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Abstract

As an important type of proteins, intrinsically disordered proteins/regions (IDPs/IDRs) are related to many crucial biological
functions. Accurate prediction of IDPs/IDRs is beneficial to the prediction of protein structures and functions. Most of the
existing methods ignore the fully ordered proteins without IDRs during training and test processes. As a result, the
corresponding predictors prefer to predict the fully ordered proteins as disordered proteins. Unfortunately, these methods
were only evaluated on datasets consisting of disordered proteins without or with only a few fully ordered proteins, and
therefore, this problem escapes the attention of the researchers. However, most of the newly sequenced proteins are fully
ordered proteins in nature. These predictors fail to accurately predict the ordered and disordered proteins in real-world
applications. In this regard, we propose a new method called RFPR-IDP trained with both fully ordered proteins and
disordered proteins, which is constructed based on the combination of convolution neural network (CNN) and bidirectional
long short-term memory (BiLSTM). The experimental results show that although the existing predictors perform well for
predicting the disordered proteins, they tend to predict the fully ordered proteins as disordered proteins. In contrast, the
RFPR-IDP predictor can correctly predict the fully ordered proteins and outperform the other 10 state-of-the-art methods
when evaluated on a test dataset with both fully ordered proteins and disordered proteins. The web server and datasets of
RFPR-IDP are freely available at http://bliulab.net/RFPR-IDP/server.
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Introduction
Intrinsically disordered proteins/regions (IDPs/IDRs) refer to
those proteins/regions whose native state is intrinsically
disordered without a stable three-dimensional structure [1, 2].
Despite the lack of stable three-dimensional structure, IDPs/IDRs
have been confirmed to play important roles in many important
biological functions, such as the folding of nucleic acids [3],
cellular signaling and regulation [4] and molecular recognition
and molecular assembly [5–8]. Besides, some diseases are also
correlated with IDPs/IDRs, such as cancer [7] and Alzheimer’s
disease [9, 10]. Therefore, accurate identification of IDPs/IDRs is
an important fundamental task for studying protein functions
and drug design.

There are several traditional experimental techniques can be
used to detect IDPs/IDRs [5, 11], such as NMR and X-ray crystal-
lography. However, with the rapid growth of protein sequences, it
is urged to propose fast and efficiently computational methods.
The existing computational methods can be divided into four
categories [1], including physicochemical-based methods [12,
13], machine-learning-based methods [14–16], template-based
methods and meta-methods [17]. Machine-learning-based
methods can be further divided into classification models and
sequence labeling models.

Some studies have shown that the proportion of IDPs with
long disordered regions (LDRs) is about 2 to 45% in different
species [18–22], where LDRs represent those IDRs with more
than 30 residues in length. Fully ordered proteins without IDRs
are widespread in nature, but they are ignored by the existing
predictors. The existing predictors are evaluated on test datasets
consisting of disordered proteins without or with only a few
fully ordered proteins; for example, the methods SPOT-disorder
[14] and SPINE-D [15] are trained and tested with 3000 IDPs
without fully ordered proteins, DISOPRED3 [17] is evaluated on
94 proteins with only 2 fully ordered proteins and AUCpreD
[23] is evaluated on a test dataset with 94 proteins contain-
ing only 2 fully ordered proteins, and a test dataset with 117
proteins containing only 4 fully ordered proteins. However, a
predictor trained and tested with disordered proteins without
or with only a few fully ordered proteins will prefer to predict
a newly sequenced protein as a disordered protein. However, as
discussed above most of the proteins are fully ordered proteins
without disordered regions in nature. This problem will prevent
the real-world applications of these predictors.

