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+is paper presents a differential equationmodel which describes a possible transmission route for Q fever dynamics in cattle herds.
+e model seeks to ascertain epidemiological and theoretical inferences in understanding how to avert an outbreak of Q fever in
dairy cattle herds (livestock). To prove the stability of the model’s equilibria, we use a matrix-theoretic method and a Lyapunov
function which establishes the local and global asymptotic behaviour of the model. We introduce time-dependent vaccination,
environmental hygiene, and culling and then solve for optimal strategies. +e optimal control strategies are necessary management
practices that may increase animal health in a Coxiella burnetii-induced environment and may also reduce the transmission of the
disease from livestock into the human population. +e sensitivity analysis presents the relative importance of the various generic
parameters in the model. We hope that the description of the results and the optimality trajectories provides some guidelines for
animal owners and veterinary officers on how to effectively minimize the bacteria and control cost before/during an outbreak.

1. Introduction

Q fever is a bacterial disease which is caused byCoxiella burnetii
(C. burnetii) [1, 2]. Q fever is a potential biological warfare agent
being very infectious and very durable in the environment as
well as capable of windborne spread [3]. C. burnetii affects a
wide range of animals and also causes illness in humans [1, 2].
+e bacteria are mostly found in farm animals such as goats,
sheep, and cattle, but can also be found in cats, dogs, rodents,
birds, and other wildlife [4, 5]. Coxiella burnetii in ruminants
result in abortion, stillbirth, mastitis, infertility, premature de-
livery, and weak offspring [6–8]. Other clinical signs in animals
may include, fever, mild coughing, anorexia, and rhinitis [9].
+e bacteria are shed from an infected animal into the envi-
ronment through urine, faeces, milk, and vaginal fluids, but
most commonly, the bacterium is in the amniotic fluids and the
placenta discharge during abortion or parturition of an infected
animal [5]. Q fever is noted as the second most commonly
reported laboratory infection with several recorded outbreaks
involving 15 or more persons [3].+e disease dynamics in both

animals and humans start primarily through inhalation of
contaminated dust, contact with placenta discharge during an
abortion, parturition of an infected animal, drinking unpas-
teurised infected milk, ingestion meat containing Coxiella
burnetii, or contact with contaminated wool [3, 5, 10, 11].
Outbreaks typically occur following birth or abortion where the
environment becomes contaminated with birthing fluids of an
infected animal [3].+e bacteria contaminate dust and then are
spread by the wind for long distances [3].

Q fever is a reemerging zoonosis in most parts of Europe,
which has seen a sharp rise in recent years, especially in the
Netherlands with a large number of human cases, attributed to
livestock [12–14]. An outbreak of Q fever in the Netherlands
between 2007 and 2010 resulted in about 4000 reported human
cases, and efforts to end the epidemic resulted in the culling of
more than 50,000 small ruminants and a temporary ban on
breeding of animals [10]. A survey indicates that 82% of cows in
some California dairies were seropositive, as well as 78% of
coyotes, 55% of foxes, 53% of brush rabbits, and 22% of deer in
Northern California [9]. Australia meat industry makes about
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$1 million losses annually as a result of Q fever [15]. Geo-
graphically, Q fever infection in animals has been detected in
most countries, except, New Zealand, Iceland, French Poly-
nesia, and Norway [3, 10].

In recent time, Q fever has received an increase in
publicity on the potential source of transmission and pos-
sible preventative measures in both livestock and humans
(see, for example, [11, 16] and the references therein). +e
research by De Rooij et al. [17] suggested that during any
future epidemics, attention should be placed on a rapid
source of identification, quantification of emission, accurate
data collection, and smooth data exchange amongst relevant
actors to enable effective risk assessment and risk man-
agement. Mori and Roest [18] pointed out that in achieving
an effective control and management, there should be col-
lective expertise from other scientific disciplines and
stakeholder so that the expectations of farmers and the wider
community can be met on the spread of the disease.
Courcoul et al. [19] used the Bayesian approach to obtain key
epidemiological parameters from field data and suggested
that the values of the parameters obtained can be used to
provide information for calibrating simulation models to
assess control strategies for C. burnetii. Courcoul et al. [20]
further proposed a model to assess the effectiveness of
vaccination in dairy cattle and suggested that their model
should be modified to simulate various control strategies
such as environmental and hygienic measures.

In this sense, our goal is to use the parameter values
presented in [19, 20] and some assumptions to study the
impact of vaccination, environmental hygiene (cleaning/
burying of placenta discharge after birth or abortion), and
culling/isolation using ordinary differential equation model,
sensitivity analysis, and optimal control theory. +us, we
systematically analysed the environmental transmission of the
disease and then obtained mathematical and epidemiological
properties, such as basic reproduction number, equilibrium
points, local and global stability analysis, sensitivity analysis,
and optimality conditions. +e optimal control introduced is
to obtain optimal trajectories that depict the most effective
control measures and also account for the costs involved.
Optimal control is a useful mathematical tool which has been
recently used to determine optimal strategies for other in-
fectious diseases, although not for Q fever.

+e rest of the paper is arranged as follows: Section 2
presents a vaccination-induced model and mathematical
analysis, which establishes the stability of the proposed
model; in Section 3, we study the local and global sensitivity
analysis of the model’s parameters; in Section 4, we set up an
optimal control problem; finally, in Section 5, we draw
conclusions from this paper and assess what new insights
this work gives to the body of knowledge on Q fever
transmission dynamics and the way forward.

2. Basic Model for Indirect Transmission

+e model is divided into susceptible S(t), asymptomatic
(expose) A(t), vaccinated V(t), and symptomatic I(t) cattle,
respectively, with an assumed bacteria- (C. burnetii-) in-
duced environment B(t), where t represents time.+e rate at

which new cattle enter the susceptible population is denoted
as Λ, μ is the constant rate of death, and thus 1/μ is the
average lifetime. +e asymptomatic cattle become symp-
tomatic at a constant rate α, and so 1/α is the average
asymptomatic period.+e susceptible cattle get vaccinated at
the rate ], θ is the rate at which vaccinated cattle lose im-
munity and regain susceptibility. +e symptomatic cattle are
affected by an additional exit which may serve as a control
measure at a constant rate c (culling/isolation rate). +e rate
of natural decay of the bacteria from the environment is
denoted by δ and ε represents the rate of environmental
hygiene, thus cleaning/burying of placenta discharge after
birth or abortion. Asymptomatic cattle who develop tem-
poral resistance to the bacteria become susceptible again at
the rate ρ, if ρ � 0 means no temporal resistance to the
bacteria, and ρ � 1 means 100% resistant to the bacteria
(thus I � 0), and hence throughout this paper, we assume
0≤ ρ< 1. We assume a mass action for the transmission of
the disease, and thus susceptible cattle become asymp-
tomatic at a proportional rate βS, where β is the effective rate
of contracting the bacteria through indirect means (thus
environmental transmission rate through inhaling con-
taminated dust/through grazing). +e rate of inflow of the
bacteria into the environment by both asymptomatic and
symptomatic cattle is η (thus an assumed shedding rate).
Here, the total cattle population for the vaccination-induced
model is denoted as N � S + V + A + I. +e following as-
sumptions govern the vaccination-induced model:

(i) +e parameters Λ, β, η, α, ], θ, ρ, μ, c, ε, δ are all
positive, and thus (Λ, μ, η, α, δ, β)> 0 and (c, ρ, ε,
θ, ])≥ 0

(ii) Newly purchased or new birth goes into the sus-
ceptible class only

(iii) No permanent recovery
(iv) A successfully vaccinated animal stays immune for a

period of time

Figure 1 depicts the compartmental diagrams of the
disease in a community with control measures; model (1)
gives the dynamical nature of the individual compartments
with respect to time.

