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a b s t r a c t 

Cortex, medulla and papilla are three major human kidney 

anatomic structures and they harbour unique metabolic func- 

tions, but the underlying metabolomic profiles are largely 

unknown at spatial resolution. Here, we generated a spa- 

tially resolved metabolomics dataset on human kidney cor- 

tex, medulla and papilla tissues dissected from the same 

donor. Matrix-Assisted Laser Desorption/Ionization-Imaging 

Mass Spectrometry (MALDI-IMS) was used to detect metabo- 

lite species over mass-to-charge ratios of 50 -1500 for each 

section at a resolution of 10 × 10 μm2 pixel size. We present 

raw data matrix of each sample, feature annotations, raw An- 

nData merged from three samples and processed AnnData 

files after quality control, dimensional reduction and data in- 

tegration, which contains a total of 170,459 spatially resolved 

metabolomes with 562 features detected. This dataset can be 

either visualized through an interactive browser or further 

analyzed to study metabolomic heterogeneity across regional 

human kidney anatomy. 
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Subject Biological Sciences: Omics (General) 

Specific subject area Spatially resolved metabolomics by Matrix-Assisted Laser 

Desorption/Ionization-Imaging Mass Spectrometry (MALDI-IMS) on human kidney 

cortex, medulla and papilla 

Data format Raw, Analyzed 

Type of data Count matrix, AnnData 

Data collection Kidney cortex, medulla and papilla were dissected from the same donor and one 

10-μm section for each tissue was selected for MALDI-IMS analysis. Data acquisition 

was performed with the positive ion mode at a pixel size of 10 × 10 μm2 over m/z 

range 50–1500. The matrix used was 2,5-dihydroxybenzoic acid (DHB). Matrix 

application was performed with the HTX M5 Sprayer and data acquisition was 

performed on the timsTOF fleX MALDI-2 instrument. Data were uploaded to 

METASPACE for annotation with the CoreMetabolome database. Downstream analysis 

was performed based on our recently described package MALDIpy. 

Data source location Institution: Washington University in St. Louis 

City/Town/Region: St. Louis, Missouri 

Country: USA 

Latitude and longitude (and GPS coordinates) for collected samples/data: 38.63443, 

-90.26293 (38 ° 38′ 3.948′′ N, 90 ° 15′ 46.548′′ W) 

Data accessibility Repository name: METASPACE; Mendeley DataData identification number: 

1. METASPACE: https://metaspace2020.eu/project/human_kidney_region 

2. Mendeley Data: https://doi.org/10.17632/hss5zczhrk 

Direct URL to data: 

1. METASPACE: https://metaspace2020.eu/project/human_kidney_region 

2. Mendeley Data: https://data.mendeley.com/datasets/hss5zczhrk/1 

Related research article Li et al. [1] 

. Value of the Data 

• We generated spatially resolved metabolomics data with MALDI-IMS on different human kid-

ney anatomic regions (cortex, medulla, papilla) dissected from the same donor. This dataset

allows researchers to investigate the metabolomic signatures underlying regional human kid-

ney anatomy. 

• We analyzed a total of 170,459 spatially resolved metabolomes (10 × 10 μm2 pixels) across

the three kidney anatomic regions after quality control, with a total of 562 features (metabo-

lites and small molecules) detected. 

• With our recently described MALDI-IMS analytical package [1] , we present both raw and pro-

cessed metabolomic data matrices in the AnnData format, which allow researchers to per-

form customized downstream analysis. The processed AnnData contains spatial information

( x / y coordinates), uniform manifold approximation and projection (UMAP) coordinates and

Leiden annotations for all metabolomes, as well as mass-to-charge (m/z) ratios, chemical for-

mulas and molecule identities for all features. 

• The dataset is available on the METASPACE browser [2] , allowing researchers to interactively

visualize any metabolites of interest in each human kidney anatomic region. 

. Background 

The human kidneys remove waste products from the blood and regulate electrolyte balance,

lood pressure and various metabolic processes [3] . Nephron is the kidney functional unit and

t spans cortex, medulla and papilla, the three major anatomic regions of the human kidney,

ut the underlying metabolomic signature across kidney anatomic regions is still incompletely

nderstood. Although several metabolomics analyses have been conducted on primary kidney

https://metaspace2020.eu/project/human_kidney_region
https://doi.org/10.17632/hss5zczhrk
https://metaspace2020.eu/project/human_kidney_region
https://data.mendeley.com/datasets/hss5zczhrk/1
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Table 1 

Number of detected features in the three kidney anatomic regions. Putative annotations refer to all annotations derived 

from the CoreMetabolome database. The list of unique species excludes metabolite species with multiple adducts (e.g., 

H + , Na + , K + ). 

