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SIRT6 is a member of the Sir2-like family in mammals. Recent structural and biochemical
studies have characterized SIRT6 as having deacetylation, defatty-acylation, and mono-
ADP-ribosylation activities, which determine its important regulatory roles during
physiological and pathological processes. This review focuses mainly on the regulatory
functions of SIRT6 in aging, cancer, and, especially, immunity. Particular attention is paid
to studies illustrating the critical role of SIRT6 in the regulation of immune cells from the
viewpoints of immunesenescence, immunometabolism, and tumor immunology. Owing
to its role in regulating the function of the immune system, SIRT6 can be considered to be
a potential therapeutic target for the treatment of diseases.
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INTRODUCTION

SIRT6 is a multifunctional protein with several enzymatic activities. First, SIRT6 is categorized as a
class III histone deacetylase with deacetylation activity (1). However, its substrates are not limited to
the acetyl groups of histone H3 and H4 lysine residues but can also include other proteins with
acetyl groups on their lysine residues (2), allowing SIRT6 to regulate gene expression or protein
activity through post-translational modifications (PTMs). Second, SIRT6 has defatty-acylation
activity, which enables it to regulate the secretion of proteins including tumor necrosis factor alpha
(TNF-a) (3). Finally, SIRT6 is a mono-ADP-ribosylation enzyme; it can activate poly(ADP-ribose)
polymerase-1 (PARP-1), thereby promoting repair of DNA damage (4). These three enzymatic
characteristics form the foundation of the ability of SIRT6 to regulate various physiological and
pathological processes.

SIRT6 is a longevity protein that can inhibit the aging of cells, tissues, organs and the body by
promoting DNA damage repair (5–7), maintaining normal chromosome structure (8–10), and
regulating energy metabolism (11, 12) and the senescence-associated secretory phenotype (SASP)
(13, 14). Immunosenescence, an aspect of aging, is also inhibited by SIRT6 (15). In addition, SIRT6
can regulate the development of inflammation. At present, most evidence reflects the anti-
inflammatory effects of SIRT6 via inhibition of the production of inflammatory cytokines and
promotion of polarization of immune cells to an immunosuppressive phenotype. For example,
SIRT6 has been shown to promote the M2 polarization of macrophages (16–19). However, a few
studies have demonstrated pro-inflammatory activity of SIRT6, manifested in the promotion of
infiltration and survival of inflammatory immune cells and inflammatory cytokine production
(3, 14, 20). SIRT6 also regulates the development process of cancer, an aging-related disease.
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In melanoma, breast, lung, pancreatic, liver, prostate, colon,
ovarian, and blood cancers, SIRT6 has contradictory roles as
either oncogene or tumor suppresser at different stages of the
cancer or in different tumor cell lines. It shows only tumorigenic
effects in osteosarcoma (21) and papillary thyroid cancer (22, 23)
and only antitumorigenic effects in bladder cancer (24),
nasopharyngeal carcinoma (25), and glioma (26–28). Here, we
briefly summarize the enzymatic characteristics of SIRT6;
describe in detail the roles of these biochemical and molecular
characteristics in aging, immunity, and cancer; and explore the
role of SIRT6 in epigenetic immunity and tumor immunology.
ENZYMATIC CHARACTERISTICS
OF SIRT6

SIRT6 is a member of the Sir2-like protein family. Mammalian
sirtuins can be divided into four classes according to their core
domain sequences. SIRT6 and SIRT7 are class IV sirtuins (29).
SIRT6 has three major enzymatic activities: deacetylation, defatty-
acylation, and mono-ADP-ribosylation. These form an important
basis for its participation in the regulation of physiological and
pathological processes in mammals, including aging, immunity,
and cancer occurrence and development.

Deacetylation Activity
As SIRT6 is located in the nucleus and only diffuses into the
cytoplasm (30), it is mainly involved in the regulation of
acetylation of lysines on proteins in the nucleus. SIRT6 is a
NAD+-dependent deacetylase (31). The deacetylation activity of
SIRT6 is dependent on nucleosomes, as it adopts its active
structure through binding to nucleosomes. When histone H3
and H4 are packaged as nucleosomes instead of free histones,
SIRT6 binds to substrates and catalyzes deacetylation (32). Lysine
acetylations of multiple sites of histones H3 and H4 are substrates
of SIRT6. For example, SIRT6 dynamically combines with
chromatin to deacetylate acetylated H3K9 (H3K9ac), thereby
regulating telomeric chromatin and inhibiting end-to-end
chromosomal fusion and premature aging of cells (31). SIRT6
deacetylates H3K18ac on pericentric heterochromatin to prevent
mitotic errors and cell senescence (33). SIRT6 deacetylates
H3K56ac. In SIRT6-knockdown cells, hyperacetylation of
H3K56 at telomeres was found to influence telomeric chromatin
structure, leading to telomere dysfunction and genomic instability
(34). SIRT6 can be recruited to the proximal promoter region of
the Pcsk9 gene by transcription factor forkhead box O3 (FOXO3),
deacetylating H3K9ac and H3K56ac, and thereby inhibiting gene
expression (35). Knockdown of SIRT6 in mouse oocytes induces
hyperacetylation of H4K16, which significantly increases the
incidence of aneuploidy and severely impairs kinetochore-
microtubule interactions (36). The deacetylation efficiency of
SIRT6 on different substrates is different. SIRT6 can effectively
remove the acetyl groups from H3K9, H3K18, and H3K27,
whereas its deacetylation activity is weak on H3K4ac, H3K14ac,
H3K23ac, H3K36ac, H3K56ac, and H3K79ac (37). In addition to
histones, the substrates of SIRT6 include acetylated lysine residues
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of other proteins, including GCN5 K549ac, PKM2 K433ac, Ku70
K542ac, NAMPT K53ac/369ac, XBP1s K257/297ac, SOD2 K68/
122ac, and p53 K382ac (2). The catalytic mechanism of SIRT6-
mediated enzymatic function has been well reviewed by Fiorentino
et al. (38). Similar to many enzymatic reactions, the catalytic
activity of SIRT6 is adjustable. SIRT6 shows poor deacetylase
activity in vitro (32); however, free fatty acids could increase SIRT6
deacetylation activity 35-fold at physiological concentrations (39).