2.1. Basic Model and Analysis.

dS

dt
� Λ − βBS − (μ + ])S + θV + ρA,

dV

dt
� ]S − (θ + μ)V,

dA

dt
� βBS − (μ + α + ρ)A,

dI

dt
� αA − (c + μ)I,

dB

dt
� η(A + I) − (ε + δ)B,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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with initial conditions

S(0) � S0 > 0,

V(0) � V0 > 0,

A(0) � A0 ≥ 0,

I(0) � I0 ≥ 0,

B(0) � B0 ≥ 0,

(2)

and total differential population

dN

dt
� Λ − μN − cI,

dB

dt
� η(A + I) − (ε + δ)B.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

2.2. Positivity and Feasible Region

Lemma 1. For any nonnegative initial data,

S(0) � S0 > 0,

V(0) � V0 > 0,

A(0) � A0 > 0,

I(0) � I0 > 0,

B(0) � B0 > 0,

(4)

model (1) has a unique global solution for all t≥ 0.

Lemma 2. From the initial conditions and for epidemio-
logical meaningfulness, we assume that all parameters are
positive. Hence, the proposed model (1) will then be analysed
in a feasible region given as

Ω � (S, V, A, I, B) ∈R5
+

􏼌􏼌􏼌􏼌 N(t)≤
Λ
μ

, B(t)≤
ηΛ

(ε + δ)μ
􏼨 􏼩.

(5)

Now, we need to show that the region Ω is positively
invariant, to support the assertion that the model is epi-
demiologically useful and that all its state variables are
nonnegative as time increases and stays in Ω.

Proof. Let X � (S, V, A, I, B)T where T denotes transpo-
sition, also if we replace βB with M, then model (1) can be
written as (dX/dt) � DX + Y, where

D �

− (M + μ + ]) θ ρ 0 0

] − (θ + μ) 0 0 0

M 0 − (μ + α + ρ) 0 0

0 0 α − (c + μ) 0

0 0 η η − (ε + δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Y �

Λ

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

Now, from the second equation in model (1), we have
dV

dt
� ]S − (θ + μ)V, (7)

applying the integration factor method and change of
variables, we have

V(t) � V(0)e
− (θ+μ)t

+ e
− (θ+μ)t]􏽚

t

0
S(p)e

(θ+μ)pdp

� e
− (θ+μ)t

V(0) + ]􏽚
t

0
S(p)e

(θ+μ)pdp􏼢 􏼣.

(8)

From the third equation of model (1), we also obtain

A(t) � e
− (μ+α+ρ)t

A(0) + β􏽚
t

0
B(p)S(p)e

(μ+α+ρ)pdp􏼢 􏼣.

(9)

It follows from standard property that (dV/dt)|t�t0
≥ 0,

(dA/dt)|t�t0
≥ 0, and(dS/dt)|t�t0

≥ 0, provided S(t0) � 0, with
similar properties being valid for I(t), B(t), which ensures
that the state variable remains positive during the entire
scope of the study (see [21] and Appendix A of [22]). Based
on this, we see that matrixD has all its off-diagonal entries to
be nonnegative and that matrix Y≥ 0, which proves the
properties of Metzler matrix [23]. +erefore, it implies that

Environment

Coxiella
B

λS

Contribution
Change in state

(ε + δ)B

β

η

μS

μV

μA

μI

ρA

A α I

cIθV

V

νV

Λ S

Figure 1: A flowchart of Q fever transmission dynamics within
dairy cattle herds. +e light blue box � susceptible cattle (S); red
box = asymptomatic cattle (A); green box � symptomatic cattle (I);
white box � vaccinated cattle (V); the presence of Coxiella burnetii
in the environment (B) is encircled in blue.
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model (1) is positively invariant in R5
+. Finally, using

equation (3), it can be shown that all solution sets of model
(1) remain in the feasible region Ω, with the notation that
0<A + I≤N and S + A + I + V � N. Hence, the proposed
model is considered to be epidemiologically meaningful
(mathematically well posed) and it is sufficient to say that all
solutions of the Q fever model with initial conditions remain
in the feasible region Ω. □

2.3. Equilibrium Points and Basic Reproduction Number.
+e equilibrium points are the constant solutions to the
differential equations in model (1), and these equilibrium
points and the basic reproduction number play an important
role in the long-term behaviour of the solution to the epi-
demiological model (1). +e equilibrium points of model (1)
are obtained by setting the right-hand side of model (1) to
zero, which gives

Λ − βBS − (μ + ])S + θV + ρA � 0, (10)

]S − (θ + μ)V � 0, (11)

βBS − (μ + α + ρ)A � 0, (12)

αA − (c + μ)I � 0, (13)

η(A + I) − (ε + δ)B � 0. (14)

+e two main equilibria considered here are the disease-
free equilibrium and endemic equilibrium. We obtained the
disease-free equilibrium by assuming that the disease-in-
duced states A � I � 0 and a free C. burnetii environment
and thus B � 0. +erefore, by solving for the nonzero state
variables in equations (10) and (11), a unique disease-free
equilibrium is obtained as follows:

E0 ≔ S
0
, V

0
, A

0
, I

0
, B

0
􏼐 􏼑 �

Λ(μ + θ)

μ(μ + ] + θ)
,
Λ]

μ(μ + ] + θ)
, 0, 0, 0􏼠 􏼡.

(15)

2.3.1. Basic Reproduction Numbers RC and R0. +e basic
reproduction number R0 is obtained by using the disease-
free equilibrium points in terms of the original parameters of
the model; epidemiologically, the reproduction number
informs us on the number of secondary infections produced
when a single infectious individual is introduced into a
completely susceptible population. Here, we define the basic
reproduction number as the number of secondary infections
produced in a completely susceptible cattle population when
the organism is released into the environment. Also, the
analytic nature of the basic reproduction number gives clues
on parameters in the model that contributes to the spread of
the disease. Hence, with the aid of the next-generation
matrix FV− 1 as introduced by [24, 25] and the disease-free
equilibrium (15), the epidemiological reproduction numbers
for model (1) are as follows:

RC �
βηΛ(θ + μ)(α + c + μ)

μ(μ + α + ρ)(θ + μ + ])(ε + δ)(c + μ)
, (16)

R0 �
βηΛ(α + μ)

μ2(μ + α + ρ)δ
, (17)

where equation (16) is called the control reproduction
number RC and equation (17) is the basic reproduction
number without controls R0 (thus c � 0, θ � 0, ] � 0,

ε � 0). From the basic reproduction numbers, it is evidential
that there exists a linear relationship between the rate of
environmental transmission β and shedding rate η, and
hence, this shows that an increase in bacterial load in the
environment may have a corresponding increase in the
transmission process. +is assertion has been numerically
varied using Figure 2(b) in Section 3.2.1.