In this regard, we first investigate the influence of the fully
ordered proteins on the performance of various methods and
then propose a predictor called RFPR-IDP using both the fully
ordered proteins and intrinsically disordered proteins to con-
struct the model. Deep learning technique has been success-
fully applied to bioinformatics, such as protein contact map
prediction [24] and protein fold recognition [25]. Deep learning
technique has also been applied to disordered protein and region
prediction; for example, DeepCNF [26] and AUCpreD [23] are
two predictors based on the combination of conditional neural
fields (CNF) and deep convolutional neural networks (DCNN),
and AUCpreD [23] shows better performance than DeepCNF [26]
by adopting maximal-AUC training algorithm. SPOT-disorder [14]
is a predictor for IDPs/IDRs and is constructed based on Bidi-
rectional Long Short-Term Memory (BiLSTM) [27, 28]. Inspired by
these methods, the proposed predictor RFPR-IDP is constructed
based on the combination of convolution neural network (CNN)
[29, 30] and BiLSTM [27, 28]. Different from SPOT-disorder [14],
RFPR-IDP adopts CNN to capture local patterns of target residues
from protein sequences. Based on the features obtained by CNN,

BiLSTM is then performed to obtain the long-term dependence
information of the proteins.

Materials and methods
Training dataset

The training dataset used in this study includes two parts: IDP
set and ordered protein set. The ordered protein set contains
616 proteins collected from Protein Data Bank (PDB) [31] with
following criteria: (i) the structure file for each protein con-
tains only one chain, which ensures that no ordered regions
are transformed from IDRs through binding with other proteins;
(ii) the resolution of each protein is less than or equal to 2Å;
(iii) the length of each protein is greater than or equal to 30;
(iv) the similarity between sequences is less than 25%; (v) each
residue has atomic co-ordinates recorded in PDB; and (vi) non-
standard amino acids are removed. The training dataset can be
formatted as

S
Train
all = S

Train
disorder ∪ S

Train
order (1)

where S
Train
disorder contains 4229 IDPs constructed by Zhang et al. [15]

with sequence similarity less than 25%; S
Train
all is the union of

S
Train
disorder and S

Train
order to train RFPR-IDP.

Test datasets

DISORDER723 with only disordered proteins

The DISORDER723 test dataset is reported in [32] with 723 disor-
dered proteins without fully ordered proteins. DISORDER723 is a
widely used test dataset.

S1Test
order with only fully ordered proteins

S1Test
order test dataset contains 329 fully ordered proteins selected

by following the criteria for constructing S
Train
order. The sequence

similarities between S
Train
disorder and S1Test

disorder are lower than 25% by
using Blastclust algorithm [33].

S1 with both IDPs and fully ordered proteins

In order to simulate the real-world application situation, the test
dataset S1 is constructed with both disordered proteins and fully
ordered proteins, which can be defined as

S1 = S1Test
disorder ∪ S1Test

order (2)

where S1Test
disorder contains 329 disordered proteins constructed by

Sirota et al. [34], which is widely used by many studies [14]; S1Test
order

contains 329 fully ordered proteins; and S1 is the union of S1Test
disorder

and S1Test
order. The sequence similarities between S

Train
disorder and S1Test

disorder

as well as those between S
Train
order and S1Test

order are less than 25% by
using the Blastclust algorithm [33].

The statistical information of the three test datasets is shown
in Table 1.

Features

Feature extraction is a key step in building machine-learning-
based predictors [35–40]. In this study, evolutionary information
and physicochemical properties are employed to represent
each residue in proteins. The evolutionary information is more
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Table 1. The statistical information of the three test datasets

Test dataset #D (percent)a #O (percent)b #IDPs (percent) #Ordered proteins (percent)

DISORDER723 13 526 (6.3%) 201 703 (93.7%) 723 (100%) 0 (0%)
S1Test

order 0 (0%) 79 091 (100%) 0 (0%) 329 (100%)
S1 39 544 (23.3%) 130 383(76.7%) 329 (50%) 329 (50%)

aThe number of disordered residues, and the percent represents the ratio of disordered residues to all residues.
bThe number of ordered residues, and the percent represents the ratio of ordered residues to all residues.

discriminative than the sequence information [41–44], which
is acquired from position-specific scoring matrices (PSSMs)
obtained from PSI-BLAST [33] by searching against nrdb90
database [45]. For PSI-BLAST [33], the numbers of iterations and
parameter E-value are set as 3 and 0.001, respectively. Besides,
seven widely used physicochemical properties are adopted [46].
Therefore, the dimension of feature vector for each residue
is 27.