Defatty-Acylation Activity
In addition to its deacetylation activity, SIRT6 has defatty-
acylation activity, which has emerged as a mechanism
regulating the secretion of many proteins. Lysine fatty
acylation of TNF-a promotes its lysosomal targeting and
degradation (40). A large hydrophobic pocket was identified in
the crystal structure of SIRT6 that could accommodate long-
chain fatty acyl groups. SIRT6 promotes TNF-a secretion by
removing the fatty acyl modification on TNF-a K19 and K20 (3).
Furthermore, many ribosomal proteins are secreted by the
exosomes of SIRT6-knockout MEFs; this was shown to
increase the proliferation of NIH 3T3 mouse embryonic
fibroblasts (MEFs) (41). In the same cell line, a SIRT6-
knockout mutant showed upregulation of R-Ras2 lysine fatty
acylation, which facilitated the localization of R-Ras2 to the
plasma membrane and promoted its interaction with
phosphatidylinositol 3-kinase (PI3K), thereby activating the
Akt signaling pathway and increasing cell proliferation (42).

Mono-ADP-Ribosylation Activity
SIRT6 is a mono-ADP-ribosyltransferase. Mouse SIRT6
(mSIRT6) relies on NAD+ for intramolecular single ADP-
riboglycosylation and can be recognized by an antibody
specific to mono-ADP-ribose (30). Purified recombinant
mSIRT6 has been shown to catalyze radiolabel transfer of
[32P] NAD. The transfer of NAD+ to mSIRT6 occurs via an
intra-molecular mechanism, indicating that SIRT6 is an auto-
ADP-ribosyltransferase (30). SIRT6 mono-ADP-ribosylates
PARP1 K521 to enhance DSB repair (4). It can also mono-
ADP-ribosylates BAF170 K312 to promote NRF2 target gene
transcription (43). Pan et al. solved the structure of the human
SIRT6-ADP-ribose complex (44).
SIRT6 AND AGING

SIRT6 is an important protein with anti-aging effects on cells,
tissue, organs, and the body. It inhibits aging via four main
pathways: promotion of DNA damage repair, maintenance of the
normal telomere structure of chromosomes, regulation of
glucose and NAD+ metabolic balance, and regulation of SASP.

Physiology and Pathology of SIRT6
in Aging
SIRT6 is a longevity protein that delays the aging process and
participates in the maintenance of telomere and genome stability.
A study at the organism level showed that SIRT6-deficient mice
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had small body size, with loss of subcutaneous fat, profound
lymphopenia, lordokyphosis, and severe metabolic defects 2–3
weeks after birth, and eventually died at approximately 4 weeks
of age (5). SIRT6 deficiency leads to hyperacetylation of histones
at the imprinting control region of developmental repressor H19,
which results in severe prenatal developmental delay and death
several hours after birth in SIRT6-deficient monkeys (45). By
contrast, transgenic mice overexpressing SIRT6 have a longer life
span than wild-type mice (11, 46). A study at the organ and tissue
levels also demonstrated the anti-aging activity of SIRT6 and
proposed SIRT6 as a potential marker of ovarian aging. Its
expression was positively correlated with the number of
primordial follicles; both SIRT6 protein expression and ovarian
reserves decreased with increasing age (47). SIRT6-deficient mice
showed symptoms of myocardial hypertrophy and heart failure,
and the expression of SIRT6 in failing human hearts was
reduced (48).

Cell-level studies have also shown that SIRT6 inhibits cell
senescence. SIRT6 could reduce cardiac hypertrophy and
cardiomyocyte senescence (49). The addition of SIRT6
increased the resistance of elderly human dermal fibroblasts to
classic Yamanaka factor-induced reprogramming (50). SIRT6-
deficient human mesenchymal stem cells exhibited accelerated
functional decline, which was mainly characterized by redox
metabolism disorders and increased sensitivity to oxidative stress
and was different from typical cell senescence (51). By contrast,
overexpression of SIRT6 inhibited the replicative senescence of
chondrocytes (52).

Mechanism of SIRT6 in Anti-Aging
Cell and molecular biology can explain the anti-aging effect of
SIRT6. Firstly, SIRT6 is a nucleolar chromatin-related protein
involved in various DNA damage repair processes. SIRT6 is
related to base excision repair (BER), which has been shown to
promote resistance to DNA damage in mouse cells, suppress
genomic instability, and promote normal DNA recombination
(5). Mechanistically, SIRT6 activates PARP1 through mono-
ADP-ribosylation activity and interacts with two BER enzymes
(hMYH and hAPE1) to promote BER (6, 53). SIRT6 was
recruited to ultraviolet-induced DNA damage sites and
deacetylated damaged DNA binding protein 2 (DDB2) at K35
and K77, promoting segregation of DDB2 from chromatin and
thereby facilitating nucleotide excision repair (NER) (7). In
mammalian cells, oxidative stress activates the protein kinase
c-Jun N-terminal kinase to phosphorylate SIRT6 at serine 10;
SIRT6 is then recruited to DNA double-strand break (DSB) sites.
SIRT6 mono-ADP-ribosylates the K521 lysine of PARP1; this
activates PARP1 and enhances DSB repair under oxidative stress
(4, 54). SIRT6 recruits chromatin recombinant SNF2H to the
DNA cleavage site and deacetylates histone H3K56ac, preventing
genomic instability through chromatin remodeling and
facilitating the repair of damaged sites (55).

