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Purpose: Sulfur dioxide (SO2) is a novel gaseous signaling molecule that plays an important 
role in inflammation, which contributes the pathogenesis of acute kidney injury (AKI). The 
aim of this study was to explore the predictive value of plasma SO2 for AKI in high-risk 
patients.
Patients and Methods: A prospective cohort of 167 patients who underwent major 
noncardiac surgery was enrolled in the study. Plasma SO2, urine neutrophil gelatinase- 
associated lipocalin (NGAL), tissue inhibitor of metalloproteinase-2 (TIMP-2), and insulin- 
like growth factor-binding protein 7 (IGFBP7) levels were detected immediately after the 
operation. The primary endpoint was new-onset AKI within 72 h after admission. The ability 
of biomarkers including SO2 and a clinical risk model to predict AKI was compared by 
receiver operator characteristic (ROC) curve analysis and decision curve analysis (DCA), 
additional contributions were evaluated by integrated discrimination improvement (IDI) and 
net reclassification improvement (NRI) analyses.
Results: A total of 61 (36.5%) patients developed AKI within 72 h of surgery. Compared to 
NGAL and [TIMP-2]·[IGFBP7], SO2 showed better predictive ability for new-onset AKI 
with an area under the ROC curve of 0.771 (95% confidence interval: 0.700–0.832, 
p<0.001). The improvement in predictive value by including SO2 in the clinical risk model 
was supported by NRI (0.28; P=0.04) and IDI (0.15; P<0.001) analyses. The net benefit of 
the combination of SO2 and clinical variables was the max in DCA.
Conclusion: Plasma SO2 shows a useful value for predicting new-onset AKI, and improved 
AKI prediction based on clinical variables, which can guide the implementation of preven
tive measures for high-risk patients.
Keywords: gasotransmitter, AKI, predictive modelling, intensive care unit

Introduction
Acute kidney injury (AKI) is a major public health burden—occurring in more than 
half of critical ill patients and is associated with increased risk of both in-hospital 
mortality and long-term chronic kidney disease.1,2 Given the low efficacy of 
interventions for AKI, identification of high-risk patients and implementation of 
preventive strategies are critical to assure a good clinical outcome. Diagnosis of 
AKI is currently based on oliguria or/and elevated serum creatinine.3 However, the 
former is closely related to the patient’s overall fluid volume whereas the latter is 
a late marker that may not be detected even when glomerular filtration rate has 
decreased by half.4 Thus, these 2 functional markers are neither sensitive nor 
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specific, which could delay diagnosis and treatment.5,6 

Numerous studies have investigated potential biomarkers 
for identifying high-risk patients and facilitating the diag
nosis of AKI.7 However, most biomarkers have disadvan
tages and limited utility in clinical practice.8,9

Sulfur dioxide (SO2), which was previously regarded 
as a toxic gas,10,11 is now recognized as a novel 
gasotransmitter.12 SO2 is endogenously produced by the 
metabolism of the sulfur-containing amino acid 
L-cysteine13 and plays important physiological and patho
physiological roles.14–16 SO2 levels are elevated in patients 
with acute pneumonia, chronic renal failure, and pediatric 
acute lymphoblastic leukemia with bacterial infection.17–19 

We speculated that as an indicator of inflammation, SO2 

may predict the development of AKI in high-risk patients. 
To test this hypothesis, in this study we used SO2 to 
develop an AKI prediction model and compared its per
formance with that of established markers of AKI in 
a prospective cohort of postoperative critically ill patients.

Materials and Methods
Study Setting and Population
The present study was carried out in a 20-bed surgical 
intensive care unit (ICU) of Beijing Chao-Yang Hospital 
from January 1, 2020 to October 31, 2020. The study was 
designed and conducted and is reported according to the 
Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis statement.20 

The study was approved by the human ethics committee of 
Beijing Chao-Yang hospital, Capital Medical University 
(Beijing, China) (no. 2020-ke-236). Informed consent 
from patients or their next of kin was obtained before 
consecutive patients were prospectively enrolled in the 
study. We included patients who underwent major noncar
diac surgery and stayed in the ICU longer than 48 h. The 
exclusion criteria were age <18 years; development of 
AKI before ICU admission; insufficient data or blood 
samples; chronic kidney disease (CKD); operated by 
nephrectomy or kidney transplantation; and not transferred 
to the ICU immediately after the operation.