Neural network architecture of RFPR-IDP
and implementations

The neural network was employed in bioinformatics for many
predicting problems [47–50]. The neural network architecture of
RFPR-IDP is shown in Figure 1. As shown in Figure 1, RFPR-IDP
contains five layers: input layer, CNN layer, FC (fully connected)
layer, BiLSTM layer and output layer. In the input layer, proteins
are transformed into feature matrices, which are constructed
by PSSMs and seven physicochemical properties described in
Section “Features”. The feature matrices are padded with zero
vectors at both ends and then used as the input of CNN so as
to ensure that the output of CNN has the same length as the
input. Then, the CNN layer with rectified linear units (ReLU) [51]
activation function scans on the feature matrices by using multi-
ple one-dimensional convolution filters to capture protein local
information or motifs. The FC layer is used to weight the output
of the CNN layer to capture the effective features of the CNN
output, and the dimension of the feature vector for each residue
can be reduced. For a target residue in a protein sequence, the
information on its left and right sides is asymmetric. There-
fore, BiLSTM is adopted to capture the long-term dependence
information in both directions of proteins. The final output
layer is composed of a fully connected layer and a Softmax
layer, which is used as a classifier to generate the prediction of
residues.

The network of RFPR-IDP is implemented by using Tensor-
Flow 1.4.1 [52], and RFPR-IDP is trained with ADAM optimiza-
tion algorithm [53]. To avoid overfitting during training, dropout
algorithm [54] is adopted with a 70% dropout rate at the out-
puts of CNN and BiLSTM layers. Due to the extremely imbal-
anced ratio of positive and negative samples in the training
set, weighted cross-entropy loss function [55] is used during
training.

Criteria for performance evaluation

Several measures are adopted in this study [2, 56, 57], including
sensitivity (Sn), specificity (Sp), balanced accuracy (BACC) and
Matthew’s correlation coefficient (MCC). Besides, the false pos-
itive rates (FPRs) of different predictors are estimated at both
protein level and residue level [20]. In particular, FPR_R and
FPR_Pl are used to distinguish the FPR at residue level from the

FPR at protein level defined as [58]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = TP
TP+FN

Sp = TN
TN+FP

BACC = 1
2

(
TP

TP+FN + TN
TN+FP

)

MCC =
(

TP×TN

)
−
(

FP×FN

)
√(

TP+FP

)(
TP+FN

)(
TN+FP

)(
TN+FN

)
FPR_R = FP

TN+FP

FPR_Pl = FPl
TN+FPl

,
(
l = 1, 2, 3 . . . , L

)

(3)

where TP, FP, TN and FN are the numbers of true positive, false
positive, true negative and false negative samples, respectively.
L represents the length of the protein. For ordered proteins, FPl

represents the number of false positive proteins with at least l
consecutive disordered residues. Some studies have suggested
that IDRs less than 4 in length may be caused by experimental
uncertainties [32, 59, 60]. Therefore, FPR_P4 is regarded as the FPR
standard at the protein level in this study. However, FPR_P1 is still
retained as the most stringent evaluation criterion at the protein
level.

In addition, several widely used measures are also used in
this study, including AUC (area under the receiver operating
characteristics curve) [14, 23, 61], AULC (area under the receiver
operating characteristics curve with lower FPRs) and AUCPR (area
under the precision recall curve) [23].

