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Background. Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth (CMT) disease
and over 80 different mutations have been identified so far. This study analyzed the clinical and genetic characteristics of a
Vietnamese CMT family that was affected by a novel GDAP1 mutation. Methods. We present three children of a family with
progressive weakness, mild sensory loss, and absent tendon reflexes. Electrodiagnostic analyses displayed an axonal type of
neuropathy in affected patients. Sequencing of GDAP1 gene was requested for all members of the family. Results. All affected
individuals manifested identical clinical symptoms of motor and sensory impairments within the first three years of life, and nerve
conduction study indicated the axonal degeneration. A homozygousGDAP1 variant (c.667 671dup) was found in the three affected
children as recessive inheritance pattern. The mutation leads to a premature termination codon that shortens GDAP1 protein
(p.Gln224Hisfs∗37). Further testing showed heterozygous c.667 671dup variant in the parents. Discussion. Our study expands the
mutational spectrum of GDAP1-related CMT disease with the new and unreported GDAP1 variant. Alterations in GDAP1 gene
should be evaluated as CMT causing variants in the Vietnamese population, predominantly axonal form of neuropathy in CMT
disease.

1. Introduction

Charcot-Marie-Tooth disease (CMT) is one of the most
common inherited peripheral neuropathies affecting motor
and sensory neurons. More than 80 causative genes have been
reported as autosomal dominant, autosomal recessive, andX-
linked forms [1–3]. The disease features can be diverse even
among those sharing the same mutation. Assessment of age
at onset, key clinical findings (the dominance of motor or
sensory, upper or lower limbs symptoms, and differentiating
features), and family history are very useful in choosing a
genetic testing strategy. The classical phenotype is usually
characterized by early age at onset with slowly progressive
weakness and atrophy of the distal muscles mostly in the

lower limbs, foot deformities, walking impairment, areflexia,
andmild sensory deficits [4]. Clinically, patients are classified
into 3 groups based on the nerve conduction studies: a
demyelinating (CMT1) with very slow motor nerve conduc-
tion velocity (MNCV), an axonal (CMT2) with normal or
slight reduction of MNCV, and an intermediate phenotype.
The demyelinating type occurs 2/3 of CMT cases with the
duplication in PMP22 gene, while the mutation spectrum in
CMT2 is more diverse including variants in MFN2, MPZ,
GJB1, and GDAP1 and a large number of additional genes [5].

GDAP1 (Ganglioside-induced differentiation-associated-
protein 1) is an integral membrane protein of the outer mito-
chondrialmembranewith a ubiquitous tissue distribution but
predominantly expressed in neurons. It is involved in many
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Figure 1: Characteristics of the proband. (a, b) Muscular atrophy in hands; (c) atrophy in the lower legs, pes cavus.

aspects of mitochondrial morphology and functioning, such
as on the maintenance and regulation of normal functioning,
structural integrity, and intracellular networking of the mito-
chondria [6]. GDAP1 is identified as a CMT-causative gene
[7, 8] and its mutations have been shown to be responsible for
an early-onset autosomal recessive demyelinating neuropathy
[7], an axonal recessive form [8, 9], an intermediate recessive
form [10], and a late-onset autosomal dominant axonal form
[11–13].

GDAP1 autosomal recessive inherited mutations cause a
severe, early onset neuropathy often resulting in wheelchair-
dependency in the second or third decade. Most of these
patients develop unilateral or bilateral vocal cord paresis and
diaphragmaticweakness in the latter stages of the disease [14].
It has been suggested that recessive mutations which cause
truncating proteins develop a more severe phenotype, while
missense mutations may be associated with a slightly milder
progression [15]. Otherwise, autosomal dominant inherited
mutations cause a much milder phenotype, characterized
by adult onset, predominantly distal involvement, and slow
progression [16, 17].

We herein report the clinical and electrophysiological
findings of affected patients in a Vietnamese family with a
severe autosomal recessive axonal sensorimotor neuropathy,
due to a duplication of 5 nucleotides in coding region of the
GDAP1 gene. This novel variant induces a premature stop
codon and may contribute to severe loss of function GDAP1.

2. Patients and Methods

We studied a Vietnamese family encompassing all three
affected children. The proband and her family underwent
clinical and electrodiagnostic evaluations. Genomic DNA
was extracted from peripheral blood mainly of the proband
and family members using a QIAGEN Blood kit according
to the manufacturer’s instructions and testing for GDAP1
variants. The6 exons ofGDAP1were amplified by polymerase
chain reaction and analyzed by direct sequencing on an
ABI3130XL Genetic Analyzer system (Applied Biosystems,
USA). Primers for PCR and sequencing reactions were listed
in Supplementary Table 1. Some other common CMT genes

(MPZ, GJB1, MFN2, NEFL, and PMP22) have been analyzed
as well.

For the new variant in GDAP1 gene, 50 unrelated healthy
Vietnamese control participants were screened. The variant
was numbered according to the Human Genome Variation
Society (HGVS) nomenclature on the basis of standard
reference sequences of mRNA (NM 018972.2) and protein
(NP 061845.2).