Definitions and Clinical Endpoints
The definition and classification of AKI were based on 
serum creatinine and urine output criteria proposed by 
Kidney Disease: Improving Global Outcomes.3 New- 
onset AKI was defined as AKI occurring within 72 
h after the operation. CKD was defined according to 

National Kidney Foundation criteria as estimated glomer
ular filtration rate (eGFR) <60 mL/min/1.73 m2 for at least 
3 months irrespective of the cause. GFR was estimated 
with the Cockcroft–Gault formula.21 If at least 5 values for 
serum creatinine were available, the median of all values 
available from 6 months to 6 days prior to enrollment was 
used as the baseline; otherwise, the lowest value in the 5 
days prior to enrollment was used. If no pre-enrollment 
creatinine was available or the emergency patient’s serum 
creatinine was abnormal at the time of admission, baseline 
creatinine was estimated using the Modification of Diet in 
Renal Disease equation assuming that baseline eGFR was 
75 mL/min per 1.73 m.22 Sepsis and septic shock were 
diagnosed according to the Sepsis 3.0 definition of the 
American College of Chest Physicians/Society of Critical 
Care Medicine.23

The primary endpoint was the development of AKI 
within 72 h after enrollment. Secondary endpoints for the 
purpose of characterizing the patient population included 
ICU and hospital mortality and length of ICU and hospital 
stays.

Data Collection
Demographic information and clinical data such as chronic 
illnesses, pre-ICU medications (including nephrotoxic 
drugs), surgical procedure, laboratory blood tests, duration 
of mechanical ventilation, and length of ICU and hospital 
stays were prospectively collected during the hospital stay 
and recorded in case report forms. Baseline serum creati
nine, everyday creatinine, and hourly urine output on ICU 
admission and thereafter were measured and recorded. The 
severity of illness was estimated with Acute Physiology 
and Chronic Health Evaluation II and Sequential Organ 
Failure Assessment (SOFA) scores.

Sample and Laboratory Analysis
Paired blood and urine samples were collected immedi
ately after the operation. After 30 min, the samples were 
centrifuged at 3000 rpm at 4°C for 10 min, and the super
natant (plasma) was stored at −80°C. SO2 concentration 
were analyzed by high-performance liquid chromatogra
phy analysis (HPLC) (Series number:USKH127476, 
produce year: 2020).15 A 100 µL volume of plasma was 
mixed with 70 µL of sodium borohydride and 10 µL of 
methyl 2-bromopropionate (both from Sigma-Aldrich, 
St. Louis, MO, USA), followed by incubation for 10 min 
at 42°C. Perchloric acid (40 µL) was added and the mix
ture was centrifuged at 12,400 rpm for 10 min at 23°C to 
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remove precipitated proteins; 10 µL Tris-HCl (pH=3.0) 
was then added to the supernatant for neutralization before 
HPLC analysis. The mobile phases were a methanol: 
acetic acid: water buffer (5.00:0.25:94.75 by volume, 
pH=3.4) and pure methanol. All measurements were per
formed at an excitation wavelength of 392 nm and absorp
tion wavelength of 479 nm. Quantification analysis was 
done by the standardization of sodium sulfite. According 
to previous research,15 we set up 7 sets of standard sam
ples with different concentrations of sulfite, and measured 
their peak areas respectively using HPLC, and then 
obtained the standard curve (Figure S1). The R2 of the 
standard curve is 0.9986, which proves that the determina
tion accuracy is excellent. Commercially available 
enzyme-linked immunosorbent assay kits were used to 
measure urine concentrations of neutrophil gelatinase- 
associated lipocalin (NGAL) (CSB-E09408h; Cusabio, 
Wuhan, China), tissue inhibitor of metalloproteinase-2 
(TIMP-2) (DTM200; R&D Systems, Minneapolis, MN, 
USA), and insulin-like growth factor-binding protein 7 
(IGFBP7) (ARG81498; arigo Biolaboratories, Shanghai, 
China). The assays were performed by technicians who 
were blinded to clinical data, and the supervising physi
cians were blinded to the biomarker test results.