Secondly, SIRT6 can maintain the normal chromosome
structure. The stability of chromosomes and telomeres is
particularly important for cell anti-aging (56). SIRT6-deficient
cells exhibit abnormal telomere structures, including increased
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chromosomal fragmentation, detached centromeres, and
chromosomal gaps, similar to cell defects observed in Werner
syndrome (a premature aging disorder) (5, 31). The
deacetylation activity of SIRT6 plays an important part in
maintaining genome stability. SIRT6 deacetylates H3K9ac,
stabilizes the binding of WRN to telomeric chromatin to resist
replication-related telomere defects, and prevents end-to-end
chromosomal fusion and premature senescence of cells (31).
SIRT6 interacts with the nuclear factor-kB (NF-kB) RELA
subunit and deacetylates H3K9ac at the promoter of the NF-
kB target gene to suppress cell senescence (8). SIRT6 promotes
H3K18ac deacetylation, silences pericentric heterochromatin at
centromeres, and prevents aberrant accumulation of pericentric
transcripts (33). SIRT6 is necessary for maintaining the silencing
of the telomere position effect in human cells and plays a key part
in maintaining the structure of silent telomeric chromatin (9). As
a powerful repressor of retrotransposon L1, SIRT6 mono-ADP-
ribosylates KRAB-associated protein 1 (KAP1) and promotes the
interaction between KAPI and heterochromatin protein 1 alpha
(HP1a), thereby contributing to the packaging of L1 gene
elements into heterochromatin to reduce their expression (10).

Thirdly, in addition to maintaining genomic stability as
mentioned above, SIRT6 slows the process of aging by
regulating glucose homeostasis and the NAD+ metabolic
balance (11, 12). Overexpression of SIRT6 is conducive to a
“young state” of blood glucose and gluconeogenesis in aged mice.
SIRT6 promotes hepatic gluconeogenesis by increasing lipolysis,
and increases the levels of precursors of the gluconeogenesis and
tricarboxylic acid (TCA) cycles, thereby maintaining the young
state of these two cycles (11). In addition, SIRT6 is helps to
maintain NAD+ levels by increasing the expression of de novo
NAD+ synthesis genes (11). However, SIRT6 is a NAD+-
dependent enzyme and also consumes NAD+ during the
processes of deacetylation (38), defatty-acylation (42), and
mono-ADP-ribosylation (30). NAD+ can delay aging by
inhibiting P53 activity. Disruption of the NAD+/NADH ratio
in cell solute could promote aging through mitochondrial
dysfunction (12). The above conclusions are described in detail
in Roichman's research (11) and Wiley’s review (12).

Finally, some studies have shown that SIRT6 affects the
SASP to prevent aging. Aging is closely related to the immune
system, and immunosenescence is a part of aging. Immune cell
components, functions, and intercellular interactions in the
innate and adaptive immune systems tend to develop
immunotolerance in the process of immunosenescence (57,
58). SIRT6 levels in the articular chondrocytes of osteoarthritis
patients are significantly reduced; therefore, overexpression of
SIRT6 could reduce the senescence of chondrocytes and
prevent the development of osteoarthritis (52). Studies have
shown that SIRT6 is directly involved in the regulation of
immunosenescence. Dendritic cell (DC) dysfunction is at the
core of various common chronic diseases and contributes to the
reduction in immunocompetence that occurs during aging.
SIRT6-knockout (SIRT6KO) mice showed a lower frequency
of bone marrow conventional DC (cDC) precursors and lower
numbers of bone marrow-derived cDCs. SIRT6KO mouse
April 2022 | Volume 12 | Article 861334
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cDCs expressed low levels of MHCII, chemokine receptor
CCR7, and costimulatory molecules and had lower
immunostimulatory activity than wild-type cDCs. The ability
of SIRT6KO cDCs to produce IL-12 was generally reduced.
SIRT6 deficiency prevented the maturation of BMDCs (bone
marrow-derived DCs) generated in vitro in a partial TNF-a-
dependent manner. SIRT6 helps BMDCs respond to Toll-like
receptor (TLR) ligands. The proliferation of allogeneic
lymphocytes in a mixed leukocyte reaction (MLR) stimulated
by cells cultured in the presence of SIRT6 inhibitors was also
significantly reduced. Therefore, SIRT6 plays a crucial part in
the differentiation and function of cDCs, and loss of function of
SIRT6 may promote immunosenescence (15). Inflamm-aging
(a long-term low levels of inflammatory mediators in aging
individuals) (57) will follow. This is often accompanied by the
production of a SASP (senescent cells secrete pro-inflammatory
cytokines, chemokines, and proteases) (13). SIRT6 increases
TNF secretion in BMDCs and THP-1 through post-
transcriptional steps (3, 14). Overexpression of SIRT6 proved
sufficient to delay the replicative senescence of diploid
fibroblast WI38 by attenuating NF-kB signaling. Knockdown
of SIRT6 leads to accelerated cell senescence and overactivation
of NF-kB (59). Therefore, SIRT6 affects the NK-kB pathway,
which regulates cytokine production (discussed in more detail
later), and then regulates SASP. In short, SIRT6 may also
participate in inflamm-aging via affects on the SASP through
regulating the synthesis and release of inflammatory factors.
SIRT6 AND IMMUNITY

SITR6 regulates inflammatory development, and plays a complex
role. It inhibits inflammatory by promoting M2 macrophage
polarization, decreasing number of lymphocytes, inhibiting T
cell differentiation, and inhibiting innate immunity response.
However it also promotes inflammatory by promoting
neutrophils and dendritic cells migration, and promoting TNF-
a secretion. Besides, SIRT6 could regulate immunometabolism.
All of these will be discussed in detail below.