2.3.2. Endemic Equilibrium Point. Now, taking S, V, A, I,

B> 0 in the feasible set Ω, and using equations (10)–(14)
together with (16), we obtain the following endemic equi-
librium point E∗ ≔ (S∗, V∗, A∗, I∗, B∗). +us

S
∗

�
(μ + α + ρ)(ε + δ)(c + μ)

βη(α + c + μ)
,

V
∗

�
S∗]

(θ + μ)
,

A
∗

�
RC − 1( 􏼁

βη(θ + μ)(μ + α)(α + c + μ)
,

I
∗

�
α RC − 1( 􏼁

βη(c + μ)(θ + μ)(μ + α)(α + c + μ)
,

B
∗

�
RC − 1( 􏼁

β(μ + c)(ε + δ)(θ + μ)(μ + α)
.

(18)

+e endemic equilibrium has a unique equilibrium point
if the vaccination-induced reproduction number is greater
than unity (RC > 1). In the next subsection, we investigate
the stability of the equilibrium points.

2.4. Stability Analysis. In this section, we focus on estab-
lishing the local and global stability of the model equilibria.
To obtain the local stability of the disease-free equilibrium,
we constructed a linearized Jacobian matrix J1, evaluated at
the disease-free equilibrium, which gives

J1 �

− (μ + α + ρ) 0
βΛ(θ + μ)

μ(θ + μ + ])

α − (c + μ) 0

η η − (ε + δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)
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where J1 � F − V, J1 is irreducible and nonnegative. +e
simple eigenvalue of J1 is denoted as s(J1) which is
obtained from the relation s(J1) � max Reλ: Reλ{

is the real part of eigenvalue of matrix J1}. +e following
equivalence holds:

RC > 1⟺ s J1( 􏼁> 0,

RC < 1⟺ s J1( 􏼁< 0, (see, Theorem 2 of [24] Section 3).

(20)

Using +eorem 2 of van den Driessche and Watmough
[24], we see that assumptions (A1) − (A4) are satisfied, and
also (A5) is satisfied if all the eigenvalues of matrix J|E0

have
negative real parts, and thus

J|E0
�

J1 0

J3 J4
􏼠 􏼡, (21)

where J4 � − F, and J4 �
− (μ + ]) θ

] (θ + μ)
􏼠 􏼡.

+e simple eigenvalue of J4 is s(J4) � max −{

(μ + ] + θ), − μ}. Hence, model (1) fully satisfies the as-
sumptions (A(1) − A(5)) of van den Driessche and Wat-
mough [24], and therefore, the disease-free equilibrium of
the Q fever model is locally asymptotically stable if RC < 1
and unstable if RC > 1. +e below theorem addresses the
global stability of the disease-free equilibrium.

Theorem 1. If RC ≤ 1, then the disease-free equilibrium of
model (1) is globally asymptotically stable.

Proof. Applying +eorem 2.1 of the matrix-theoretic
method in [26], the global stability of the disease-free
equilibrium (E0) can be established by constructing a
Lyapunov function Φ � wTV− 1x, since V− 1F is reducible
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Figure 2: (a) +e scatter diagrams for some selected parameters in RC (scatter plots of β,Λ, η, ρ, α, θ, μ, and ] in RC). (b) Perfect rank
relations of the parameters in RC (Tornado plot of parameters in RC), (c) +e coupling effect of both vaccination and environmental
hygiene on RC (3D plot of ε and v RC).
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(the third column is the only nonzero column), wT is the left
Perron eigenvector of the matrix V− 1F, and x � (A, I, B)T is
the disease-induced classes. Algebraic operation of V− 1F

gives

V
− 1

F �

0 0
βS0

(μ + α + ρ)

0 0
αβS0

(μ + α + ρ)(c + μ)

0 0
βηS0(α + c + μ)

(μ + α + ρ)(c + μ)(ε + δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where S0 � Λ(μ + θ)/μ(μ + ] + θ). +erefore, by +eorem
5.1 of [26], the left Perron eigenvector wT of V− 1F for the
largest eigenvalue is defined as

0, 0, w3( 􏼁V
− 1

F � RC 0, 0, w3( 􏼁. (23)

+is gives

RCw3 � w3
βηS0(α + c + μ)

(μ + α + ρ)(c + μ)(ε + δ)
, (24)

which implies that w3 � 1; therefore, wT � (0, 0, 1). Now
simplifying Φ � wTV− 1x yields

Φ �
η(α + c + μ)A + η(μ + α + ρ)I +(μ + α + ρ)(c + μ)B

(μ + α + ρ)(c + μ)(ε + δ)
,

�
RC

βS0
A +

(μ + α + ρ)

(α + c + μ)
􏼠 􏼡I +

(μ + α + ρ)(c + μ)

η(α + c + μ)
B􏼢 􏼣.

(25)

Using [26], the derivative of Φ along the solution of
model (1) is illustrated as follows:

dΦ
dt

� RC − 1( 􏼁w
T
x − w

T
V

− 1
f(x, S), (26)

where f(x, S) ≔ (F − V)x − F(x, S) + V(x, S). +erefore,
after some algebra, we have

f(x, S) �

βB S0 − S( 􏼁

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, for S

0 ≥ S. (27)

Now using equation (26) and some algebraic simplifi-
cation leads to

dΦ
dt

� RC − 1( 􏼁B −
RC

S0
B S

0
− S􏼐 􏼑. (28)

+erefore, (dΦ/dt)≤ 0 provided RC ≤ 1 and S0 ≥ S.
Furthermore, (dΦ/dt)≤ 0 implies thatRC � 1 and B � 0 or
S � S0. It can be shown that the only invariant set where
B � 0 or S � S0 is a singleton of the set S0, 0, 0, 0􏼈 􏼉. Since the
four state variables used in constructing the Lyapunov
functional lead to global stability, it then means that

V(t)⟶ V0 as t⟶∞. Hence, by [27] (LaSalle’s invari-
ance principle), the disease-free equilibrium for the vacci-
nation model is globally asymptotically stable. +e
ramification of this global stability in the presence of vac-
cination implies that no matter how many initial asymp-
tomatic and symptomatic cattle in the population, the
disease cannot be established (persist) and eventually dies
out. It also indicates that no matter how many initial bac-
terial loads in the environment, the disease will die out from
the population in the long round. □

2.4.1. Global Stability of Endemic Equilibrium. +e nature of
the endemic equilibrium E∗ indicates that for RC > 1, then
there exists a unique endemic equilibrium resulting in an
unstable disease-free equilibrium. To establish the global
stability of E∗, here we explore a special case (simpler case)
of themodel (1), where ρ � 0. LetΩ0 � (S, V,{ A, I) ∈ Ω: A �

I � 0} be the stable manifold of E0. +erefore, we claim the
following result.

Theorem 2. <e unique endemic equilibrium of the model
(1) is globally asymptotically stable in Ω/Ω0 wheneverRC > 1
and ρ � 0.