Statistical Analysis
Continuous variables are presented as a median with 25th 
and 75th percentiles (interquartile range [IQR]), and cate
gorical variables are presented as percentages. Continuous 
data were compared between groups with the Student’s 
t-test or Mann–Whitney U-test, and categorical variables 
were compared with the chi-squared test or Fisher’s exact 
test. Receiver operator characteristic (ROC) curve analysis 
was performed to assess the predictive value of biomarkers 
for AKI during follow-up. The cutoff point was the value 
with the highest sensitivity and specificity. Clinical para
meters with p<0.10 in the univariate analyses were 
included in the multivariate logistic regression model. 
The calibration of the model was assessed with the 
Hosmer–Lemeshow test. Bootstrapping with repeated 
sampling was performed to confirm the stability of the 
model. We compared the predictive performance of the 
clinical risk model before and after adding different bio
markers by calculating the statistical significance of differ
ences between area under the ROC curve (AUC) values24 

which were defined as follows: 0.90–1.0, excellent; 0.80–
0.89, good; 0.70–0.79, useful; 0.60–0.69, poor; and 0.50–
0.59, not useful.25 Improvement in the predictive accuracy 

of the models was evaluated by calculating the relative 
integrated discrimination improvement (IDI) and net 
reclassification improvement (NRI).26 We also estimated 
the clinical utility and net benefit of the new predictive 
models by decision curve analysis (DCA),27 which identi
fies patients who are at risk of AKI based on the clinic 
prediction model with and without biomarkers. The x axis 
shows threshold values for AKI while the y axis represents 
the net benefit for the different threshold values of AKI; 
a higher net benefit is provided by prediction models that 
are farthest away from the slanted dashed gray line 
(assuming all adverse events) and horizontal black line 
(assuming no adverse event). For all analyses, statistical 
significance was taken as a 2-sided p value <0.05. 
Statistical analyses were performed using SPSS v25 
(SPSS Inc, Chicago, IL, USA), MedCalc v.16.4.3 
(MedCalc, Ostend, Belgium), and R 4.0.3 (R Project for 
Statistical Computing, Vienna, Austria).

Results
Subject Characteristics and Event Rates
We screened 282 subjects who were admitted to the ICU 
after major noncardiac surgery and typically had at least 1 
recognized risk factor for AKI. A total of 115 patients 
were excluded for the following reasons: age <18 years 
(n=1); developed AKI before ICU admission (n=56); CKD 
(n=28); operated by nephrectomy or kidney transplantation 
(n=20); not transferred to the ICU immediately after the 
operation (n=8); and invalid or missing test results (n=2). 
Thus, 167 subjects were ultimately included in the pro
spective cohort; their demographic information is shown 
in Table 1.

In total, 61 patients (36.5%) met the primary endpoint 
of new-onset AKI. Each AKI case was diagnosed based on 
elevated creatinine (34.4%), oliguria (41.0%), or both 
(24.6%). Of these cases, 57.4% (n=35) were stage I, 
32.8% (n=20) were stage II, and 9.8% (n=6) were stage 
III. The median (IQR) length of stay in the ICU was 2 
(2–4) days for patients with AKI and 6 (3–8) days for 
those without AKI (Table 2).

Predictive Performance of SO2 

Compared to Established AKI Biomarkers
Plasma SO2 was higher in patients with new-onset AKI 
(Table 3) and increased with AKI severity (Figure 1). 
Plasma SO2, urine NGAL, and [TIMP-2]·[IGFBP7] were 
associated with the incidence of AKI in the univariate 
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analysis (Table S1). Figure 2 shows the AUCs for 
plasma SO2 and established AKI biomarkers. Plasma 
SO2 had an AUC of 0.771 (95% confidence interval 
[CI]: 0.700–0.832, p<0.001) for predicting AKI, with 
an optimal cutoff value of 15.0 µmol/l. In contrast, 
NGAL and [TIMP-2]·[IGFBP7] showed lower perfor
mance in predicting AKI, with AUCs of 0.648 (95% 
CI: 0.570–0.720, p=0.001) and 0.655 (95% CI: 0.578–
0.727, p<0.001), respectively. The statistical significance 
of the differences between the AUCs of SO2 and AKI 
biomarkers was confirmed with the DeLong method 

(p=0.045 for plasma SO2 and NGAL; p=0.036 for 
plasma SO2 and [TIMP-2]·[IGFBP7]).