SIRT6 Regulates
Inflammatory Development
Some studies have shown that SIRT6 can inhibit inflammation.
In myeloid cells, most studies have focused on the role of SIRT6
in regulating macrophage polarization. Sirt6f/f:Fabp4-Cre mice
(with SIRT6 deficiency in preadipocytes and mature adipocytes)
exhibited increased expression of inflammatory genes including
F4/80, Tnfa, Mcp-1, and Il6 in both brown and white adipose
tissues (16). Adipocyte-specific S6KO mice showed increased
infiltration of macrophages in epididymal white adipose tissue,
many M1 macrophage genes (Il1b, Ccl2, Tnfa, Il6, Nos2, and
Ccr2) were upregulated at the mRNA level, and inflammation
was increased. However, the mRNA levels of M2 macrophage
genes (Mrc1, Mgl1, Arg1, and Il10) were downregulated (17). In
the same mouse model, macrophages infiltrated into adipose
tissue. Moreover, the ratio of M1/M2 macrophages was
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significantly increased, and the mRNA expression of
inflammatory genes including CD11b+, Cxcl2, CD68, Tnfa,
Mcp-1, and Il6 was also increased when mice were fed a high-
fat diet (18). By contrast, SIRT6 regulated the expression of IL-4
by adipocytes through an autocrine route, thereby promoting the
polarization of macrophages to the M2 type and reducing
inflammation (17). In a full-thickness excisional lesion model
of dorsal skin, the infiltration of M1 macrophages in myeloid-
cell-specific S6KO (mS6KO) mice increased, whereas numbers of
M2 macrophages decreased. Therefore, inflammation at the
wound site increased, and wound healing was impaired. By
contrast, under the condition of M2 polarization stimulated by
IL-4, transducing mS6KO bone marrow macrophages (BMMs)
with adenovirus expressing Sirt6 promoted the polarization of
M2 macrophages by protecting the PI3K-Akt pathway (19).
Clinical analysis has shown that levels of SIRT6 in particular
chondrocytes of osteoarthritis patients are significantly reduced.
Expression levels of SIRT6 in peripheral blood mononuclear
cells, monocytes, and macrophages are lower in patients with
rheumatoid arthritis compared with those with osteoarthritis.
The activity of SIRT6 is negatively correlated with the severity of
the disease. Overexpression of SIRT6 can reduce the
inflammatory response by reducing the expression of NF-kB-
dependent genes, thereby preventing the development of
arthritis (52, 60). The arthritis of mS6KO mice is more serious
than that of wild-type mice. Lack of SIRT6 leads to upregulation
of acetylated-FoxO1 protein levels and CCR3 expression in
macrophages, and the migration of macrophages to
synoviocyte-derived chemoattractants is enhanced so that more
macrophages gather in the synovium (60). In collagen-induced
arthritis (CIA), overexpression of SIRT6 inhibits the
differentiation of osteoclasts in BMDCs induced by
macrophage colony-stimulating factor. The severity of arthritis
is reduced, and levels of local and systemic pro-inflammatory
cytokines are also downregulated (61). In neuro-inflammation,
SIRT6 activation inhibits lipopolysaccharide (LPS)-stimulated
inflammatory responses of RAW264.7 macrophages and
primary mouse microglia (62). In vitro experiments have also
confirmed the anti-inflammatory effect of SIRT6. SIRT6-
deficient macrophages promote the activation of NF-kB and
the production of IL-6, which results in signal transducer and
activator of transcription 3 (STAT3) activation and a positive
feedback loop for NF-kB stimulation, and finally accelerates the
polarization of pro-inflammatory M1 macrophages (63). By
contrast, icariin (ICA) upregulates the expression and increases
the activity of SIRT6. ICA treatment inhibits the NF-kB
inflammatory signaling pathway and reduces mRNA levels of
the NF-kB downstream target genes: Tnfa, Il2, ICAM-1, and Il6,
thereby inhibiting inflammatory development (64). BMMs of
Sirt6-null mice show high expression of pro-inflammatory genes
encoding MCP-1, TNF-a, and IL-6 and hypersensitivity to LPS
stimulation due to the hyperacetylation of H3K9 and the increase
in c-JUN occupancy in the promoters of these genes (65). By
contrast, macrophages overexpressing SIRT6 are transformed
into the M2 phenotype, which can avoid the damage induced by
high glucose levels (66). S6KO mice have abnormal immune
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systems and metabolism. There are inextricable links between
immune cells and immune cells, and between metabolism and
immune cells. It is thus difficult to accurately study a particular type
of immune cell under these conditions of multifactorial changes.

Studies have also shown that SIRT6 inhibits inflammation via
effects on lymphocyte differentiation and function. In S6KO
mice, lordokyphosis, colitis caused by erosion of the superficial
colonic epithelium, acute loss of subcutaneous fat, and severe
lymphopenia relevant to increased lymphocyte apoptosis were
observed. Flow cytometry analysis showed that in the thymus,
the number of CD4+-CD8 + double-positive cells decreased 50-
fold, and in bone marrow, the number of splenic lymphocytes
and progenitor B cells decreased 10-fold (5). In CIA rats, a low
percentage of regulatory T cells (Tregs) was observed following
treatment with C3G (an inhibitor of CD38) and the Sirt6
inhibitor OSS_128167 (67). SIRT6 interacts with and
deacetylates GATA3, inhibits the Th2 immune response, and
reduces the expression of IL-4, IL-5, and IL-13, thereby
weakening airway allergic inflammation induced by ovalbumin
or house dust mites (68). S6KO mice developed chronic liver
inflammation at approximately 2 months old, and the absence of
SIRT6 in T cells was sufficient to induce liver fibrosis and
inflammation (65).

Furthermore, SIRT6 negatively regulates the innate immune
response during dengue virus (DENV) infection. SIRT6 silencing
enhances the production of pro-inflammatory cytokines and
chemokines. Overexpression of SIRT6 inhibits NF-kB
activation mediated by RIG-I-like receptor and TLR3. The
sirtuin core domain of SIRT6 is important for inhibiting NF-
kBp65 function. SIRT6 interacts with the p65 DNA-binding
domain and competes with p65 to bind the IL-6 promoter and
reduce the expression of IL-6 during DENV infection (69).

However, some studies have confirmed that SIRT6 promotes
inflammatory development and has pro-inflammatory potential.
Human SIRT6 promotes TNF-a secretion by removing the fatty
acyl modifications on TNF-a K19 and K20 (3). After CpG
stimulation of BMDCs from SIRT6-deficient mice, the
amounts of TNF-a synthesized by the cells decreased, which
confirmed the pro-inflammatory effect of SIRT6 (14). In
autoimmune diseases, SIRT6 inhibitors effectively delay the
onset of experimental autoimmune encephalomyelitis (EAE)
via the following mechanism: inhibition of SIRT6 reduces the
expression of CD40 on lymph node DCs, decreases
encephalitogenic T cell infiltration, and decreases the ability of
CXCR4+ DCs to migrate into the lymph nodes of EAE mice.
Levels of IFN-g, TNF-a, and IL-12 were also decreased, but the
expression of IL-10 was increased with an anti-inflammatory
effect (20). SIRT6 also increased the levels of cAMP/Ca2+-dependent
transcription factors and nuclear factor of activated T cells through
its deacetylation activity, thereby enhancing the expression of TNF-
a and chemokine IL-8 (70).