Method comparison

In order to fairly compare the performance of various meth-
ods on test datasets, the standalone packages of several
predictors have been downloaded, including AUCpreD [23]
(http://raptorx2.uchicago.edu/StructurePropertyPred/predict/),
DISOPRED 3.16 [17] (URL: http://bioinf.cs.ucl.ac.uk/web_serve
rs/), SPOT-disorder [14] (URL: http://sparks-lab.org/server/SPOT-
disorder/index.php), IUPred 1.0 [12] (URL: http://iupred.enzim.
hu/), SPINE-D 2.0 [15] (URL: http://sparks-lab.org/), DisEMBL 1.4
(URL: http://dis.embl.de) [16] and GlobPlot 2.3 [13] (URL: http://
globplot.embl.de/). These packages are all run with default
parameters.

Results and discussion
Training and parameter optimization

The parameters of RFPR-IDP are optimized on the training
dataset S

Train
all by using 2-fold cross-validation according to AUC.

The optimization range and the optimal value of each parameter
are shown in Table 2. The optimized parameter values on the
training dataset are used to predict the samples in the three test
datasets.

http://raptorx2.uchicago.edu/StructurePropertyPred/predict/
http://bioinf.cs.ucl.ac.uk/web_servers/
http://bioinf.cs.ucl.ac.uk/web_servers/
http://sparks-lab.org/server/SPOT-disorder/index.php
http://iupred.enzim.hu/
http://iupred.enzim.hu/
http://sparks-lab.org/
http://dis.embl.de
http://globplot.embl.de/
http://globplot.embl.de/
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Figure 1. The framework of RFPR-IDP. RFPR-IDP contains five layers, including (i) input layer, which transforms proteins into feature vectors; (ii) CNN layer, which

captures the local information or motifs of proteins by using a series of one-dimensional convolution filters; (iii) FC layer, which captures the effective features of

CNN output; (iv) BiLSTM layer, which captures the long-term dependence information in both directions of proteins; and (v) output layer, which generates the final

prediction category for each residue.

Table 2. The optimization range and the optimal value of each parameter for RFPR-IDP

Parameters Range Increment Optimal value

Number of CNN layer [1, 2] 1 1
Number of BiLSTM layer [1, 2] 1 1
Length of filtersa [5, 13] 2 7
Number of filtersb [50, 400] 50 200
Number of unitsc [100, 400] 50 300
Weightd [1, 5] 1 4

aThe length of one-dimensional convolution filters.
bThe number of one-dimensional convolution filters.
cThe number of units in the LSTM cell in each direction.
dThe weight of positive samples.
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Table 3. Performance of various methods on the test dataset DISORDER723

Predictora Residue level Protein level

Sn Sp MCC BACC AUCPR AULCb AUC Sn Sp MCC BACC P valuec

RFPR-IDP 0.522 0.974 0.519 0.748 0.556 0.032 0.898 0.526 0.973 0.517 0.750 NAd

AUCpreD [23] 0.580 0.974 0.564 0.777 0.621 0.036 0.914 0.590 0.974 0.563 0.782 1.2E-02
DISOPRED3 [17] 0.452 0.986 0.536 0.719 0.597 0.032 0.899 0.455 0.986 0.533 0.720 1.5E-02
SPOT-disorder [14] 0.470 0.983 0.531 0.726 0.574 0.033 0.898 0.483 0.983 0.533 0.733 1.8E-01
SPINE-D [15] 0.779 0.840 0.376 0.810 0.560 0.032 0.891 0.791 0.841 0.384 0.816 4.4E-08
IUPred-short [12] 0.495 0.943 0.382 0.719 0.423 0.023 0.810 0.508 0.943 0.388 0.726 3.8E-02
IUPred-long [12] 0.298 0.949 0.240 0.623 0.247 0.014 0.721 0.289 0.950 0.236 0.619 9.9E-21
DisEMBL-C [16] 0.699 0.449 0.073 0.574 NA NA NA 0.700 0.452 0.074 0.576 5.6E-32
DisEMBL-R [16] 0.296 0.983 0.374 0.640 NA NA NA 0.293 0.983 0.362 0.638 8.7E-17
DisEMBL-H [16] 0.560 0.805 0.214 0.682 NA NA NA 0.566 0.804 0.216 0.685 1.9E-07
Globplot [13] 0.304 0.883 0.136 0.594 NA NA NA 0.307 0.885 0.140 0.596 1.4E-27

