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ABSTRACT

Galahad (https://galahad.esat.kuleuven.be) is a web-
based application for analysis of drug effects. It pro-
vides an intuitive interface to be used by anybody
interested in leveraging microarray data to gain in-
sights into the pharmacological effects of a drug,
mainly identification of candidate targets, elucidation
of mode of action and understanding of off-target ef-
fects. The core of Galahad is a network-based analy-
sis method of gene expression. As an input, Galahad
takes raw Affymetrix human microarray data from
treatment versus control experiments and provides
quality control and data exploration tools, as well
as computation of differential expression. Alterna-
tively, differential expression values can be uploaded
directly. Using these differential expression values,
drug target prioritization and both pathway and dis-
ease enrichment can be calculated and visualized.
Drug target prioritization is based on the integration
of the gene expression data with a functional protein
association network. The web site is free and open
to all and there is no login requirement.

INTRODUCTION

The pharmaceutical industry is facing unprecedented pro-
ductivity challenges. Only one out of 20 compounds that
entered clinical trials in 2006–2008 made it to become a
marketed product (1,2). Causes of failure change during the
course of development. Early in the process, compounds fail
primarily for safety reasons. Compounds that successfully
navigate Phase 1 increasingly drop out due to lack of effi-
cacy in Phases 2 and 3 (3). With safety and efficacy being the
main bottlenecks, a better knowledge of a candidate drug’s
mode of action and its off-target effects could be of substan-
tial value to drug development.

DNA microarray technology enables genome-wide anal-
ysis of the transcriptional response to a compound treat-
ment, which is frequently employed to study the effects of
small molecules on cells (4). Gene expression patterns that
describe the perturbation of a biological system by a drug
compound can provide valuable information for identify-
ing compound–protein interactions and resulting effects (5)
prior to clinical trials. In addition, this information may also
be useful for already marketed drugs, in light of drug repo-
sitioning (6). This approach has proven to be successful as
demonstrated by the many applications of the Connectivity
Map (7–10).

We have developed an easy-to-use web server called Gala-
had, for the in-depth exploration of a drug’s mode of ef-
fect based on gene expression changes following treatment.
Our software provides multiple tools needed for gaining
new insights into the biological effects of a drug by com-
bining Affymetrix human gene expression data preprocess-
ing, quality assessment and exploratory analysis, genome-
wide drug target prioritization, differential expression anal-
ysis and pathway, as well as disease phenotype enrichment.
Drug target prioritization relies on the integration of the ob-
tained differential expression values with prior knowledge
on functional protein associations. By means of a network
neighborhood analysis the functional relation between pro-
teins is taken into account, which significantly improves the
expression-based prediction of drug–protein interactions.

INPUT

The submission page is easy to find and help is available
by mouse-over where input is required from the user. The
main input for Galahad are raw DNA microarray data de-
rived from both untreated control samples and samples
treated with a drug of interest, with one of the three com-
mon Affymetrix GeneChips HG-U133A, HG-U133 Plus 2.0
or HuGene 1.0 ST. Both the control and the treatment data
need to be uploaded as a zipped file containing .CEL files
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Figure 1. Overview of the different Galahad analysis steps. Quality con-
trol is performed on both the raw and MAS 5.0 normalized data. After
normalization some further exploratory analysis is performed and differ-
ential expression is computed. The obtained differential expression values
are then used for both pathway and disease phenotype enrichment as well
as for network-based drug target prioritization.

for at least two samples. The total size of both these zip files
is currently limited to 250 MB. Once the data are uploaded
completely, Galahad can be launched by clicking the sub-
mit button. A typical workflow then starts with the prepro-
cessing of these uploaded expression data, either with the
RMA (11) or the MAS5.0 algorithm, as indicated by the
user. Next, the desired analyses can be selected; these may
include quality assessment and exploratory analysis of the
data, differential expression analysis, drug target prioritiza-
tion, and both pathway and disease enrichment. Drug tar-
get prioritization and enrichment analysis can also be per-
formed on differential expression data derived from other
platforms through the submission of a plain text file con-
taining HGNC gene symbols, log2 ratios and corresponding
P-values. The input interface provides the possibility to en-
ter a study name, as well as an email address to get notified
when all computations are finished.