Proof. At the endemic equilibrium state of model (1) with
ρ � 0, the following equalities

Λ − βB
∗
S
∗

− (μ + ])S
∗

+ θV
∗

� 0, (29)

]S
∗

− (θ + μ)V
∗

� 0, (30)

βB
∗
S
∗

− (μ + α)A
∗

� 0, (31)

αA
∗

− (c + μ)I
∗

� 0, (32)

η A
∗

+ I
∗

( 􏼁 − (ε + δ)B
∗

� 0, (33)

hold, which further leads to

(μ + ]) �
Λ − βB∗S∗ + θV∗

S∗
,

(θ + μ) �
]S∗

V∗
,

(μ + α) �
βB∗S∗

A∗
,

(c + μ) �
αA∗

I∗
,

(ε + δ) �
η A∗ + I∗( )

B∗
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Substituting equation (34) into model (1) result in model
(35), in which its stability is the same as model (1):
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dS

dt
� S
Λ
S∗

S∗

S
− 1􏼠 􏼡 +

θV∗

S∗
VS∗

V∗S
− 1􏼠 􏼡 − βB

∗ B

B∗
− 1􏼒 􏼓􏼢 􏼣,

dV

dt
�
]S∗V

V∗
SV∗

VS∗
− 1􏼠 􏼡,

dA

dt
�
βB∗S∗A

A∗
BA∗S

B∗S∗A
− 1􏼠 􏼡,

dI

dt
�
αA∗I

I∗
AI∗

IA∗
− 1􏼠 􏼡,

dB

dt
�
ηB

B∗
A
∗ B∗A

A∗B
− 1􏼠 􏼡 + I

∗ IB∗

I∗B
− 1􏼠 􏼡􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Now, we define a Lyapunov function as

L1 � S − S
∗

+ S
∗ ln

S

S∗
􏼒 􏼓 + V − V

∗
+ V
∗ ln

V

V∗
􏼒 􏼓

+ A − A
∗

+ A
∗ ln

A

A∗
􏼒 􏼓

+ k1 I − I
∗

+ I
∗ ln

I

I∗
􏼒 􏼓 + k2 B − B

∗
+ B
∗ ln

B

B∗
􏼒 􏼓,

(36)

where k1 and k2 are positive constants to be determined, and
thus k1 > 0, k2 > 0. +e time derivative of the Lyapunov
function along with the solution of model (35) yields the
following equation:

dL1

dt
� 1 −

S∗

S
􏼠 􏼡S

Λ
S∗

S∗

S
− 1􏼠 􏼡 +

θV∗

S∗
VS∗

V∗S
− 1􏼠 􏼡􏼢

− βB
∗ B

B∗
− 1􏼒 􏼓􏼕

+ 1 −
V∗

V
􏼠 􏼡

]S∗V

V∗
SV∗

VS∗
− 1􏼠 􏼡 + 1 −

A∗

A
􏼠 􏼡

·
βB∗S∗A

A∗
BA∗S

B∗S∗A
− 1􏼠 􏼡

+ k1 1 −
I∗

I
􏼠 􏼡

αA∗I

I∗
AI∗

IA∗
− 1􏼠 􏼡 + k2 1 −

B∗

B
􏼠 􏼡

·
ηB

B∗
A
∗ B∗A

A∗B
− 1􏼠 􏼡 + I

∗ IB∗

I∗B
− 1􏼠 􏼡􏼢 􏼣.

(37)

Simplifying the above expression and rearranging
lead to

dL1

dt
� Λ S − S

∗
( 􏼁

1
S

−
1
S∗

􏼒 􏼓 + θ S − S
∗

( 􏼁
V

S
−

V∗

S∗
􏼠 􏼡

+ ] V − V
∗

( 􏼁
S

V
−

S∗

V∗
􏼠 􏼡

− S − S
∗

( 􏼁 βB
∗ B

B∗
− 1􏼒 􏼓􏼔 􏼕 + A − A

∗
( 􏼁

·
βB∗S∗

A∗
BA∗S

B∗S∗A
− 1􏼠 􏼡

+ k1 I − I
∗

( 􏼁
αA∗

I∗
AI∗

IA∗
− 1􏼠 􏼡 + k2 B − B

∗
( 􏼁

·
η

B∗
A
∗ B∗A

A∗B
− 1􏼠 􏼡 + I

∗ IB∗

I∗B
− 1􏼠 􏼡􏼢 􏼣.

(38)

We now let

L1 � Λ S − S
∗

( 􏼁
1
S

−
1
S∗

􏼒 􏼓 + θ S − S
∗

( 􏼁
V

S
−

V∗

S∗
􏼠 􏼡

+ ] V − V
∗

( 􏼁
S

V
−

S∗

V∗
􏼠 􏼡,

(39)

L2 � − S − S
∗

( 􏼁 βB
∗ B

B∗
− 1􏼒 􏼓􏼔 􏼕 + A − A

∗
( 􏼁

·
βB∗S∗

A∗
BA∗S

B∗S∗A
− 1􏼠 􏼡

+ k1 I − I
∗

( 􏼁
αA∗

I∗
AI∗

IA∗
− 1􏼠 􏼡 + k2 B − B

∗
( 􏼁

·
η

B∗
A
∗ B∗A

A∗B
− 1􏼠 􏼡 + I

∗ IB∗

I∗B
− 1􏼠 􏼡􏼢 􏼣.

(40)

Making Λ and ] the subject in equations (29) and (30),
respectively, and substituting into (39) with series of sim-
plification give

L1 � μS
∗ 2 −

S

S∗
−

S∗

S
􏼠 􏼡 + μV

∗ 3 −
S∗

S
−

SV∗

VS∗
−

V

V∗
􏼠 􏼡

+ θV
∗ 2 −

VS∗

SV∗
−

V∗S

S∗V
􏼠 􏼡.

(41)
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Further elaboration on L2 results in

L2 � k2η A
∗ 1 +

A

A∗
−

B

B∗
−

AB∗

BA∗
􏼠 􏼡􏼢

+ I
∗ 1 +

I

I∗
−

B

B∗
−

B∗I

BI∗
􏼠 􏼡􏼣

+ αk1A
∗ A

A∗
−

I

I∗
−

AI∗

IA∗
+ 1􏼢 􏼣

+ βB
∗
S
∗ B

B∗
−

A

A∗
+

S

S∗
−

BSA∗

B∗S∗A
􏼠 􏼡.

(42)

To obtain k1, k2, we make the following assertion by
equating the constant coefficients of the terms A/A∗, I/I∗
and B/B∗ in L2 to zero, thus

k2ηA
∗

+ αk1A
∗

− βB
∗
S
∗

� 0, (43)

k2ηI
∗

− αk1A
∗

� 0, (44)

βB
∗
S
∗

− k2η A
∗

+ I
∗

( 􏼁 � 0. (45)

Solving (44) and (45), we obtain k1 � βB∗S∗I∗/αA∗

(A∗ + I∗) and k2 � βB∗S∗/η(A∗ + I∗). Replacing k1, k2 into
(42) and simplifying yield

L2 �
βB∗S∗I∗

A∗ + I∗( )
2 +

A

A∗
−

B

B∗
−

B∗I

BI∗
−

AI∗

A∗I
􏼠 􏼡

+
βB∗S∗A∗

A∗ + I∗( )
1 +

A

A∗
−

B

B∗
−

B∗A

BA∗
􏼠 􏼡

+ βBS
∗ 1 +

B∗S

BS∗
−

B∗A

A∗B
−

SA∗

S∗A
􏼠 􏼡.