Best value for each measure is shown in bold.
aThe parameters of the proposed method RFPR-IDP are described in Section “Training and parameter optimization”. The threshold of SPOT-disorder is set as 0.5, and
the parameters of other related methods are set as default values.
bThe AULC is computed based on lower FPRs. The threshold of FPR is set as 6.3%, which is equal to the ratio of positive samples in the test dataset DISORDER723.
cThe P value is calculated between RFPR-IDP and the other methods in terms of BACC per 10 proteins.
dNA represents not available.

Table 4. False positive rates of various methods on the test dataset S1Test
order

Predictorsa FPR_R FPR_P1 FPR_P4 Rank

FPR_R FPR_P1 FPR_P4

RFPR-IDP 0.53% 24.3% 10.9% 1 1 1
DISOPRED3 [17] 1.56% 78.4% 25.8% 2 2 2
SPOT-disorder [14] 4.16% 90.9% 65.1% 3 4 3
AUCpreD [23] 4.91% 99.7% 74.2% 4 5 5
SPINE-D [15] 6.95% 100.0% 82.7% 5 6 6
IUPred-long [12] 11.23% 85.4% 66.0% 6 3 4
IUPred-short [12] 24.95% 100.0% 99.4% 7 6 7

The FPRs are calculated at the same sensitivity of 0.7 acquired by evaluating test dataset S1.
aThe parameters of RFPR-IDP are listed in Section “Training and parameter optimization”, and the parameters of other related methods are set as the default values.

Performance of various methods for predicting
disordered proteins on the test dataset DISORDER723
with only disordered proteins

In this section, the predictive results of various predictors for
predicting the disordered proteins on the test dataset DISOR-
DER723 are listed in Table 3. In order to avoid overestimating the
proposed method, proteins sharing >25% sequence similarities
with any protein in the DISORDER723 test dataset are removed
from the training dataset STrain

disorder (cf. Eq. 1) by using the Blastclust
algorithm [33]. RFPR-IDP is re-trained with the non-redundant
training dataset to predict the samples in the DISORDER723 test
dataset so as to give the final results. DISORDER723 is a widely
used test dataset for evaluating the performance of predictors.
However, this test dataset only contains 723 disordered proteins
without fully ordered proteins. In other words, this test dataset
can only evaluate the performance for predicting disordered
proteins. We can see that RFPR-IDP outperforms all the other
methods except for AUCpreD [23] and SPINE-D [15].

Performance of various methods for predicting fully
ordered proteins on the test dataset S1Test

order with only
fully ordered proteins

As discussed above, the DISORDER723 test dataset can only
evaluate the performance for predicting the disordered proteins.

In this section, we will investigate the performance of various
methods for predicting the fully ordered proteins, and the results
are listed in Table 4. As expected, RFPR-IDP achieves the lowest
FPRs at both residue level and protein level for predicting the
fully ordered proteins. All the other methods prefer to pre-
dict the fully ordered proteins as disordered proteins because
of the ignorance of the fully ordered protein in their training
processes.

Incorporation of fully ordered proteins into the training
process can reduce FPRs and improve the predictive
performance

Ordered proteins are widespread in nature, but they are ignored
by most of existing predictors. RFPR-IDP is trained with both
fully ordered proteins and disordered proteins, which can
effectively reduce the false positive rates as discussed in
Table 4. In order to further analyze the impact of the fully
ordered proteins on the performance of RFPR-IDP, RFPR-IDP is
trained with different training datasets with different ratios of
fully ordered proteins and disordered proteins. These training
datasets are constructed by randomly removing ordered proteins
from the S

Train
all . The FPRs with the same sensitivity of these

models on test dataset S1Test
order are compared (see Figure 2).