Predictive Superiority of Plasma SO2 

Over Other Biomarkers in the AKI Risk 
Model
In the univariate analysis, hypertension, estimated blood 
loss, baseline creatinine, SOFA score, and use of vasopres
sors were associated with the occurrence of AKI. Of these 
variables, hypertension, estimated blood loss, and baseline 

Table 1 Baseline Characteristics of Patients Stratified by New-Onset Acute Kidney Injury

Variables All Patients Non-AKI New-Onset AKI P value

N=167 N=106 N=61

Male n (%) 97 (58.1) 64 (60.4) 33 (54.1) 0.428

Age (years) 66 (57–74) 65 (56–72) 69 (59–78) 0.024
BMI (kg/m2) 24.0 (21.0–26.1) 23.7 (20.8–26.0) 24.7 (22.4–26.3) 0.053

Chronic comorbidities n (%)
Hypertension 98 (58.7) 53 (50.0) 45 (73.8) 0.003

Diabetes 46 (27.5) 25 (23.6) 21 (34.4) 0.131

Coronary heart disease 33 (19.8) 20 (18.9) 13 (21.3) 0.703
COPD/asthma 10 (6.0) 7 (6.6) 3 (4.9) 0.658

Chronic liver disease 8 (4.8) 7 (6.6) 1 (1.6) 0.148

Surgical specialty n (%)

General 127 (76.0) 86 (81.1) 41 (67.2) 0.042

Orthopedic 8 (4.8) 3 (2.8) 5 (8.2) 0.118
Thoracic 13 (7.8) 9 (8.5) 4 (6.6) 0.653

Gynecology 8 (4.8) 3 (2.8) 5 (8.2) 0.118

Others 11 (6.6) 5 (4.7) 6 (9.8) 0.199

ASA classification n (%)

1–2 46 (27.4) 32 (30.2) 14 (23.0) 0.313
3 101 (60.5) 67 (63.2) 34 (5.7) 0.342

4–5 20 (12.0) 7 (6.6) 13 (21.3) 0.010

Operation time (hours) 4.1 (2.3–7.2) 3.6 (2.3–6.3) 5.0 (2.6–7.9) 0.257

Estimated blood loss (mL) 200 (100–600) 100 (50–400) 200 (100–800) 0.010
Fluid balance in operation (mL/h) 505 (358–850) 478 (357–820) 521 (360–913) 0.492

APACHE II 13 (9–18) 12 (9–16) 16 (10–19) 0.064

SOFA 3 (1–5) 2 (1–4) 4 (1–5) 0.015
Sepsis n (%) 11 (6.6) 5 (4.7) 6 (9.8) 0.199

Lactate (mmol/L) 1.2 (0.9–1.9) 1.2 (0.9–1.6) 1.5 (1.0–2.2) 0.078

Mechanical ventilation n (%) 124 (74.3) 78 (73.6) 46 (75.4) 0.795
Use of vasopressors n (%) 70 (41.9) 36 (34.0) 34 (55.7) 0.006

Baseline creatinine (µmol/L) 59.1 (48.8–69.1) 57.3 (47.0–66.0) 64.5 (53.0–79.2) 0.009

Use of nephrotoxic drugs n (%) 17 (10.2) 10 (9.4) 7 (11.5) 0.674

Note: Continuous variables are presented as median and interquartile range. 
Abbreviations: AKI, acute kidney injury; BMI, body mass index; COPD, chronic obstructive pulmonary disease; ASA, American Society of Anesthesiologists; APACHE II, 
acute physiologic and chronic health evaluation II; SOFA, sequential organ failure assessment.
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creatinine were retained for the final model (Table S2). 
The calibration of the model was confirmed with the 
Hosmer–Lemeshow goodness-of-fit test (p>0.05). This 
clinical model predicted AKI with an AUC of 0.782 
(95% CI: 0.712–0.843, p<0.001).