(46)

Hence, adding equations (41) and (46), we have

dL1

dt
� μS
∗ 2 −

S

S∗
−

S∗

S
􏼠 􏼡 + μV

∗ 3 −
S∗

S
−

SV∗

VS∗
−

V

V∗
􏼠 􏼡

+ θV
∗ 2 −

VS∗

SV∗
−

V∗S

S∗V
􏼠 􏼡

·
βB∗S∗I∗

A∗ + I∗( )
2 +

A

A∗
−

B

B∗
−

B∗I

BI∗
−

AI∗

A∗I
􏼠 􏼡

+
βB∗S∗A∗

A∗ + I∗( )
1 +

A

A∗
−

B

B∗
−

B∗A

BA∗
􏼠 􏼡

+ βBS
∗ 1 +

B∗S

BS∗
−

B∗A

A∗B
−

SA∗

S∗A
􏼠 􏼡,

(47)

dL1

dt
� μS
∗ 2 −

S

S∗
−

S∗

S
􏼠 􏼡 + μV

∗ 3 −
S∗

S
−

SV∗

VS∗
−

V

V∗
􏼠 􏼡

+ θV
∗ 2 −

VS∗

SV∗
−

V∗S

S∗V
􏼠 􏼡

·
βB∗S∗I∗

A∗ + I∗( )
D0 +

βB∗S∗A∗

A∗ + I∗( )
D1 + βBS

∗
D2,

(48)

where

D0 � 2 +
A

A∗
−

B

B∗
−

B∗I

BI∗
−

AI∗

A∗I
􏼠 􏼡,

D1 � 1 +
A

A∗
−

B

B∗
−

B∗A

BA∗
􏼠 􏼡,

D2 � 1 +
B∗S

BS∗
−

B∗A

A∗B
−

SA∗

S∗A
􏼠 􏼡.

(49)

+us, if D0 ≤ 0, D1 ≤ 0, D2 ≤ 0, and from the fact that
the arithmetic mean is greater than or equal to the geo-
metric mean, then it follows that (dL1/dt)≤ 0, provided the
coefficients μS∗, μV∗, θV∗, βB∗S∗I∗/(A∗ + I∗), βB∗S∗A∗/
(A∗ + I∗), βBS∗ are nonnegative. With the claim that

w(x) � x − 1 − ln(x), (50)

it leads to

D0 � w
A

A∗
􏼒 􏼓 − w

B

B∗
􏼒 􏼓 − w

B∗I

BI∗
􏼠 􏼡 − w

AI∗

A∗I
􏼠 􏼡,

D1 � w
A

A∗
􏼒 􏼓 − w

B

B∗
􏼒 􏼓 − w

B∗A

BA∗
􏼠 􏼡,

D2 � w
B∗S

BS∗
􏼠 􏼡 − w

B∗A

A∗B
􏼠 􏼡 − w

SA∗

S∗A
􏼠 􏼡.

(51)

To verify the above expression, the definition of w(x)

and properties of logarithms were used to simplify the ex-
pression on the right hand of Di, i � 0, 1, 2. +en applying
the proposition A1 of [28] gives

D0 ≤ − w
B

B∗
􏼒 􏼓 − w

B∗I

BI∗
􏼠 􏼡 − w

AI∗

A∗I
􏼠 􏼡≤ 0,

D1 ≤ − w
B

B∗
􏼒 􏼓 − w

B∗A

BA∗
􏼠 􏼡≤ 0,

D2 ≤ − w
B∗A

A∗B
􏼠 􏼡 − w

SA∗

S∗A
􏼠 􏼡≤ 0.

(52)

It is evidential that (dL1(S, V, A, I, B)/dt) � 0 only holds
when S � S∗, V � V∗, A � A∗, I � I∗, B � B∗ and that E∗ is
the only equilibrium state of model (1) on its line. +erefore,
by Lyapunov–LaSalle asymptotic stability theorem [27], the
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positive equilibrium state E∗ is globally asymptotically stable
in the positive region R5

+ whenever RC > 1 and ρ � 0. □

3. Sensitivity Analysis

Here, we apply the concept of sensitivity analysis to ascertain
the relative importance of each generic parameter in the
basic reproduction number and the disease-induced state
variables, E∗. Secondly, with parameter values from pub-
lished papers and some realistic assumptions, we obtain both
analytic and numerical values of the various parameters in
RC. +e analytic expressions obtained can be used to shed
some light on how to control the onset of the disease in
variant localities, if and only if the dynamics follow model
(1). Parameter values were obtained from [19, 20], which
were then converted into days; this is to enable us to see the
daily trajectories of the model. +e estimated parameters
were calculated based on the life expectancy of dairy cattle
and the natural decay rate of the bacteria from dust/soil
(which ranges from 120 to 150 days [9]), and finally, we used
the gestation period of cattle to denote the rate of new inflow
of susceptible cattle/recruited cattle. All parameters used are
given in Tables 1 and 2, respectively.

3.1. <e Impact of Transition Rate ρ on the Reproduction
Number. Taking the partial derivative of equation (17) with
respect to ρ gives the relative importance of the discon-
tinuation rate ρ (the feedback term) and thus the rate at
which asymptomatic cattle build antibiotics and reenter the
susceptible class:

zR0

zρ
� −
Λ(α + μ)βη

(α + μ + ρ)2δμ2
< 0. (53)

Hence, the basic reproduction number R0 without
culling, vaccination, and environmental hygiene is a de-
creasing factor of the parameter ρ as shown in Subsection
2.4.1. +is implies that the basic reproduction number de-
creases with increase in the value of ρ. Consequently, taking
the limit of R0 as ρ becomes large gives

lim
ρ⟶∞

R0 � 0. (54)

+is means that any attempt to increase ρ will result in
reducing the number of secondary infections, thereby
eradicating the disease in the absence of other control
measures, but a low rate of ρ will produce a high rate of
asymptomatic cattle which may require effective control
measures as shown in Section 4. From this, we infer that the
development of any daily antibody boosters for dairy cattle
(livestock) will help curtail the reproduction losses caused by
C. burnetii and other bacterial diseases.

3.2. Calculation of Sensitivity/Elasticity Indices.
Fundamentally, the onset of disease transmission is directly
associated with the basic/control reproduction number RC,
and the prevalence of the disease is associated with the
endemic equilibrium point E∗ [29]. +e sensitivity indices
for the state variables are calculated as follows:

ΥXi

pi
�

zXi

zpi

×
pi

Xi

, (55)

where Xi represent the equilibrium points at the endemic
state and pi are the corresponding parameters in Xi [30]. For
simplicity, the numerical values of the endemic state vari-
ables are shown in Table 2 without analytic expression due to
the complex nature of the analytic result. Similarly, the
sensitivity/elasticity indices of RC to the parameters in the
model are also defined as follows:

ΥRC

pi
�

zRC

zpi

×
pi

RC

, (56)

where the meaning of RC and pi remains unchanged.
+erefore

ΥRC

β � 1,

ΥRC

Λ � 1,

ΥRC

η � 1,

ΥRC

ρ � −
ρ

α + μ + ρ
,

ΥRC

α � −
α(c − ρ)

(α + c + μ)(α + μ + ρ)
,

ΥRC

] � −
]

μ + ] + θ
,

ΥRC

θ �
]θ

(μ + θ)(μ + ] + θ)
,

ΥRC

ε � −
ε

δ + ε
,

ΥRC

δ � −
δ

δ + ε
,

ΥRC

c � −
αc

(c + μ)(α + c + μ)
,

ΥRC

μ � − μ
1

α + μ + ρ
+

1
μ + ] + θ

+
1

c + μ
−

1
μ + θ

+
1
μ

−
1

α + c + μ
􏼢 􏼣.

(57)

Remark 1. ΥRC
α < 0 whenever c> ρ, this implies that an in-

crease in culling/isolation of symptomatic cattle from farms
during an outbreak will reduce the impact of α, thereby re-
ducing the number of secondary infections and bacterial load
in the environment as shown in Table 2. +is further suggests
that in choosing between culling and antibiotic booster during
an outbreak, it is prudent to focus on culling/isolation.