METHODS

An overview of the different analysis steps is depicted in Fig-
ure 1.

Quality control

To assess the quality of the different arrays within the mi-
croarray data set, uncover experimental problems and help
in deciding whether certain arrays need to be considered
as outlying, several quality metrics can be generated. This
quality control is mainly based on the Bioconductor Array-
Tools package, but also relies on functionalities from the
affy (12), oligo (13), oligoClasses, genefilter, simpleaffy (14),
affyPLM (15) and RColorBrewer libraries. The following
plots are produced: side-by-side boxplots of the log inten-
sities to assess the overall signal comparability, probe level
model-based pseudo-images to detect spatial biases and a
NUSE and RLE plot to check for probe set homogeneity. In
addition, for HG-U133A and HG-U133 Plus 2.0 arrays, the
average background, the percentage of genes called present
and the intensities of the spike-in hybridization controls give
insight into the hybridization quality. Scale factors provide
information on signal comparability and 3′/5′ ratios for �-
actin and GAPDH can be used to assess sample quality. Fi-
nally, an RNA degradation plot is generated for these array
types.

Data exploration

To assess the correlation and grouping of samples three
more plots are generated on the preprocessed data: a PCA
plot, a hierarchical clustering and an intensity correlation
heat map.

Differential expression

Differential expression analysis to determine the signifi-
cance of gene up- and downregulation following drug treat-
ment is based on the Bioconductor limma (16) package. A
linear model is fitted to the expression data for each gene
and by computing a global variance estimator using empiri-
cal Bayes moderated t-statistics and corresponding P-values
are obtained. These P-values are then corrected for multiple
testing by the method of Benjamini and Hochberg (17), by
controlling the false discovery rate (FDR).

Drug target prioritization

Genome-wide drug target prioritization is performed by
means of an in-house developed algorithm for network
neighborhood analysis (18) integrating the expression data
with functional protein association information derived
from STRING (19). More specifically, this approach prior-
itizes potential targets by diffusing the differential expres-
sion signals to neighboring network nodes based on the
confidence scores of these functional associations. P-values
are obtained by random reassignment of the expression val-
ues to the network nodes and computation of the corre-
sponding randomized scores for all genes. The method has
now been validated on a new test set consisting of 35 pub-
licly available Affymetrix gene expression data sets where
treatment with a chemical compound was tested against
a control. In ChEMBL (20), we identified all proteins in-
teracting with an IC50 below 10 �M with one of these
compounds, resulting in a total of 85 distinct targets. A
table with the 35 GEO accession numbers, together with
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Figure 2. ROC curves comparing the performance of our network
diffusion-based drug target prioritization algorithm and prioritization
based on differential expression only on a new validation data set consist-
ing of 35 drug treatments corresponding to 85 known targets.

the drugs of treatment and their targets as derived from
ChEMBL, is provided as supplementary file S1. Based on
the positions of these known targets in the protein rankings
obtained with our method for each of the interacting com-
pounds, an AUC of 87% was achieved (Figure 2). In com-
parison, ranking the genes based on differential expression
data only resulted in an AUC of 60%.

Enrichment

Functional enrichment of differentially expressed genes is
performed by means of a hypergeometric test, followed by
an FDR-based multiple testing correction of the obtained
P-values. In this way, Reactome (21) pathways involved in
the drug’s mode of effect are predicted, as well as associated
disease phenotypes from the Human Phenotype Ontology
(HPO) (22) enabling side effect prediction and drug repo-
sitioning.

OUTPUT

After submission the user is automatically redirected to the
results page, where the job details are provided. When the
job is completed, the results appear on this page, and an
email containing a hyperlink to the page is sent to the user
if a valid email address was provided. If cookies are enabled,
a hyperlink to the result page (study name may help in case
of submitting several jobs) is also stored in a personal his-
tory for 20 days. The output is displayed in a series of tabs
corresponding to the different analyses selected by the user.

Quality control and data exploration

In the Quality Control and Data Explorations tabs, the dif-
ferent plots are displayed along with a table in which each
sample is assigned a new index as used in the plots. By click-
ing on a plot a larger image is shown, together with a short
explanation.