The inclusion of SO2 significantly improved the predictive 
ability of the clinical model for AKI, supported by NRI [0.282 
(0.043–0.583), p=0.038] and IDI [0.145 (0.088–0.202), 
p<0.001] analyses and Delong’s test (p=0.013) (Table 4). In 
contrast, the model was not improved by including NGAL 
and [TIMP-2]·[IGFBP7]. In the multivariate logistic regres
sion analysis, the risk of AKI based on the clinical–plasma 
SO2 risk prediction model was 1/(1 + e−z), z=0.005 
+1.171×plasma SO2+3.256×hypertension+1.001×estimated 
blood loss. The optimal cutoff probability was 0.395; patients 
with a probability higher than this value were at risk of 
developing AKI after major noncardiac surgery.

Figure 3 shows the decision curves of 4 models (clin
ical, clinical–SO2, clinical–NGAL, and clinical–[TIMP- 
2]·[IGFBP7]) for predicting AKI. The clinical–SO2 

model had the highest net benefit at 10%–60% of the 
probability threshold; that is, if a patient with a risk of 
AKI between 10% and 60% warranted further therapy 

(such as hemodynamic monitoring or preventive interven
tions), AKI screening using clinical–SO2 would have the 
most benefit for study participants after taking into account 
cost, adverse effects, and other negative factors in the 
screening tests. Although the net benefit of the 4 models 
tended to be similar with increasing probability threshold, 
they diverged significantly at low probability threshold.

Sensitivity Analysis
As SO2 is produced by neutrophils, the risk prediction analy
sis was repeated after excluding patients with white blood 
count <4*109/l (n=7). The predictive value of SO2 was 
enhanced when it was incorporated into the model with clin
ical variables (AUC=0.780 and 0.855, respectively; p<0.001).

Discussion
This is the first study to investigate the predictive utility of 
endogenous SO2 for AKI in critically ill patients. We found 
that plasma concentration of SO2 was significantly higher in 
patients who developed AKI after major noncardiac surgery 
than in those who did not, and was independently associated 
with the risk of AKI. Our results are novel because they 
show the plasma SO2 profile of critically ill patients and 

Table 3 Levels of Plasma SO2 and Urine Biomarkers in New-Onset AKI and Non-AKI Patients

Variables All Patients Non- AKI New Onset AKI P value

N=167 N=106 N=61

Plasma SO2 (µmol/l) 11.9 (6.9–15.6) 8.9 (3.4–14.2) 15.5 (11.9–18.9) <0.001

Urine NGAL (ng/mL) 23.4 (13.0–60.7) 18.0 (12.4–37.4) 45.7 (15.5–87.8) 0.002
Urine TIMP-2 (ng/mL) 3.3 (2.2–4.5) 3.1 (2.2–4.2) 3.6 (2.5–4.9) 0.024

Urine IGFBP7 (ng/mL) 86.1 (70.0–106.0) 82.4 (65.7–97.2) 99.0 (82.8–115.5) 0.001

[TIMP-2]·[IGFBP7] ((ng/mL)2/1000) 0.33 (0.2–0.4) 0.3 (0.2–0.4) 0.4 (0.3–0.5) 0.001

Note: Continuous variables are presented as median and interquartile range. 
Abbreviations: SO2, Sulfur dioxide; NGAL, neutrophil gelatinase-associated lipocalin; TIMP-2, tissue inhibitor of metalloproteinases-2; IGFBP7, insulin-like growth factor- 
binding protein 7.