In Table 2, we obtain numerical values which indicate the
relative importance of parameters inRC and the state variables
at the endemic stage when other parameters are kept constant
(depicting the local sensitivity of parameters in model (1)). +e
result reveals that β, λ, η and θ influence the stability of the
disease and are also closely related. +us, a 1% increase in
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β, λ, η, and θ will have a corresponding percentage increase in
the basic reproduction number. Among the control measures
implemented, the elasticity index in Table 2 indicates that the
most efficient method in the infected classes will be vaccination
] and the most efficient method of reducing the bacteria from
the environment may be a good environmental hygiene ε. +e
total efficacy of these control measures will be shown in Section
4. From Table 2, it also shows that a 0.1 effort in keeping the
environment clean/burying of placenta discharge after birth or
abortion may result in a 2.70 reduction in bacterial load in the
affected herds’ environment and a corresponding reduction in
the number of asymptomatic and symptomatic by 1.78, re-
spectively. Interestingly, we notice that a 1% change in natural
deathmay reduce the reproduction number by 0.95, but natural
death cannot be used as a control measure; it, therefore, pre-
supposes that the disease could be established as long as cattle
live longer in an environment that is induced by the bacteria
when there are no control measures; hence, vaccinating cattle
and good environmental hygiene in farms will help mitigate the
intensity of the organism on farms. It is well noticing that the
analysis done so far represents the local sensitivity analysis of
parameters in the model, which shows a close relationship
between some of the parameters; hence, to see the global effect
of these parameters on themodel, we adopt the Latin hypercube
sampling (LHS) and partial rank correlation coefficient (PRCC)
which is demonstrated in the next Subsection 3.2.1.

3.2.1. Global Sensitivity Analysis. In carrying out the global
sensitivity analysis on the control reproduction number
RC, we use the analytic expression in equation (16) and the

range of values in Table 1. +e objective is to ascertain the
most influential parameters in RC and also give some
insightful ideas from the PRCC plot, by using a sample size
of 1000.

+e scatter plot in Figure 2(a) shows a positive relation
between RC and the parameters β,Λ, η, θ, α and a negative
relation between RC and the parameters ] and ρ. +e
positive relation indicates that a high rate of either of these
parameters β,Λ, η, θ, α will produce a high transmission rate
during an outbreak, while the negative relation for ] and ρ
indicates that an increase in parameter value of ] and ρ will
help reduce the severity of the disease-induced rate.
Figure 2(b) gives sharply defined simulation results of the
scatter plots in Figure 2(a) and that of the numerical signs in
Table 2, but we notice a reverse sign for α, which is as a result
of a decrease in the culling/isolation of symptomatic dairy
cattle, as indicated in Remark 1; therefore, as shown in
Figure 2(b) that, to have a positive impact of c in combi-
nation of other control measures so as to reduce α, c should
be greater than 0.12, and thus it is represented by the red line
as cvital. Figure 2(b) also indicates that the most influential
parameters that promote the disease spread are β, η, and α
(thus with low culling/isolation rate) and the most influ-
ential control parameter is ε (environmental hygiene).
+erefore, any measures to reduce the relative relevance of
β, η, and α (with an increase in culling/isolation rate) will
reduce the spreading rate of the bacteria in dairy cattle herds.
Figure 2(c) shows the saturation effect of vaccination and
environmental hygiene, and thus having RC < 1 and
], ε> 0.5 may lead to a Coxiella-free environment.

Table 1: Model parameter descriptions and values.

Parameter Description Range Baseline value Reference
β Environmental transmission rate (indirect) 0.0030–0.0943 0.0943 day− 1/cattle [19]
Λ Birth/recruitment rate 0.0034–0.0036 0.0036 day− 1 Estimated
η Proportion of bacteria shed through mucus/faeces filling the environment 0.0021–0.0400 0.0400 day− 1/cattle [19, 20]
ρ Transition rate from A to S 0.0774–0.1208 0.1000 day− 1 [19, 20]
α Transition rate A to I 0.0001–0.0117 0.0029 day− 1 [19, 20]
θ Loss of vaccine immunity 0.0027–2.0000 0.0027 day− 1 [20]
μ Natural death rate of cattle 0.0001–0.0002 0.0002 day− 1 Estimated
] Vaccination rate 0.1000–0.9000 unitless 0.1000 Assumed
ε Environmental hygiene 0.1000–0.9000 unitless 0.1000 Assumed
Δ Natural decay of bacteria from the dust/soil 0.0067–0.0083 0.0083 day− 1 Estimated
c Culling/mortality rate 0.0008–0.0286 0.0286 day− 1 [20]

Table 2:+e elasticity indices ofRC � 1.5193 and the relative change of A∗, I∗, and B∗ at the endemic equilibrium points, to the parameters
in the model.

Parameter Baseline value Elasticity index, RC A∗ I∗ B∗

β 0.0943 +1.0000 +1.9255 +1.9255 +1.9255
Λ 0.0036 +1.0000 +2.9255 +2.9255 +2.9255
η 20.0400 +1.0000 +1.9255 +1.9255 +2.9255
ρ 20.0097 − 0.7578 − 1.4592 − 1.4592 − 1.4592
α 10.0029 − 0.1351 − 1.1956 − 0.1956 − 1.1041
θ 10.0027 +0.9048 +1.7422 +1.7422 +1.7422
μ 10.0002 − 0.9492 − 1.8923 − 1.8992 − 1.8929
] 10.1000 − 0.9718 − 1.8713 − 1.8713 − 1.8713
ε 10.1000 − 0.9234 − 1.7779 − 1.7779 − 2.7013
δ 20.0083 − 0.0766 − 0.1476 − 0.1476 − 0.2242
c 0.0286 − 0.0908 − 0.1749 − 1.1680 − 0.2658
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4. Optimal Control Problem

Whenever the number of unknown parameters in a model is
larger than the number of state equations, then the model in
question usually allows for more than one solution. +e
optimization problem for such situations in continuous
models is known as an optimal control problem. Here, we
investigate the impact of time-variant controls: culling, vac-
cination, and environmental hygiene (cleaning/burying of
placenta discharge after birth or abortion). +is is to obtain
the best control measure in preventing an outbreak of the
disease in a situation where the cause of new infections is
solely environmental. +us, we seek to find optimal trajec-
tories that show the relative importance of applying vacci-
nation, culling, and environmental hygiene in controlling Q
fever in an endemic setting. To see the impact of these

controls, we modify model (1), thus setting ρ � 0 (no natural
resistance).+e objective function is to reduce the numbers of
asymptomatic cattle, symptomatic cattle, and bacterial load
through vaccination ], culling c, and environmental hygiene ε,
respectively, and the cost associated with the implementation
of the controls. +us u1(t) ∈ Uad is the percentage of sus-
ceptible and asymptomatic cattle who are vaccinated per unit
time, u2(t) ∈ Uad is the percentage of symptomatic cattle who
are culled per unit time, and u3 ∈ Uad is admissible measure
for keeping the environment clean. Here Uad � ui |􏼈

ui(t) are all Lebesguemeasurable and 0≤ ui(t)≤ umax, t ∈
[0, tf]}, where i � 1, 2, 3 and tf is the final time for running
the control measures. Now the objective function that
minimizes our desirable control problem is given as