Sample Feature number 

Cortex Number of putative annotations 311 

Number of unique species 217 

Medulla Number of putative annotations 274 

Number of unique species 205 

Papilla Number of putative annotations 254 

Number of unique species 184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

samples [4] , spatial information is lost in these bulk assays since the whole tissue is completed

lysed [5] . The MALDI-IMS technology is the current widely adopted solution to spatially resolved

metabolomics analysis and has been used in multiple biomedicine disciplines [6–10] . Although

MALDI-IMS analysis on mouse kidneys [ 11 , 12 ], kidney organoids [13] and a human kidney cortex

sample [14] have been recently reported, a spatially resolved metabolomics dataset on the three

human kidney anatomic regions dissected from the same donor is still highly demanded. Fur-

thermore, we recently described an analytical package for MALDI-IMS analysis, which we called

MALDIpy [1] , but additional publicly available datasets are needed for further evaluation of the

efficacy of this package. 

3. Data Description 

For each sample, the raw matrix of spatially resolved metabolomics data, with false discovery

rate (FDR) < 20 % and with total ion count (TIC) normalization, is presented (compressed in a

.zip file), where each row indicates a feature (annotation with the CoreMetabolome database v3

[2] ) and each column indicates a x/y coordinate pair. Researchers can also export customized

data matrices (e.g., choosing different FDR thresholds or no TIC normalization) through the

METASPACE browser with the link provided above. 

Feature annotations are presented in a spreadsheet (.xlsx file), which describes metabolite

species detected in each sample, including their m/z ratios, chemical formulas, ion adducts and

molecule identities. Table 1 summarizes the number of detected features in each MALDI-IMS

sample. 

A raw Anndata (.h5ad file) for merged three MALDI-IMS data matrices is presented, contain-

ing a total of 370,662 metabolomes (i.e., 10 × 10 μm2 pixels) and 562 features. Cortex, medulla

and papilla samples contain 177,870, 92,120 and 100,672 metabolomes, respectively. With this

raw data, researchers can visualize any metabolite species of interest across the three tissue sec-

tions with the MALDIpy package. For example, Fig. 1 A presents a sphingomyelin (d18:0/16:1(9Z))

(C39H79N2O6PNa) which is more specific to the kidney glomerulus structure in the cortex, and

Fig. 1 B presents a phosphatidylcholine (16:0/18:1(11Z)) (C42H82NO8PNa) which indicates tubu-

lar epithelia that are more abundant in the medulla and papilla. Of note, this raw Anndata con-

tains significant matrix background and low-quality metabolomes which are removed in the pro-

cessed Anndata described below. 

A processed Anndata (.h5ad file) is presented, containing a total of 170,459 metabolomes and

562 features. Cortex, medulla and papilla samples have 79,814, 49,771 and 40,874 metabolomes

included in this processed data, respectively ( Fig. 2 A). All metabolomes in this processed file

have a minimum count number of 40,0 0 0 and a minimum feature number of 30 detected

( Fig. 2 B). Other quality control procedures, including removal of matrix background observations

and low-quality metabolomes, were performed (see Methods). MALDIpy-based downstream data

processing, multi-sample integration and dimensional reduction were also performed to gen-
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Fig. 1. Spatial feature plot of two metabolite species across human kidney anatomic regions. (A) MALDI-IMS intensities 

of sphingomyelin (d18:0/16:1(9Z)) with its chemical structure shown on the left. (B) MALDI-IMS intensities of phos- 

phatidylcholine (16:0/18:1(11Z)) with its chemical structure shown on the left. 

Fig. 2. Quality control metrics of the presented AnnData. (A) Number of features per pixel (left), number of counts per 

pixel (middle) and total number of metabolomes of each kidney anatomic region (right) in the processed AnnData. (B) 

Number of features and counts per pixel in the raw AnnData (left) and number of features and counts per pixel after 

quality control. 
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Fig. 3. UMAP presentation of 170,459 spatially resolved metabolomes, colored by curated Leiden clusters (left) or kidney 

anatomic regions (right). 

Fig. 4. Projection of the 16 Leiden clusters (presented in Fig. 3 ) onto sections of the three human kidney anatomic 

regions. 

 

 

 

 

 

 

 

 

 

 

erate this data. A total of 16 clusters were identified in Leiden clustering analysis. Cluster

identities and anatomic region origins are included in the Anndata.obs columns ( Fig. 3 ). With

this processed data, researchers can analyze cluster distributions across the three kidney

anatomic regions. As shown in Fig. 4 , Cluster #15 metabolomes (colored in red) specifically mark

kidney glomeruli in the cortex, while Cluster #6 metabolomes (colored in purple) indicate tubu-

lar epithelia that are more abundant in the medulla and papilla. 

4. Experimental Design, Materials and Methods 

4.1. Sample collection 

Human kidney cortical, medullary and papillary tissues were dissected from the same donor.