Table 2 Outcomes Between Patients with and without New-Onset AKI

Variables All Patients Non-AKI New Onset AKI P value

N=167 N=106 N=61

MV (hours) 14.8 (4.0–37.4) 14.0 (3.5–34.0) 17.6 (10.6–46) 0.040

LOS in ICU (days) 3 (2–6) 2 (2–4) 6 (3–8) <0.001
LOS in hospital (days) 20 (13–30) 19 (13–30) 20 (14–31) 0.656

ICU mortality 3 (1.8) 0 (0) 3 (4.9) 0.021

Hospital mortality 4 (2.4) 0 (0) 4 (6.6) 0.008

Note: Continuous variables are presented as median and interquartile range. 
Abbreviations: MV, mechanical ventilation; LOS, length of stay; ICU, intensive care unit.
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demonstrate its predictive capacity for AKI, which was 
superior to that of urine NGAL and [TIMP-2]·[IGFBP7] 
and enhanced that of a conventional clinical model, as 
supported by IDI and NRI analyses and DCA.

AKI is a common postoperative complication that is 
independently associated with poor prognosis in critically 
ill patients who have undergone surgery.28 However, early 
identification of high-risk patients can lead to initiation of 
preventive measures (eg, avoiding nephrotoxins, volume 
management, and individualized hemodynamic 
resuscitation)29,30 before renal damage occurs, which can 
reduce mortality and improve clinical outcomes. The pre
dictive ability of plasma SO2 was compared to that of 
other AKI biomarkers. The most widely used biomarkers 
are TIMP-2 and IGFBP7, which are expressed in tubular 
cells in response to DNA damage and are markers for G1 
arrest.31,32 Urine [TIMP-2]·[IGFBP7] showed excellent 
ability to predict AKI in the SAPPHIRE and TOPAZ 
trials;22,33 however, this has not been validated in different 
populations, which is important as AKI can be caused by 
different factors.9 NGAL, the most extensively studied 
AKI biomarker, is expressed in many tissues and the 
level in urine is elevated as early as 3 h after tubular 
injury.34–36 However, NGAL expression lacks specificity 
as a biomarker because it increases with age and infection 
and is higher in females.37 In the present study, both 
[TIMP-2]·[IGFBP7] and NGAL showed limit predictive 
value for AKI, possibly because in our cohort of post
operative patients, only a minority had sepsis; meanwhile, 
AKI-induced elevation in urinary TIMP-2/IGFBP7 level is 

Figure 1 Discrimination of plasma SO2 between non-AKI and AKI of different severities. ***Comparison between non-AKI and AKI of different severities (p<0.001). 
Abbreviations: AKI, acute kidney injury

Figure 2 Predictive value of plasma SO2 and urine biomarkers for new-onset AKI. 
Abbreviations: AKI, acute kidney injury; SO2, Sulfur dioxide; NGAL, neutrophil 
gelatinase-associated lipocalin; TIMP-2, tissue inhibitor of metalloproteinases-2; 
IGFBP7, insulin-like growth factor-binding protein 7.
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associated with increased kidney filtration, which is more 
commonly associated with sepsis than with hemorrhage.38 

Our multivariate logistic regression analysis suggested that 
estimated blood loss but not sepsis was a risk factor for 
new-onset AKI; thus, AKI in our cohort was mostly 
caused by ischemia, which is expected to affect TIMP-2 
and GFBP7 levels. The upregulation of NGAL in AKI is 
positively correlated with the severity of kidney injury;34 

however, most AKI patients in our cohort had only mild 
injury and therefore, the increase in NGAL expression was 
relatively insignificant. In our study, plasma SO2 showed 
better predictive performance than urine [TIMP- 
2]·[IGFBP7] and NGAL for the development of AKI in 
postoperative critically ill patients.

SO2 has recently been identified as a gasotransmitter in 
the cardiovascular system. Previously studies reported 
endogenous SO2 synthesis pathways in the heart, stomach, 
lung, kidney, spleen, liver, and retina in mammals that play 
an important role in systemic homeostasis12 SO2 was 
identified as a key regulator of inflammation in the patho
genesis of cardiovascular, ophthalmologic, and neurologic 
diseases39–41 that acts by attenuating tumor necrosis factor 
(TNF)-α-induced inhibitor of nuclear factor (NF)-κB 
(IκBα) phosphorylation and degradation and NF-κB p65 
phosphorylation.42,43 Elevated levels of endogenous SO2 