3. Results

3.1. Clinical Features. Wedescribed symptomsof the proband
and her siblings, ranging in age from 3 to 16 years, and their
mean onset age was 27 months.

The proband (II-1) had difficulty running starting at 27
months. She was able to independently climb stairs until age
7 and then required ankle foot orthosis at the same year.
Due to progressive distal and proximal leg weakness, she
needed crutches from age of 10 years. Clinical examination
at the age of 16 years showed atrophy of lower legs, lower
arms, intrinsic hand muscles, and areflexia. The proximal
extremities muscles showed a moderate paresis. There was
severe weakness of the lower arm muscles, in particular of
the hand muscles. Sensory impairments were not identical in
upper and lower extremities: asymmetrical loss of touch and
pain sensations with the upper extremities were intact, and
vibration was absent in distal. Pes cavus was seen (Figure 1).
There was no evidence of hoarseness, vocal cord paresis,
diaphragmatic paralysis, or cognitive impairment.

The 12-year-old sister (II-2) and 3-year-old brother (II-3)
of the proband were affected, showing the same symptoms as
the proband, although to a lesser extent. Both parents (I-1 and
I-2) showed no abnormalities on neurological examination
and nerve conduction studies (Table 1).

3.2. Electrophysiological Findings. Nerve conduction studies
of the proband showed noCMAPor sensory nerve amplitude
potential (SNAP), which suggested axonal neuropathy. EMG
showed signs of de- and reinnervation in the right anterior
tibial muscle. In the brother of the proband, CMAP reduces
significantly and MNCV was in normal range (Table 2).
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Table 1: Summary of clinical characteristics in proband and other family members.

II-1 II-2 II-3 I-1 I-2
Gender, Female, Female, Male, Male, Female
age at visit 16 yos 12 yos 40 mos 46 yos 45 yos
Age of independent working 13 months 12 months 12 months - -
Age of onset 27 mos 27 mos 27 mos - -
Muscle weakness DLL = DUL DLL > DUL DLL No No

Muscle atrophy Yes
DLL = DUL

Yes
DLL > DUL No No No

Tendon reflexes Absent Absent Decrease Normal Normal
Sensory loss
(i) Pinprick Yes Yes Yes Normal Normal
(ii) Vibration Yes Yes Yes Normal Normal
Deformity Pes cavus Pes cavus No No No
Respiratory failure No No No No No
DLL: distal lower limbs; DUL: distal upper limbs.

I-1

II-1

I-2

II-2 II-3

c.667_671dupTTGCA / WT

c.667_671dupTTGCA
/ c.667_671dupTTGCA

(p.Gln224Hisfs★37)
c.667_671dupTTGCA / WT
(p.Gln224Hisfs★37)

c.667_671dupTTGCA
/ c.667_671dupTTGCA

c.667_671dupTTGCA
/ c.667_671dupTTGCA

Figure 2: Analysis of GDAP1 gene (exon 5) in the unaffected father (I-1), unaffected mother (I-2), the proband (II-1), and her siblings (II-2,
II-3).

These data were consistent with a severe sensorimotor axonal
polyneuropathy.

3.3. Genetic Analysis. Based on clinical findings, nerve con-
duction velocities, and family history consistent with auto-
somal recessive inheritance, a diagnosis of CMT type 4 was
suspected. DNA testing revealed a homozygous variation
in the GDAP1 gene in the proband and her two siblings:
c.667 671dup, and a heterozygosity of the c.667 671dup in
both parents (Figure 2). The proband and her two siblings
carried a frame shift variant p.Gln224Hisfs∗37. However,
this alteration was not detected in 50 healthy controls.
The Gln224Hisfs∗37 is likely pathogenic variant and not
previously reported.

4. Discussion

This report described a family with axonal CMT where there
was a novel GDAP1 variation underlying a typical autosomal
recessive phenotype.The affected patients had a disease onset
the third year of life with progressive and symmetric hypotro-
phy and foot deformity. All three of them presented similar
disease development and none had mental retardation. The
electrodiagnostic results showed a severe axonal neuropathy.
It was recorded that the proband’s parents are not known to
be consanguineous but their origins are from nearby villages
in the North area of Vietnam. Both of them have no relevant
medical history and no other affected member in multiple
generations has been noticed. This inheritance pattern in the
pedigree suggests an autosomal recessive disease.



4 BioMed Research International

Table 2: Electrodiagnostic findings in proband and other family members.