J ui(t)( 􏼁 � min
ui,i�1,2,3

􏽚
tf

0
W1A(t) + W2I(t) + W3B(t) +

C1

2
u
2
1(t) +

C2

2
u
2
2(t) +

C3

2
u
2
3(t)􏼢 􏼣dt, (58)

subject to
dS(t)

dt
� Λ − 1 − u3(t)􏼂 􏼃βB(t)S(t) − μ + u1(t)( 􏼁S(t) + θV(t),

dV(t)

dt
� u1(t)S(t) − (θ + μ)V(t),

dA(t)

dt
� 1 − u3(t)􏼂 􏼃βB(t)S(t) − (μ + α)A(t),

dI(t)

dt
� αA(t) − u2(t) + μ( 􏼁I(t),

dB(t)

dt
� η(A(t) + I(t)) − u3(t) + δ( 􏼁B(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

with initial conditions

S(0) � S0 > 0,

V(0) � V0 > 0,

A(0) � A0 ≥ 0,

I(0) � I0 ≥ 0,

B(0) � B0 ≥ 0,

(60)

where [1 − u3(t)]β is the reduction in transmission due to
environmental hygiene, Wi, i � 1, 2, 3 are small positive
constant to keep balance in the size of S(t), A(t), I(t), and
B(t), respectively [31]. +e square term of the controls
reflects the nonlinearity in the cost of controls, and the
half-term minimizes the effect of applying the controls
[32]. +e positive constants C1, C2, C3 which are associated
with ui(t) are weight values such that 0<C1, C2 <N, and
0<C3 <B. +e relative weights given to the positive
constants associated with the control terms indicate
greater or lower importance placed on minimizing the cost

of a control measure [33]. Now to obtain the optimal
solutions, we defined a Lagrangian L for the control
problem, given as follows:

L S, A, I, B, u1, u2, u3( 􏼁 � W1A(t) + W2I(t) + W3B(t)

+
C1

2
u
2
1(t) +

C2

2
u
2
2(t) +

C3

2
u
2
3(t).

(61)

We now seek the minimal value of the Lagrangian
function. Hence, we obtain a Hamiltonian H for the control
problem using Pontryagin’s maximum principle:

H S, A, I, B, ui, λj, t􏼐 􏼑 � L + λ1(t)
dS(t)

dt
+ λ2(t)

dV(t)

dt

+ λ3(t)
dA(t)

dt
+ λ4(t)

dI(t)

dt
+ λ5(t)

dB(t)

dt
,

(62)
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where λj, j � 1, 2, 3, 4, 5 are the adjoint variables associated
with the states S, V, A, I, and B. Finally, taking the partial
derivatives of H with respect to the state variables and the
controls, we obtain the following relation for the adjoint and
the optimal controls:

dλ1
dt

� −
zH

zS
,

dλ2
dt

� −
zH

zV
,

dλ3
dt

� −
zH

zA
,

dλ4
dt

� −
zH

zI
,

dλ5
dt

� −
zH

zB
,

u
∗
1 �

zH

zu1
� 0,

u
∗
2 �

zH

zu2
� 0,

u
∗
3 �

zH

zu3
� 0,

(63)

with transversality conditions (or boundary conditions)
[31], λj(tf) � 0, j � 1, 2, 3, 4, 5. +erefore, the adjoint sys-
tem is given as

dλ1
dt

� λ1 μ + u1 − Bβ u3 − 1( 􏼁( 􏼁 − λ2u1 + Bβλ3 u3 − 1( 􏼁,

dλ2
dt

� λ2(μ + θ) − λ1θ,

dλ3
dt

� λ3(α + μ) − αλ4 − ηλ5 − W1,

dλ4
dt

� λ4 μ + u2( 􏼁 − W2 − ηλ5,

dλ5
dt

� λ5 δ + u3( 􏼁 − W3 − Sβλ1 u3 − 1( 􏼁 + Sβλ3 u3 − 1( 􏼁.

(64)

By the optimality conditions, we have
zH

zu1
≔ C1u1 − Sλ1 + Sλ2 � 0,

zH

zu2
≔ C2u2 − Iλ4 � 0,

zH

zu3
≔ C3u3 − Bλ5 + BSβλ1 − BSβλ3 � 0,

⟹ u
∗
1 �

Sλ1 − Sλ2
C1

,

u
∗
2 �

Iλ4
C2

,

u
∗
3 �

Bλ5 − BSβλ1 + BSβλ3
C3

.

(65)

Using the optimal solution in the control space [31], we
have

u
∗
1 �

0, if
S∗λ1 − S∗λ2

C1
≤ 0,

S∗λ1 − S∗λ2
C1

, if 0<
S∗λ1 − S∗λ2

C1
< 0.9,

0.9, if
S∗λ1 − S∗λ2

C1
≥ 0.9,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
∗
2 �

0, if
λ4I∗

C2
≤ 0,

λ4I∗

C2
, if 0<

λ4I∗

C2
< 1,

1, if
λ4I∗

C2
≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
∗
3 �

0, if
B∗λ5 − B∗S∗βλ1 + B∗S∗βλ3

C3
≤ 0,

B∗λ5 − B∗S∗βλ1 + B∗S∗βλ3
C3

, if 0<
B∗λ5 − B∗S∗βλ1 + B∗S∗βλ3

C3
< 0.8,

0.8, if
B∗λ5 − B∗S∗βλ1 + B∗S∗βλ3

C3
≥ 0.8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(66)
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+erefore, the compact notation (characterization) of
the admissible control is then written as

u
∗
1 � min max 0,

λ1 S∗ − B∗S∗β( 􏼁 − S∗λ2 + B∗S∗βλ3
C1

􏼠 􏼡, 0.9􏼨 􏼩,

u
∗
2 � min max 0,

λ4I∗

C2
􏼠 􏼡, 1􏼨 􏼩,

u
∗
3 � min max 0,

λ5B∗ − λ1βB∗S∗ + λ3βB∗S∗

C3
􏼠 􏼡, 0.8􏼨 􏼩.

(67)

+e control terms in the bound of 0.9 and 0.8 satisfy the
inability to vaccinate all susceptible cattle at a time and a 0.2
failure in eliminating all bacteria in a particular farm at a
given time, note that the control bounds are assumed for a
realistic illustrative purposes and may not be practically
practised, but the variation of these bounds will not narrow
the essence of the studies. Substituting (67) into (59), (62),
and (64), respectively, we obtain an optimality system with
the corresponding Hamiltonian system H∗ which is then
solved numerically to obtain optimal trajectories for our
dynamical system.

4.1. Optimal Control Trajectories. In order to obtain the
optimal trajectories for model (59), we employ the forward-
backward sweepmethod, as described in [34].We begin with
an initial guess for the controls. +e state equation (59) is
solved forward in time while the adjoint function (64) is
solved backward in time.+e controls are then updated for a
period of time until convergence is achieved. For better
numerical output, we firstly made use of the following initial
state values: S0 � 100, V0 � 2, A0 � 3, I0 � 1, B(0) � 0.0025
and the stated parameter values in Table 1. +e initial
bacterial load is assumed to be small, the reason being that
per the numerical simulations, the bacterial population
grows more andmore rapidly as depicted in Figures 3(f ) and
4(f), respectively, by the red line, hence, the need to start
with small initial values for the bacterial load so as to get a
suitable numerical output for that of the initial conditions
chosen for the animal population.+e corresponding weight
in the objective function (58) is taken to be W1 � 2, W2 �

4, W3 � 2, C1 � 1, C2 � 1, C3 � 0.2. +e figures below de-
pict the relative importance of finding optimal strategy/
strategies in controlling the disease spread in cattle (animal
population). Table 3 shows the total cost associated with the
objective function (58) after a simulation time of 100 days.
Secondly, we look at the control trajectories and the ac-
companying cost by changing the associated weights of
control, cost of control implantation, and initial state values
and thus W1 � 1, W2 � 1, W3 � 2, C1 � 1, C2 � 1, C3 � 0.5
and S0 � 1000, V0 � 10, A0 � 30, I0 � 50, B(0) � 0.25 as
depicted in Figure 4 and Table 3, item 3.