From this figure, we can see that the FPR obviously decreases
when increasing the number of fully ordered proteins. The
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Figure 2. The false positive rates on test dataset S1Test
order achieved by different

RFPR-IDP models trained with different ratios of IDPs and fully ordered proteins.

Num(D) represents the number of IDPs, and Num(O) represents the number of

fully ordered proteins. The FPRs are calculated at the same sensitivity of 0.7

acquired by evaluating test dataset S1.

Figure 3. The performance comparison on test dataset S1 achieved by different

RFPR-IDP models trained with different ratios of IDPs and fully ordered proteins.

Num(D) represents the number of IDPs, and Num(O) represents the number of

fully ordered proteins.

performance of these models on the test dataset S1 is compared
(see Figure 3), from which we can see that the performance of
RFPR-IDP can be obviously improved by adding the fully ordered
proteins into the training dataset. These observations are fully
consistent with our assumption that the fully ordered proteins
should be considered during the training process of RFPR-IDP,
and this approach will make it more suitable for real-world
applications.

Performance of various methods on test datasets
with different ratios of disordered proteins and fully
ordered proteins

Some studies have shown that proteins in different species
contain about 2% to 45% proteins with LDRs [18–22]. To estimate
the performance of RFPR-IDP for predicting disordered proteins
from ordered proteins in nature, the test dataset S1 is adopted

Figure 4. Performance comparison of RFPR-IDP, DISOPRED3, SPOT-disorder, and

AUCpreD for predicting proteins with different ratios of disordered proteins on

test dataset S1.

to simulate the ratio of disordered proteins and ordered pro-
teins in nature. Proteins are randomly selected from S1Test

disorder

and S1Test
orderrespectively in the ratios between 1% and 45%. For a

given ratio, proteins are randomly selected for 10 times, and the
average predictive performance on these 10 subsets is taken as
the final performance. Figure 4 shows the performance of the
top four predictors according to the results listed in Table 3 on
these random selected datasets. As can be seen from this figure,
RFPR-IDP obviously outperforms other three predictors on the
test dataset S1 with different ratios of disordered proteins and
fully ordered proteins, which further confirms that RFPR-IDP is
useful for real-world applications.

Furthermore, the FPRs of different methods under different
evaluation metrics at protein level are compared (see Figure 5A).
From the figure, we can see that (i) the FPRs of RFPR-IDP are com-
parable with DISOPRED3 [17] and are lower than those of other
methods; (ii) From FPR_P30 to FPR_P1, the stricter the judgement
of false positive proteins is, the more obvious the advantages of
our method are. Figure 5B shows a comparison of FPRs of four
methods with the best performance under different evaluation
criteria. From this figure, we can see that RFPR-IDP outperforms
SPOT-disorder [14] and AUCpreD [23] under different evaluation
metrics and is comparable with DISOPRED3 [17]. From FPR_P30 to
FPR_P22, RFPR-IDP is highly comparable with DISOPRED3 [17]
and obviously outperforms DISOPRED3 [17] from FPR_P16 to
FPR_P1.

Performance comparison of various methods on the
test dataset S1 with both fully ordered proteins and
disordered proteins

Various methods are further evaluated on the test dataset S1 (see
Table 5) to objectively evaluate their performance for predicting
both disordered proteins and ordered proteins. Compared with
the results listed in Table 3, although AUCpreD [23] and SPINE-
D [15] outperform RFPR-IDP for predicting the disordered pro-
teins (see Table 3), RFPR-IDP achieves the best performance for
predicting both fully ordered proteins and disordered proteins
(see Table 5). These results are not surprising because RFPR-
IDP considers both the fully ordered proteins and disordered
proteins in the training and test processes, making it more
suitable for predicting newly sequenced proteins, most of which
are in fact fully ordered proteins.
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Figure 5. The false positive rates of different predictors under different evaluation metrics at protein level on test dataset S1Test
order . (A) The FPRs’ comparison of seven

related methods; (B) the FPRs’ comparison of four best performance methods, including RFPR-IDP, DISOPRED3, SPOT-disorder and AUCpreD. The FPRs are calculated at

the same sensitivity of 0.7 acquired by evaluating test dataset S1.