II-1 II-3 I-1 I-2
Normal value Left Right Left Right Left Right Left Right

Median nerve
DML (ms) < 4.4 2.8 3 3.2 3 3.4 3.5
CMAP (mV) >4 No response 1.6 1.6 7.5 7.3 8.9 12.4
MCV (m/s) >49 52.4 50 59.5 57.9 55.6 60.6
DSL (ms) <3.5 2.8 3 3.3 3.1
SNAP (𝜇V) >20 No response No response 34 32 49 42
SCV (m/s) >50 56.5 54.2 51.5 52
Ulnar nerve
DML (ms) <3.3 1.75 1.75 2.5 2.5

Not performed

2.7
CMAP (mV) >6 No response 2.9 4.1 6.2 6.3 5.5
MCV (m/s) >49 52.8 52.8 61.5 53.4 60.6
DSL (ms) <3.1 2.7 3.6 2.5
SNAP (𝜇V) >17 No response No response 26 23 42
SCV (m/s) >50 51 51 57.9
Posterior Tibial nerve
DML (ms) <5.8 4.2 4.1 3.5

Not performedCMAP (mV) >4 No response No response 11.9 9.2 11.4
MCV (m/s) >41 47.4 49.3 51.5
Deep Peroneal nerve
DML (ms) <6.5

No response No response Not performed
4.1

Not performedCMAP (mV) >2 2.6
MCV (m/s) >44 49.2
Superficial peroneal nerve
DSL (ms) <4.4

No response No response
4.6 5.2

Not performedSNAP (𝜇V) >6 1.2 0.8
SCV (m/s) >40 52.6 47.6
Sural nerve
DSL (ms) <4.4

No response No response
2.9 2.8 3.4 3.4

SNAP (𝜇V) >6 12 15 19 21
SCV (m/s) >40 57.1 52.4 46.2 46.2
Needle EMG De- and reinnervation Not performed Normal Not performed
DML: distal motor latency, CMAP: compound muscle action potential, MCV: motor conduction velocities, DSL: distal sensory latency, SNAP: compound
sensory action potential, SCV: sensory conduction velocities, and EMG: electromyography. Nerve conduction studies were not evaluated in II-2 (proband’s
sister).

On the basis of a positive familiar history, an axonal
sensomotoric neuropathy found in affected patients, early age
of onset, and an autosomal recessive pattern of inheritance,
alteration of GDAP1 gene was screened in the family. GDAP1
gene sequencing showed a homozygous p.G224Hfs∗37 vari-
ant, which led us to the confirmation of Charcot-Marie-Tooth
disease, type 4A. Both parents are carriers and without risk of
developing the disease. Unfortunately, all three children have
the homozygous likely pathogenic variant and present similar
disease progression.

GDAP1 belongs to the subfamily of glutathione-S-
transferase (GST). It is composed of two typical GST domains
(GST-N and GST-C), two alpha helical loops (𝛼-loop), a C-
proximal hydrophobic domain (HD1) crucial for GDAP1-
induced mitochondrial and peroxisomal fission, and a C-
terminal transmembrane domain (TMD) essential for the

correct locating of the GDAP1 protein [8, 18–22] (Figure 3).
To date, more than 80 GDAP1 variants have been implicated
in the pathogenesis of CMT.Most are missense and nonsense
mutations, and some are frame-shift, deletions, mutations
generating truncated and nonfunctional proteins, and those
altering the splice sites in the GDAP1 transcripts [15, 23].
Mutations are mostly located in the GST domains of the pro-
tein indicating their important roles in the protein function.
Most frequent protein consequences are missense followed
by frame-shift, nonsense, and splice site mutations. Among
the recessively inherited changes, nonsense and frameshift
mutations leading to the truncation of the protein produced
are very often associated with a most severe phenotype of
CMT showing a more rapid course of the disease [15].

GDAP1 mutations are rare in Asian populations, with
a reported frequency from 0.6% to 2.37% in Japanese and
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Figure 3: Schematic representation ofGDAP1.Glutathione-S transferase (GST), hydrophobic domain (HD), transmembrane domain (TMD),
N-terminal (N-TER), and C-terminal (C-TER). The number indicates the amino acid position in GDAP1 protein.

Chinese CMT patients [24–26]. Conversely, high GDAP1
mutation frequencies are observed in European CMT
patients, with reported frequencies approximately 7–14%
[27–32].

The p.G224Hfs∗37 variant reported in this study has not
been described elsewhere.The mutant protein would thus be
shortened to the first 223 amino acids instead of 358 (exon
1 to exon 5), followed by an addition of 37 amino acids and
a premature stop codon. We consider this variant very likely
pathogenic since GST-C domain has important roles in the
protein function, and the premature stop codon inducing
a truncated protein may impair some involving processes.
Furthermore, DNA-testing revealed no mutations in other
common CMT genes and no similar variation is detected
in healthy control group. This case illustrates the challenges
in elucidating the genetic cause in CMT families as GDAP1-
CMT diseases.

5. Conclusion

This work broadens the genetic spectrum of CMT associ-
ated with GDAP1 mutations with the identification of new
G224Hfs∗37 alteration and emphasizes the importance of
clinical clues in the diagnosis of inherited neuropathies. It
is possible that there are many factors contributing and
modulating the GDAP1-CMT and each of the mutations
turns the disease in different way, affecting some processes
more and some less, thereby explaining such diverse course
and severity of CMT disease. More comprehensive infor-
mation of the genetic background of CMT disease in the
Vietnamese is needed in order to describe and understand
the effects of mutation on clinical course and prognosis,
elucidate the correlation between the genotypes and the
clinical phenotypes, and determine the attribution of certain
geographical distribution, ethnic background, and areas of
high consanguinity.
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