SIRT6 Regulates Immunometabolism
Many studies have confirmed that SIRT6 is involved in cell
metabolism regulation (71). Metabolism is an important factor
affecting the development and function of immune cells (72, 73).
For example, Shun et al. reported that hypoxia may stimulate cell
Frontiers in Oncology | www.frontiersin.org 5
glycolysis and autophagy, and that autophagy promotes the
formation of DNA-containing immune complexes and
trafficking of TLR9 to the signaling compartment, leading to
hyper-responses of immune cells, which are related to the
formation of nasal polyps (74–76). The expression of SIRT6 is
inhibited in a chronic inflammatory state. If SIRT6 expression is
increased, autophagy can be inhibited by inhibiting anaerobic
glycolysis, which is conducive to disease treatment
(77).Cyclosporine A inhibits neutrophil migration and
apoptosis by inhibiting SIRT6, promoting the upregulation of
HIF-1a expression and enhancing glycolysis and the TCA cycle,
which is conducive to the remission of acute severe ulcerative
colitis (78). During the transformation from early inflammation
to late inflammation, SIRT6 deacetylates H3K9ac and H3K56ac
on several glycolysis gene promoters, inhibits HIF-1a
transcriptional activity, and reduces glycolysis activity to
promote M2 polarization of macrophages (79).

SIRT6 might regulate T cell differentiation by metabolism.
SIRT6 deacetylates and activates FoxO1 to regulate lipid
metabolism in brown adipocytes (80). The absence of FoxO1
seriously inhibits the development of Foxp3+ Tregs (81). SIRT6
inhibits HIF-1a activation to inhibit glycolysis, and HIF-1a
activates RORgt to enhance Th17 cell polarization (82). HIF-
1a promotes IL-9 expression to induce Th9 cell polarization
(83). It is well known that after challenge by pathogens, some T
cells will continue to exist as longevity memory T cells, which
maintain self-renewal capacity, allowing them to proliferate
many times over a long duration to prevent rechallenge by the
same pathogen. They are long-lived immune cells (84, 85).
Unlike naive CD8+ T cells, the percentages of effector memory
CD8+ T cells and central memory CD8+ T cells increased with
age (86). Subsequently, researchers found that the central
memory cells of older individuals shifted toward a chromatin-
opening pattern and determined that the gene regulation driven
by NRF1 and BATF was a potential target for delaying CD8+ T
cell aging (87). Other studies have shown that NRF-1 itself is
regulated by PTMs (acety lat ion, methylat ion, and
phosphorylation) that enhance binding to its target genes (88).
The above results suggest that SIRT6 may be involved in the
accumulation of memory CD8+ T cells in the aging population
because of its capacity to deacetylate.

Although few studies have shown SIRT6 to affect immune cell
function through directly regulating immunometabolism, SIRT6
has been found to regulate immune cell activity via effects on
PI3K/Akt, NF-kB, and HIF-1a as discussed above. The above
three signaling pathways could be involved in regulation of the
TCA cycle, glycolysis, pentose phosphate pathway, and Warburg
effect, thereby affecting the energy metabolism of immune cells in
the resting state and activated state (72, 89–94). SIRT6 also
regulates intracellular levels of NAD+, which is an electron
acceptor with a key role in cell metabolism. Therefore, SIRT6
is likely to regulate immune cell proliferation, growth, and
function by affecting immunometabolism. Pillai’s review
discusses this point in detail and proposes that SIRT6
participates in short-term regulation of immune cells through
PTMs and long-term regulation through transcriptional
regulation of metabolism-related genes (89). Therefore, how
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SIRT6 regulates immunometabolism and how this regulation
affects cell function will be an interesting research direction.
SIRT6 AND CANCER

On the one hand, frequent DNA damage and mutation will lead
to canceration (95, 96), which provides important support for the
development of tumors; on the other hand, chronic
inflammation caused by aging will drive tumor initiation,
growth, progression, and metastasis (97). Moreover,
immunosenescence is conducive to escape of cancer cells from
immune system attacks and their eventual development into
cancer. As mentioned earlier, SIRT6 plays a positive role in
maintaining genomic stability and preventing aging. So SIRT6 is
involved in cancer regulation is obvious.In addition, large
amounts of data indicate that SIRT6 is directly involved in the
occurrence and development of cancer.

SIRT6 Promotes/Inhibits
Cancer Development
In certain cancers, SIRT6 promotes cancer development. In
osteosarcoma, inhibition of SIRT6 enhances the antitumor
effect of doxorubicin by inhibiting the DNA damage repair
pathway (21). In papillary thyroid cancer (PTC), SIRT6
increases generation of reactive oxygen species to promote the
Warburg effect in PTC cells, and high levels of SIRT6 reduce
expression of E-cadherin, thereby promoting the invasion and
migration of PTC cells and promoting cancer development
(22, 23).

However, in other cancers, SIRT6 exhibits tumor suppressor
activity. When bladder cancer develops from T2 to T4, the
expression of SIRT6 is significantly decreased. Low SIRT6
expression increases the acetylation of H3K9 and levels of
Glut1 and PDK1, enhances glycolysis, and increases the
proliferation ability of tumor cells (24). In nasopharyngeal
carcinoma, SIRT6 overexpression reduces levels of anti-
apoptotic protein Bcl-2 but increases levels of cleaved caspase-
3 and pro-apoptotic protein Bax. High levels of SIRT6 inhibit
NF-kB signaling and promote apoptosis of nasopharyngeal
carcinoma cells (25). SIRT6 is downregulated in human glioma
tissues and deacetylates H3K9ac on the promoter of PCBP2 to
downregulate PCBP2 expression and inhibit glioma cell growth
(26). Elevated SIRT6 expression leads to tumor cell apoptosis by
upregulating the expression of Bax and cleaved caspase-8, and
downregulating Bcl-2, and inhibiting the Janus kinase 2 (JAK2)-
STAT3 pathway (27). FOXO3a transcriptionally activates SIRT6
to inhibit the Warburg effect in glioblastoma cells, thereby
inhibiting the development of glioblastoma (28).