Table 5. Performance of various methods on test dataset S1

Predictora Residue level Protein level

Sn Sp MCC BACC AUCPR AULCb AUC Sn Sp MCC BACC P valuec

RFPR-IDP 0.782 0.923 0.697 0.853 0.852 0.183 0.924 0.749 0.918 0.656 0.834 NAd

DISOPRED3 [17] 0.673 0.961 0.688 0.817 0.848 0.172 0.922 0.633 0.961 0.640 0.797 2.3E-02
SPOT-disorder [14] 0.653 0.969 0.689 0.811 0.838 0.176 0.908 0.606 0.966 0.628 0.786 5.3E-03
AUCpreD [23] 0.633 0.966 0.668 0.799 0.817 0.161 0.897 0.612 0.964 0.623 0.788 4.9E-03
SPINE-D [15] 0.819 0.804 0.555 0.811 0.806 0.168 0.890 0.795 0.801 0.510 0.798 2.1E-02
IUPred-long [12] 0.598 0.939 0.584 0.769 0.749 0.148 0.854 0.565 0.937 0.530 0.751 1.0E-06
IUPred-short [12] 0.502 0.932 0.489 0.717 0.621 0.125 0.822 0.497 0.930 0.451 0.713 1.7E-12
DisEMBL-C [16] 0.775 0.425 0.174 0.600 NA NA NA 0.768 0.425 0.159 0.597 1.1E-34
DisEMBL-R [16] 0.305 0.976 0.417 0.641 NA NA NA 0.300 0.976 0.381 0.638 9.3E-28
DisEMBL-H [16] 0.441 0.795 0.228 0.618 NA NA NA 0.434 0.792 0.197 0.613 1.6E-30
Globplot [13] 0.361 0.859 0.236 0.610 NA NA NA 0.359 0.858 0.217 0.609 1.7E-32

Best value for each measure is shown in bold.
aThe parameters of RFPR-IDP are described in Section “Training and parameter optimization”. The threshold of SPOT-disorder is set as 0.5, and the parameters of other
related methods are set as default values.
bThe AULC is computed based on lower FPRs. The threshold of FPR is set as 23.3%, which is equal to the ratio of positive samples in the test dataset S1.
cThe P value is calculated between RFPR-IDP and the other methods in terms of BACC per 10 proteins. Because the test dataset S1 contains fully ordered proteins, the
BACC of fully ordered proteins cannot be calculated for per protein.
dNA represents not available.

Examples of predicted proteins

In this section, the results of four proteins predicted by RFPR-
IDP, DISOPRED3 [17], SPOT-disorder [14] and AUCpreD [23] are
visualized (see Figures 6–9), including two fully ordered proteins
(3CSZA and 5OSWA) and two disordered proteins (1GVEB and
1J3WA). Their structures are obtained from PDB database [31].
PyMOL (https://pymol.org/2/) software is adopted to generate 3D
structures of these proteins.

The schematic diagrams of two fully ordered proteins are
shown in Figures 6 and 7, and the schematic diagrams of two
IDPs are shown in Figures 8 and 9. As shown in Figures 6 and
7, RFPR-IDP can correctly predict the IDRs or predict fewer false
positive residues than those of other methods, such as the
regions {1, 8}, {11, 11} and {159, 159} in protein 3CSZA (see
Figure 6), the regions {31, 31}, {58, 58}, {60, 60}, {62, 62}, {64, 65},

{68, 69}, {89, 89}, {91, 104}, {266, 276}, {278, 278}, {558, 578} and {582,
583} in protein 5OSWA (see Figure 7). As shown in Figures 8 and
9, RFPR-IDP can more accurately predict these two IDPs, such as
the region {140, 163} of protein 1J3WA in Figure 9. Furthermore,
RFPR-IDP is able to identify IDRs that cannot be identified by
other methods, such as the region {210, 216} of 1GVEB (see
Figure 8). These examples further demonstrate that RFPR-IDP
can effectively reduce the FPRs and can accurately predict both
fully ordered proteins and disordered proteins.