Differential expression

The Differential Expression tab contains a table listing all
genes together with their log2 ratios and both the naive
and adjusted P-values for differential expression. Genes are
ranked according to the adjusted P-value, but can for exam-
ple also be ranked according to log2 ratio by simply click-
ing on the respective column header. Furthermore, different
filters can be applied. The complete table can be exported
in comma-separated value (CSV) format, which can be im-
ported by any spreadsheet. By clicking on a gene name, the
user is brought to the corresponding GeneCards section. To
select the differentially expressed genes used for Enrichment
Analysis, a P-value threshold can be entered at the top of
the page. By default an adjusted P-value of 0.01 is used.

Drug target prioritization

In the Drug Target Prioritization tab, a ranked list of genes
as potential targets of the drug can be found together with
the network diffusion-based scores and both the naive and
adjusted P-values for prioritization. Genes of interest can
be detected in this list with the aid of the filter function. The
complete table can again be exported as a CSV file and click-
ing on a gene name opens the corresponding GeneCards
section. In addition, a network-based visualization is avail-
able for each gene, showing the 10 interaction partners con-
tributing most to the gene’s ranking. Genes in this network
are colored according to fold change and sized according
to the significance (t-statistic) of this differential expression.
Clicking on a node or edge opens the corresponding gene or
interaction in STRING.

Enrichment

After selecting the differential expression threshold on
which the gene set used for enrichment analysis is based, two
separate tabs display tables summarizing the enrichment
results for Pathway and Disease Enrichment. These tables
contain Reactome or HPO IDs and names, together with the
number of differentially expressed genes in the correspond-
ing gene sets and the accompanying P-values and adjusted
P-values. The differentially expressed genes for each path-
way or disease phenotype are accessible through dropdown
tables. Clicking on an ID brings the user to the Reactome
diagram or HPO page. The enrichment tables can again be
sorted, filtered and exported as CSV files. In addition, net-
work graphs are available, consisting of the top 10 most sig-
nificant pathways or disease phenotypes, along with their
associated genes colored according to fold change.

IMPLEMENTATION

The Galahad server has three modules: a user interface, a
job controller and an analyzer. The user interface provides
a database-related service based on a three-tier architecture
using Microsoft .Net technology. At the presentation layer
on top, we developed a user-friendly and rich interface. To
speed up interaction between the clients and the server, we
added AJAX functionalities to retrieve large amounts of
data as fast as possible. All the procedures for importing
data into and retrieving data from the database are located
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in the data layer. The business layer represents the main link
between the presentation layer and the data layer and thus
contains all the rules for processing information.

The job controller is a simple Java application responsible
for communication between the web application and the an-
alyzer. After submission of a new request the job controller
transfers the uploaded control and treatment file to a Linux
server and runs the analyzer to process the request. When
the results are ready the job controller transfers them back
to the web server and makes them available for the user.

The analyzer is the main module responsible for analysis
of the user’s request. This module is completely developed
in R. The time needed for a job to finish is depending on the
data size, the requested analyses and the workload of our
server. Data produced by the analyzer module are stored
on a Microsoft SQL server. Galahad can be accessed with
all main web browsers. Uploaded data and the results of
analysis are kept private and not viewable by other users
through the use of a secure server and are deleted after two
weeks. The web site is free and open to all and there is no
login requirement.

EXAMPLE

An example data set is provided on the web site. Results can
be directly accessed or input data are provided and can be
uploaded. A manual and an example video are also avail-
able on the home page.

CONCLUSION AND OUTLOOK

Galahad is an open and free platform to analyze microarray
data for the characterization of drug effects. It provides an
easy interface where in an integrated way quality control,
data exploration, differential expression and both pathway
and disease enrichment can be calculated and visualized. In
addition, drug target prioritization provides a ranked list of
target candidates.

Toward the future, the platform can be extended to take
data from RNA sequencing experiments and more compli-
cated experimental designs such as multiple groups and time
series, as well as data from other organisms such as mouse
and rat. We are also in the process of implementing the net-
work analysis tools from Galahad as a standalone R pack-
age.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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