The Dual Role of SIRT6 in
Cancer Development
In melanoma, CRISPR/Cas9 or lentivirus short hairpin RNA-
mediated knockout or knockdown of the SIRT6 gene in A375
melanoma cells, leding to significantly reduced growth, vitality,
and clonogenic survival rates of cancer cells, induced cell cycle
Frontiers in Oncology | www.frontiersin.org 6
arrest in G1 phase, and increased senescence-associated b-
galactosidase staining (98, 99), reflecting the oncogenic activity
of SIRT6. However, in BRAFV600E melanoma cells, SIRT6
haploinsufficiency induced resistance of melanoma cells to
mitogen-activated protein kinase (MAPK) inhibitors by
activating IGF signaling (100), suggesting an anti-tumor effect
of SIRT6. The expression of SIRT6 is decreased in primary
melanoma compared with melanocytic nevus. An increase in
SIRT6 induces inhibition of cell proliferation, cell cycle arrest,
and apoptosis. However, in the metastatic stage of melanoma, the
expression of SIRT6 increases (possibly induced by FOXO3a)
and promotes the development of melanoma in an autophagy-
dependent manner by inhibiting IGF-AKT signaling (101, 102).

In breast cancer, SIRT6 can enhance the expression and
activity of pyruvate dehydrogenase (PDH), thereby enhancing
oxidative phosphorylation in breast cancer cells and promoting
the occurrence of breast tumors in mice (103). High nuclear
levels of SIRT6 promot cancer development and is significantly
associated with poor overall survival (104). Low levels of SIRT6
increase acetylated FOXO3, thereby inhibiting tumor
development (105). However, another study showed that
ectopic expression of SIRT6 reduced pAkt, hexokinase-2, and
PDH kinase-1 protein levels, thereby inhibiting metabolic
pathways in breast cancer (106).

In lung cancer, SIRT6 is overexpressed in non-small-cell lung
cancer (NSCLC) cell lines (107–109). SIRT6 increases
extrace l lu lar s igna l - regu la ted kinase (p-ERK) 1/2
phosphorylation and activates matrix metalloproteinase 9
(MMP9) to facilitate tumor cell migration and invasion (109).
Silencing of SIRT6 impaired the proliferation and differentiation
of NSCLC cell lines, arresting cells in the S and G0/G1 phases
(107). miR-34 inhibited the proliferation of A549 cells by
inhibiting SIRT6 expression (108). A lack of SIRT6 leads to
upregulation of Kruppel-like factor 4 (KLF4) in NSCLC cells to
reduce their invasiveness (110). However, studies have shown
that patients with low nuclear expression of SIRT6 have cancer
that is more aggressive and shorter survival (111). SIRT6 inhibits
cell proliferation by inhibiting the expression of Twist1 in
NSCLC (112). In the A549 lung cancer cell line, a-hederin was
shown to inhibit c-Myc and HIF-1a by increasing the expression
of SIRT6 to inhibit glycolysis and further inhibit the proliferation
of A549 cells (113).

In pancreatic cancer, the SIRT6 inhibitor quinazolinedione
synergistically kills pancreatic cancer cells with gemcitabine
(114). SIRT6 enhances Ca2+ responses, which promotes the
migration ability of pancreatic cancer cells (70). However,
another study found that SIRT6 was an important tumor
suppressor in pancreatic ductal adenocarcinoma. The absence
of SIRT6 leads to hyperacetylation of the Lin28b promoter, Myc
recruitment, and significant induction of Lin28b and its
downstream let-7 target genes IGF2BP1, IGF2BP3, and
HMGA2, thereby promoting the development of cancer (115).

In liver cancer, upregulation of SIRT6 is very common in liver
cancer tissues and is highly correlated with poor overall survival
rate, disease-free survival, hepatocellular carcinoma (HCC) cell
migration, tumor size, tumor grade, and vascular invasion (116,
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117). The suppression of SIRT6 in various liver cancer cell lines
can inhibit cell growth and induce apoptosis in vitro. In vivo
experiments also confirmed that the suppression of SIRT6
inhibits tumor growth (117). SIRT6 promotes the migration,
invasion, and epithelial–mesenchymal transition (EMT) of HCC
cells. Mechanistically, SIRT6 overexpression induces E-cadherin
degradation to improve cancer invasion and migration ability.
SIRT6 deacetylates the promoter of Bax (the main determinant
of apoptosis of cancer cells) at H3K9 and suppresses its promoter
activity to prevent cancer cell apoptosis (117). SIRT6 reduces the
acetylation of AKT, resulting in increased phosphorylation of
AKT and promoting its activity. Activated AKT promotes
phosphorylation of anti-apoptotic protein X-linked inhibitor of
apoptosis protein to prevent cancer cell apoptosis (118). SIRT6
silencing inhibits the growth of HCC cell lines by inducing p53/
p21- and p16/Rb-independent cell senescence (119). However,
some studies have found that SIRT6 inhibits the development of
liver cancer. The level of SIRT6 decreases with increasing liver
cancer grade, and increasing the level of SIRT6 at the initiation
stage could significantly impair the development of cancer (120,
121). Mechanistically, the decrease in SIRT6 levels increases the
acetylation level of the lysine residue at position 433 of nuclear
pyruvate kinase M2 (PKM2) and promotes the oncogenic
functions of PKM2, which is conducive to cell proliferation,
migration, and invasion (120). Increasing SIRT6 levels represses
survivin and inhibits cancer progression by reducing histone
H3K9ac and NF-kB activation (121).