Figure 3(a) shows the control profile for the various
bounds employed in model (59), which indicates that a
bound of 0.8 for environmental hygiene is maintained for
the entire simulation time, but a drop in the control bound

for both vaccination and culling. +us, the bound for culling
and vaccination switches to 0.32 after 10 days. +is indicates
during the initial onset of an outbreak, effort should be made
to cull all symptomatic cattle or isolate them from other
susceptible (healthy) cattle for the first 10 days, after which
less culling approach can be adopted, and also for first 10
days, at least 90% of cattle should receive vaccination during
the initial stage of the disease outbreak. Figures 3(b) and 3(c)
show that applying vaccination, culling and environmental
hygiene simultaneously increases the rate of healthy cattle,
thereby reducing the risk of infection in the susceptible cattle
population and also reducing the number of asymptomatic
cattle, symptomatic cattle, and bacterial load in the envi-
ronment as shown in Figures 3(d)–3(f ), respectively. We
also notice that the gradual use of these controls in the long
run is more cost-effective as shown in Table 3, item 2.

In Figure 4(a), we changed the initial population size,
which indicates that an increase in population size requires
that the initial control bound for vaccination be kept for 80
days, and thus an increase in population size of dairy cattle
herds requires high control effort and high resources as
depicted in item 3 of Table 3. +e control trajectory for the
vaccination bound and Figure 4(c) further indicate that for
optimal eradication or reduction of the disease in a pop-
ulation of 1000 cattle (livestock), at least 80% of the animals
should be vaccinated within the first 20–80 days. We also
noticed that the use of vaccination, culling, and environ-
mental hygiene has similar control efficacy in the disease
compartments irrespective of the population size as shown
in Figures 4(b)–4(f), respectively.

In Figure 5, we considered variations that may arise in
the control measures, thus sticking to one or more controls.
In Figure 5(a), we assumed that u2 � 0, that is a situation
where culling is not applied, and it reveals that symptomatic
cattle will always be in the population but stays below the
trajectory when all controls are zero (see Figure 5(b)).
+erefore, we notice that in a situation where a farm owner
chooses to ignore culling and decide to stick to only vac-
cination and environmental hygiene during an outbreak of
the disease may not lead to the eradication of the disease;
hence, the combination of vaccination and environmental
hygiene is not a good control measure in reducing the
number of symptomatic cattle (see Figure 6(d)) for the
implementation of culling only as a control measure on the
symptomatic compartment. Figure 5(c) shows that in the
absence of vaccination, the control bound for culling should
remain at 1, which means that during the cause of culling,
the aim should be focused on destroying all infected farms or
animals which is sometimes practically hard to achieve and
also comes with high control cost as shown in Table 3, item 7.
+erefore, it clearly shows in Figures 5(d)–5(f ) that effective
vaccination plays a major role in reducing the disease-in-
duced rate in dairy cattle herds depending only on culling. It
can also be seen that without vaccination, the trajectories of
Figures 5(d)–5(f) of the optimal control stay very close to the
trajectories without optimal control.

Figure 6(a) shows the control profile in the absence of
environmental hygiene; the figure depicts that with only
vaccination and culling as control measures, the bound of
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Figure 3: Optimal trajectory results with and without controls. All initial state values are assumed for illustrative purposes. (a) Control
profile. (b) Susceptible cattle. (c) Vaccinated cattle. (d) Asymptomatic cattle. (e) Symptomatic cattle. (f ) Bacterial load.
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Figure 4: Continued.
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Figure 4: Optimal trajectory results with and without controls, with a change in initial state value data. All initial state values are assumed for
illustrative purposes. (a) Control profile. (b) Susceptible cattle. (c) Vaccinated cattle. (d) Asymptomatic cattle. (e) Symptomatic cattle.
(f ) Bacterial load.

Table 3: +e total cost J in regard to different control strategies associated with model (1) with ρ � 0.

Item Strategies Associated cost J
1 Without optimal control, u1 � 0, u2 � 0, u3 � 0 28,977.63
2 With optimal control, u1 ≠ 0, u2 ≠ 0, u3 ≠ 0 623.04
3 With optimal control, u1 ≠ 0, u2 ≠ 0, u3 ≠ 0 with S0 � 1000 6,537.69
4 Culling only, u1 � 0, u2 ≠ 0, u3 � 0 23,057.75
5 Without environmental hygiene, u1 ≠ 0, u2 ≠ 0, u3 � 0 1,616.53
6 Without culling, u1 ≠ 0, u2 � 0, u3 ≠ 0 1,191.37
7 Without vaccination, u1 � 0, u2 ≠ 0, u3 ≠ 0 10,722.43
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Figure 5: Continued.
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Figure 5: Optimal trajectory results marked by diversity in control procedures. All initial state values are assumed for illustrative purposes.
(a) Without culling control profile. (b) Without culling in the objective function. (c) Without vaccinated control profile. (d) Without
vaccination in the objective function. (e) Asymptomatic cattle (without vaccination in the objective function). (f ) Bacterial load (without
vaccination in the objective function).
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vaccination is kept at 0.9 for 78 days before switching to 0.8,
and the bound of culling switches to 0.45 as compared to
Figure 3(a). Hence, Figure 6(b) depicts the noneffectiveness
of vaccination and culling on the bacterial load in the en-
vironment until day 47, but due to vaccination, the number
of asymptomatic cattle reduces as shown in Figure 6(c).
Figure 6(d) shows the effect of culling on the number of
symptomatic cattle, which indicates that early detection of
symptomatic cattle on the farm will help in mitigating the
disease within the first 5 days.

5. Concluding Remarks

We presented a theoretical analysis of Q fever within dairy
cattle herds, which may lead to new research on the disease
dynamics, such as the effect of direct transmission, seasonal
transmission, the dynamical role of ticks in maintaining the
circle of Q fever in livestock, the role of media in averting the
disease in humans, and the dynamical spread of the disease
between livestock and humans. Here we analytically ob-
tained the control states and numerically simulated it for
different outcomes. We notice that culling only as a control
measure produces a higher control cost, which also does not
completely eradicate the number of symptomatic cattle due
to the asymptomatic nature of the disease. We obtained a
cost profile for the various control measures as shown in
Table 3 which suggests that the most effective method in
getting a lower control cost, in the long run, is the con-
tinuous application of vaccination and good environmental
hygiene together with culling or isolation of symptomatic
cattle.+e numerical simulation also reveals that irrespective
of the control employed, the disease will always be present in
the animal population, but vaccinating and cleaning/burying
of placenta discharge after birth or abortion will help to
mitigate the disease in the animal population. In totality, our
work has revealed some global dynamics of Q fever in dairy
cattle herds and the impact of sensitivity analysis and op-
timal control strategies in managing Q fever disease in dairy
cattle herds (livestock). We also analytically obtained the
local and global stability analysis of the disease by using

matrix-theoretic method and a Lyapunov functional. +e
model studied here did not assume a complex model, but the
results can provide some ideas for further studies and the
prevention of the disease.
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Figure 6: Optimal trajectory results marked by diversity in control procedures. All initial state values are assumed for illustrative purposes.
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hygiene). (d) Symptomatic cattle (culling only).
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