were detected in patients with acute early edge infection 
and postural tachycardia syndrome, suggesting that it is an 
early and sensitive indicator of inflammation.19,44 In the 
pathophysiology of AKI, inflammation induces endothelial 
and tubular cell injury;45 we therefore speculated that SO2 

could be a biomarker of AKI, although the plasma level of 
SO2 in critical care patients and its relationship to AKI has 
not been previously reported. In the present study, we 
firstly revealed the existence of the plasma endogenous 
SO2 in critical ill patients and the elevation of SO2 demon
strated a good predictive performance in detecting new- 
onset AKI. Studies on AKI based on predictive 
analytics46–49 have used only conventional biomarkers or 
clinical variables, the novelty of our study is not only 
demonstrate a promising biomarker but also contribute to 
the pathophysiologic mechanisms of AKI.

Our study had some limitations. Firstly, it was a single- 
center study involving noncardiac postoperative patients, 
which limits the external validity of our findings. 

Table 4 Comparison of the ROC Curves, NRI and IDI of 
Combination vs Clinic Models in Predicting AKI

DeLong NRI p for 
NRI

IDI p for 
IDI

Clinic- SO2 vs 

Clinic

0.014 0.282 0.039 0.145 <0.001

Clinic-NGAL vs 

Clinic

0.266 0.219 0.065 0.060 0.004

Clinic-[TIMP- 
2]·[IGFBP7] vs 

Clinic

0.158 0.066 0.510 0.025 0.035

Abbreviations: ROC, receiver operator characteristic; NRI, net reclassification 
improvement; IDI, integrated discrimination improvement; SO2, Sulfur dioxide; 
NGAL, neutrophil gelatinase-associated lipocalin; TIMP-2, tissue inhibitor of metal
loproteinases-2; IGFBP7, insulin-like growth factor-binding protein 7.

Figure 3 Decision curve for prediction of new-onset AKI using different prediction models. 
Abbreviations: AKI, acute kidney injury; SO2, Sulfur dioxide; NGAL, neutrophil gelatinase-associated lipocalin; TIMP-2, tissue inhibitor of metalloproteinases-2; IGFBP7, 
insulin-like growth factor-binding protein 7.
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Secondly, we did not conduct a sample size analysis 
because of the absence of relevant data. Thirdly, we did 
not have a validation cohort and as the predictive model 
was evaluated in the same cohort as that used for model 
training, the possibility of overfitting cannot be excluded. 
Finally, we did not analyze time-dependent variables or 
include dynamic predictions of AKI after the operation, 
which should be addressed in future studies.

Conclusion
In summary, plasma SO2 level was significantly higher in 
patients who developed new-onset AKI within 72 h of ICU 
admission after major noncardiac surgery than in those who 
did not develop AKI. Additionally, plasma SO2 was a better 
predictor of AKI in our cohort than established AKI bio
markers such as urine [TIMP-2]·[IGFBP7] and NGAL. The 
predictive ability of SO2 was enhanced in combination with 
clinical variables. These findings provide a basis for further 
investigations on the role of SO2 in the pathogenesis of AKI 
in critically ill patients.

Abbreviations
SO2, Sulfur dioxide; AKI, acute kidney injury; NGAL, 
neutrophil gelatinase-associated lipocalin; TIMP-2, tissue 
inhibitor of metalloproteinases-2; IGFBP7, insulin-like 
growth factor-binding protein 7; ROC, receiver operator 
characteristic; DCA, decision curve analysis; IDI, inte
grated discrimination improvement; NRI, net reclassifica
tion improvement; AUC, area under the receiver operating 
characteristic curve; CI, confidence interval; CKD, chronic 
kidney disease; ICU, intensive care unit; KDIGO, Kidney 
Disease: Improving Global Outcomes; eGFR, estimated 
glomerular filtration rate; MDRD, Modification of Diet in 
Renal Disease; CRF, case report forms; APACHE II, acute 
physiology and chronic health evaluation; SOFA, sequen
tial organ failure assessment. HPLC, high-performance 
liquid chromatography analysis.
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