In prostate cancer, SIRT6 is overexpressed in prostate tumors.
Knockdown of SIRT6 in prostate cancer cells results in cell cycle
arrest at sub-G1 phase, increased apoptosis, increased DNA
damage, and decreased BCL2 expression, thereby reducing
cancer cell viability and enhancing chemotherapeutic
sensitivity (122). The absence of SIRT6 significantly inhibits
the activation of prostate cancer-related signaling pathways
such as the Notch pathway, thereby inhibiting the proliferation
and metastasis of prostate cancer cell lines (123). However,
studies have shown that E2F promotes tumor growth by
suppressing SIRT6 transcription to enhance glycolysis (124).

In colon cancer, SIRT6 deacetylates H3K9ac to promote the
EMT process by reading snail and inhibiting TET1 transcription,
further promoting tumorigenesis. Knockdown of SIRT6 in
HCT116 cells leads to reduced colony formation (125).
However, studies have shown that the expression of SIRT6
protein in colon cancer tissues is downregulated, and patients
with higher SIRT6 expression show better prognosis (126).
Upregulation of SIRT6 promoted the expression of PIP2 and
PTEN and improved the stability of PTEN. The apoptosis levels
of SW620 colon cancer cells overexpressing SIRT6 increased, and
their proliferation ability was weakened (127). USP10 protects
SIRT6 from proteasome-mediated degradation. SIRT6 inhibits c-
Myc transcriptional activity, thereby inhibiting cell cycle
progression, cancer cell growth, and tumor initiation in the
colon cancer cell line HCT116 (128).

In ovarian cancer, SIRT6 knockdown in OVCAR3 and
OVCAR5 ovarian cancer cells significantly inhibited cell
migration and invasion (129). However, the expression of
SIRT6 in human ovarian cancer tissues was significantly
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decreased, and the expression of Notch3 was increased, which
further promoted the development of cancer (130).

In addition to its role in solid tumors, SIRT6 regulates blood
cancer in a similarly complex manner. SIRT6 is overexpressed in
CD34+ hematopoietic progenitors and multiple myeloma in
patients with acute myeloid leukemia, and high SIRT6 levels
are associated with poor prognosis (131, 132). SIRT6 deacetylates
DNA-Pkc and CtIP and inactivates ERK2/p90RSK signaling to
increase DNA repair, conferring DNA damage resistance (132).
In diffuse large B-cell lymphoma cells, knockdown of SIRT6
increased sensitivity to chemotherapy, apoptosis rates,
dysfunctional cell proliferation, and cell cycle arrest between
the G2 and M phases, reflecting the tumor-promoting activity of
SIRT6 (133). However, some studies have shown that SIRT6
deacetylates H3K9ac at the promoter of transcription factor
ELK1 and ERK signal-related genes, thereby downregulating
the signal transduction of the MAPK pathway and decreasing
proliferation (132).

In summary, SIRT6 has shown contradictory results,
promoting or suppressing cancer among different cancers, and
even at different stages of development or different cell lines of
the same cancer (Table 1). If SIRT6 is to be used to regulate the
development of cancer via effects on the metabolism,
proliferation, and apoptosis of cancer cells, it will be necessary
to conduct a very comprehensive study of its role in the
occurrence and development of various cancers. Effective
activators and inhibitors of SIRT6 are also needed to suit the
remedy to the case. As SIRT6 also has important roles in aging
and immune regulation, how to reduce drug side effects will be
another urgent problem to be solved in the future. At present,
few studies have shown whether SIRT6 could enhance the anti-
tumor ability by regulating the activity of immune cells; this may
become a new research direction in the future.
CONCLUSION AND
FUTURE PERSPECTIVES

SIRT6 has a range of PTM capabilities including deacetylation,
defatty-acylation, and mono-ADP-ribosylation activities. This
multifunctional PTM protein is widely involved in aging,
immunity, and cancer regulation. The substrates of SIRT6
during aging, immunity, and cancer regulation are summarized
in Table 2.

SIRT6 is a longevity protein that prevents cells, tissues,
organs, and the body from aging. Although the mechanisms
underlying these effects are diverse, they all involve resistance of
aging by promoting of DNA damage repair, maintaining of the
normal telomere structure of chromosomes, regulating of
glucose and NAD+ metabolic balance, and by regulating of
SASP (Figure 1). SIRT6 can also affect the differentiation and
function of immune cells by regulating PTM affecting cells or the
immunometabolism. However, the role of SIRT6 in immune
regulation is complex. Although most studies have shown it to
have anti-inflammatory activity, there is no lack of evidence
regarding its pro-inflammatory potential (Figure 2). There has
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been insufficient research on how SIRT6 affects inflammation by
regulating immune cells; SIRT6 has rarely been studied in many
immune cells including granulocytes, monocytes, B cells, natural
killer (NK) cells, and NKT cells. However, according to the
recent research, the SIRT6-PTM or immunometabolism axes
represent new directions with research potential. Further studies
are required to clarify the role of SIRT6 in the regulation of
inflammation, for example, its impact on different immune cells
in different diseases or at different stages of aging, as well as on
the differentiation, maturation, and function of immune cells.

The role of SIRT6 in cancer development is complex. SIRT6
shows differential expression in cancer tissues compared with
normal tissues; its expression levels may also vary among
different cancers, at different stages of the same cancer, and in
different cell lines of the same tumor type. It also has both
positive and negative effects on the regulation of cancer. Possible
reasons for this include the following. 1. SIRT6 participates in the
Frontiers in Oncology | www.frontiersin.org 8
NAD+ decomposition pathway and regulates the activity of
many proteins related to cancer developmental pathways by
controlling levels of NAD+. Cancers that occur at different ages
or in different stages of cancer development show different
intracellular NAD+ concentrations; thus, the role of SIRT6 will
be different. 2. As SIRT1 and SIRT7 are also located in the
nucleus, they may compete with SIRT6 for NAD+ consumption
and also, importantly, regulate PTMs, thereby affecting cancer-
related signaling pathways. The dynamic changes in SIRT1,
SIRT6, and SIRT7 levels in different cancers, as well as their
PTMs on histones and non-histone substrates, increase the
complexity of the role of SIRT6 in pathological processes. To
elucidate the complex influence of SIRT6 on cancer, it will be
necessary to carry out more studies focusing on specific patient
ages and tumor stages.

