using a refer-

ence-based approach during phasing, with the highest density chip dataset as input. In general,

choosing Beagle5.4 for imputation and ShapeIT4 for phasing tended to get highly accurate

results and was computationally faster even in larger datasets. When looking to improve the

imputation of rare variants, however, researchers may want to use a mix of Beagle5.4, Impute5

and Minimac4 by applying Beagle5.4 to common variants and Minimac4, Impute5 to rare

ones. Minimac4 and Impute5 tended to perform better on rare variants, because unlike Bea-

gle5.4, which computes clusters of haplotypes and does its calculations based on those,

Impute5 and Minimac4 search the whole space of haplotypes. This is more effective when

imputing uncommon variants, but there is a tradeoff of increased computational load.

On the other hand, we see imputation accuracy for Beagle5.4 was better than Impute5 for

the filtered phase3 reference panel; this was expected since the phase 3 panel has fewer rare

alleles. Beagle5.4 was also the most stable tool to use across different input sizes. Minimac4

required the least amount of memory but took more time, which can be a good tradeoff

depending on the purpose of the imputation. If the memory usage is limited, and the loss of

accuracy is acceptable, then Minimac4 may be the optimal choice of imputation software. It is

also important to note that the default parameters have been used for all software. For example,

we could reduce the computational load of Impute5 by using parallel processing, but this

could negatively affect the accuracy results; this negative impact was sufficient to reduce

Impute5’s accuracy to below that of Beagle5.4 (data not shown). In conclusion, Beagle5.4

might have the best tradeoff between imputation quality and computational efficiency.
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In closing, knowing the differences in imputation and phasing performance may prove use-

ful in choosing imputation and phasing tools, depending on the intended downstream usage

of the imputed results. However, this study also highlights that current tools are not accurate

enough to impute rare and ultra-rare variants, showing that, when corrected for chance con-

cordance and MAF bias, they result only in acceptable imputation accuracy and that there is

significant scope for improvement.
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