This deceased organ donor is a 67-year-old female with normal kidney functions (with creatinine

levels at sampling: 0.6 mg/dL and with mild interstitial fibrosis). Fat and the renal capsule were

first removed and the kidney was cut sagittally with a trimming blade. Then, kidney tissues of

different anatomic regions were dissected with a scalpel. Each tissue was frozen in a cryotube
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ith liquid nitrogen immediately after dissection and stored at -80 °C before the MALDI-IMS

xperiment. 

.2. MALDI-IMS data acquisition 

The three tissues were proceeded with unbiased MALDI-IMS profiling with a publicly estab-

ished protocol at the Mass Spectrometry Technology Access Center at Washington University

chool of Medicine. Here, the tissues were sectioned at 10 μm thickness and sections of use

ere applied on one single MALDI IntelliSlide (Bruker) to reduce technical batch effects. We

sed 2,5-dihydroxybenzoic acid (DHB) as the MALDI matrix and matrix application was per-

ormed with the HTX M5 Sprayer (HTX Technologies). The timsTOF fleX MALDI-2 instrument

Bruker) was used for MALDI-IMS data acquisition. The laser was rastered over a tissue section

nd mass spectra were recorded in each spot. Spraying parameters were: 60 °C nozzle tempera-

ure, a flow rate of 0.1 mL/min, 1200 mm/min velocity, a track spacing of 3 mm, moving pattern

C, 14 passes and a N2 pressure of 10 psi. In data acquisition, the positive ion mode was chosen

t a pixel size of 10 × 10 μm2 over m/z range 50–1500. 

.3. MALDI-IMS data processing 

Metabolite annotation was performed with the METASPACE database of core mammalian

etabolites and lipids (CoreMetabolome database v3) ( https://metaspace2020.eu/ )[2] and a data

atrix with FDR < 20 % and TIC normalization was exported for each sample. Next, we cre-

ted a MALDIpy object for each sample with the msi_data function (MALDIpy version 0.1.5;

ttps://pypi.org/project/MALDIpy/ ). We then converted each MALDIpy object to an AnnData with

he to_adata function (add_meta = True), in which each metabolome was considered as an obser-

ation and each feature was considered as a variable. This enabled us to perform downstream

ata quality control, normalization, dimensional reduction and clustering analysis with Scanpy

15] . Quality control metrics were computed with the scanpy.pp.calculate_qc_metrics function

percent_top = None, log1p = False, inplace = True). As shown in Fig. 2 B, during quality control, we

ound artefactual metabolomes could be efficiently removed with the (n_feat < 30, n_count <

0,0 0 0) thresholds. After normalization with the scanpy.pp.normalize_total function, the effect of

otal counts was regressed out and the data was scaled [MALDIpy.single_cell.maldi_norm func-

ion, (regress_out_key = ’total_counts’)). 

.4. MALDI-IMS data downstream analysis 

Dimensional reduction, multi-sample integration and clustering analysis were performed

ith the MALDIpy.single_cell.maldi_clustering function, in which we used Harmony (Har-

onypy v0.0.6) [16] for data integration and batch effect elimination. During this pipeline,

e computed a neighborhood graph of all metabolomes using the scanpy.pp.neighbors func-

ion with the number of neighbors set as 30 and the number of components set as 30.

hen we calculated the UMAP space with the effective minimum distance between embed-

ed points set as 0.2. Leiden clustering was performed with a resolution of 0.8. We used the

ALDIpy.projection.project_cluster_in_groups function to visualize the Leiden clusters across the

hree tissue sections [17] . Next, we removed away clusters that indicate MALDI background arte-

acts and section edge artefacts, and re-ran the same analytical pipeline on a total of 170,459

etabolomes, with the final curated Leiden clustering presented in Fig. 3 A. Next, we used the

canpy.tl.rank_genes_groups function (method = ‘wilcoxon’) to identify differential marker fea-

ures of each cluster. We used the MALDIpy.projection.project3tissues function to visualize the

https://metaspace2020.eu/
https://pypi.org/project/MALDIpy/
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clusters across the three tissue sections. For Fig. 1 , the MALDIpy.multi_sample.plot3tissues func-

tion was used for visualization of a feature across all three tissue sections concurrently, in which

a linear normalization based on total count number of each sample was included. 

Limitations 

We provide a spatially resolved metabolomic dataset obtained from kidney samples dissected

from a single donor. A larger sample cohort would be required to conduct a comprehensive sur-

vey of metabolomics across the human kidney anatomy. In addition, metabolite species outside

the m/z range of 50–1500 cannot be detected by this method. 

Ethics Statement 
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Data Availability 

A dataset of spatially resolved metabolomics on human kidney anatomic regions (Original data

(Mendeley Data). 

Online visualizer of spatially resolved metabolomics data (Original data) (METASPACE). 
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