Few studies have analyzed whether SIRT6 could achieve anti-
cancer effects via regulation of immune cell function. This could
TABLE 1 | Regulatory mechanisms of SIRT6 in various cancers.

Cancer type Function Mechanisms

Osteosarcoma Oncogene
Oncogene

DNA damage repair
Papillary thyroid cancer Promotes the Warburg effect

Decreases E-cadherin expression
Bladder cancer Suppressor Decreases GLUT1 and PDK1 to inhibit glycolysis
Nasopharyngeal carcinoma Suppressor Decreases Bcl-2 levels

Increases Bax and cleaved caspase-3 levels
Inhibits NF-kB signaling

Glioma Suppressor Suppresses expression of PCBP2
Inhibits JAK2/STAT3 signaling
Inhibits the Warburg effect

Skin cancer Oncogene Promotes COX-2 expression
Protects cell cycle progression

Suppressor Inhibits IGF-AKT signaling
Breast cancer Oncogene Enhances oxidative phosphorylation

Suppresses FoxO3 activity
Suppressor Suppresses glucose metabolism

Lung cancer Oncogene Increases p-ERK1/2 and activates MMP9
Protects cell cycle progression
Suppresses KLF4 expression

Suppressor Inhibits Twist1 expression
Inhibits glycolysis

Pancreatic Cancer Oncogene Enhances Ca2+ responses
Suppressor Inhibits Lin28b and downstream let-7 target genes

Hepatocellular Carcinoma Oncogene Promotes EMT by stimulating autophagic degradation of E-cadherin
Suppresses Bax expression
Increases phosphorylation and activity of AKT
Prevents DNA damage and cell senescence

Suppressor Suppresses nuclear localization of PKM2
Activates NF-kB and inhibits survivin

Prostate cancer Oncogene Protects cell cycle progression
Promotes Bcl2 expression
Protects Notch signaling pathway

Suppressor Inhibits glycolysis
colon cancer Oncogene Reads Snail and suppresses TET1 transcription to promote EMT

Suppressor Promotes the expression of PIP2 and PTEN
Inhibits c-Myc transcription

Leukemia Oncogene Protects cell cycle progression
Repairs DNA damage through DNA-PKc/CtIP and ERK2/p90RSK signaling

Suppressor Inhibits MAPK signaling pathway
Ovarian cancer Oncogene Promotes EMT

Suppressor Downregulates Notch 3 expression
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represent a new direction for future research. For example, it
may be possible to adjust the polarization of macrophages
through SIRT6 to affect tumor progression. In the healthy
state, higher SIRT6 levels promote the polarization of M2
macrophages and maintain a low level of inflammation, which
can prevent chronic inflammation and cancer development. On
Frontiers in Oncology | www.frontiersin.org 9
the other hand, in the initial stage of cancer, reduced SIRT6 levels
promote the polarization of M1 macrophages. This in turn
increases the pro-inflammatory ability of macrophages, leading
to more immune cells being recruited to the cancer tissue to
eliminate cancer cells by forming a strong immune protective
barrier. In the stage of primary tumor formation and the
TABLE 2 | Substrates and enzymatic activity of SIRT6 during aging, immunity, and cancer regulation.

Substrates Enzymatic activity

Aging PARP1 K521 Mono-ADP-ribosylation
DDB2 K35 and DDB2 K77 Deacetylation
H3K56ac at DNA damage sites Deacetylation
H3K9ac in the promotor of NF-kB Deacetylation
H3K18ac in pericentric chromatin Deacetylation
KAP1 Mono-ADP-ribosylation

Immunity H3K9ac in the promoter of NF-kB Deacetylation
Enhancer of Zeste homolog 2 Deacetylation
FOXO1 Deacetylation
Pyruvate kinase muscle isozyme Deacetylation
H3K9ac in the promoters of Il-6 and Mcp-1 Deacetylation
GATA3 Deacetylation
H3K9ac in promoters of HIF-1a target genes Deacetylation
FOXO1 Deacetylation
TNF-a K19 and TNF-a K20 Defatty-acylation

Cancer H3K9ac in the promoter of PCBP2 gene Deacetylation
H3K56ac at the IGFBP2 locus Deacetylation
H3K9ac in the promoters of a cluster of glycolysis-associated genes Deacetylation
Snail Deacetylation
H3K9ac, H3K56ac Deacetylation
H3K9ac in the promoter of Bax Deacetylation
Beclin-1 Deacetylation
AKT Deacetylation
PKM2 Deacetylation
H3K9ac in the promoter of survivin Deacetylation
H3K9ac in the promoter of Erk2 Deacetylation
H3K56ac at DNA damage sites Deacetylation
R-Ras2 Defatty-acylation
April 2022 | Volu
FIGURE 1 | Summary of inhibition of cell senescence by SIRT6. SIRT6 promotes DNA damage repair, maintains the normal structure of telomere chromatin,
regulates energy metabolism, and inhibits SASP to prevent cell senescence.
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development of aggressive tumors, reducing SIRT6 levels can
increase the M1/M2 ratio, preventing the formation of an
immunosuppressive tumor microenvironment and thereby
inhibiting tumor development and invasion. Such tumor
immunotherapy needs to be adjusted according to the
progression of cancer and the different types of immune cells.
More research is needed to further understand the regulatory
role of SIRT6 in the immune system and in cancer.

As SIRT6 can regulate immune cell function, it could also
promote or inhibit cancer development by influencing cancer
cell metabolism, survival, proliferation, apoptosis, migration, and
other pathways. Therefore, when designing SIRT6 activators or
inhibitors to treat cancer, comprehensive consideration is
necessary of the differential impact on cancer cells and
immune cells to avoid conflicting drug effects. Precise
administration using cell-targeted drugs is a potential approach.

Taken together, these findings indicate that SIRT6 will serve as
an important target candidate for regulating immunosenescence
and immune cell function. Drugs designed to target SIRT6 will
also make an important contribution to the fight against chronic
inflammation and cancer. SIRT6, as an important regulator
Frontiers in Oncology | www.frontiersin.org 10
throughout immunosenescence, inflamm-aging, and cancer, is a
potential target for the regulation of the immune system.
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