Conclusion
This study investigates the influence of the fully disordered
proteins on training and testing the computational predictors for
intrinsically disordered protein and region prediction. Based on

https://pymol.org/2/
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Figure 6. A schematic diagram of ordered protein 3CSZA predicted by RFPR_IDR, DISOPRED3, SPOT-disorder and AUCpreD, where yellow residues and red residues

represent ordered and disordered residues, respectively. (A) The real structure of protein 3CSZA without IDRs; (B) no false IDR predicted by RFPR_IDP; (C) false IDRs

predicted by DISOPRED3 are: {1, 8} and {11, 11}; (D) false IDR predicted by SPOT-disorder is: {1, 5}; (E) false IDRs predicted by AUCpreD are: {1, 1} and {159, 159}. The curly

brace indicates the positional interval of region in the protein.

Figure 7. A schematic diagram of ordered protein 5OSWA predicted by RFPR_IDR, DISOPRED3, SPOT-disorder and AUCpreD, where yellow residues and red residues
represent ordered and disordered residues, respectively. (A) The real structure of protein 5OSWA without IDRs; (B) false IDR predicted by RFPR_IDP is: {1, 6}; (C) false

IDRs predicted by DISOPRED3 are: {1, 3}, {31, 31}, {58, 58}, {60, 60}, {62, 62}, {64, 65}, {68, 69}, {89, 89}, {91, 104}, {266, 276}, {278, 278}, {558, 578} and {582, 583}; (D) false IDRs

predicted by SPOT-disorder are: {1, 1} and {578, 583}; (E) false IDRs predicted by AUCpreD are: {1, 3} and {579, 583}. The curly brace indicates the positional interval of

region in the protein.
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Figure 8. A schematic diagram of protein 1GVEB with IDRs predicted by RFPR_IDR, DISOPRED3, SPOT-disorder and AUCpreD, where yellow residues and red residues

represent ordered and disordered residues, respectively. (A) True IDRs: {1, 3} and {209, 231}; (B) IDRs predicted by RFPR_IDR are: {1, 2} and {210, 216}; (C) IDR predicted by

DISOPRED3 is: {1, 3}; (D) IDRs predicted by SPOT-disorder are: {1, 2} and {321, 327}; (E) IDRs predicted by AUCpreD are: {1, 4} and {327, 327}. The curly brace indicates the

positional interval of region in the protein.

the results, we conclude that the predictors in this field should
consider both the fully disordered proteins and ordered proteins
during their training and test processes. Otherwise, a predictor
will prefer to predict the fully ordered proteins as disordered
proteins. This will prevent their real-world applications, because
most of the proteins are fully ordered proteins in nature. Based
on these findings, we make an attempt to propose the RFPR-IDP
predictor to use both the fully ordered proteins and disordered
proteins and show that this method is able to overcome the
aforementioned disadvantage. The performance improvement
of the RFPR-IDP is mainly benefited from the incorporation of
the fully ordered proteins into the training processes. It should
be noted that although RFPR-IDP shows better performance for
predicting fully ordered proteins, AUCpreD [23] and SPINE-D [15]
outperform the RFPR-IDP for predicting the disordered proteins
(see Table 3). Therefore, we believe that these two methods and
other approaches will be benefited from the findings of this
study and will be improved by considering both the disordered
proteins and fully ordered proteins.

Key points
• As reported in previous studies, most of the proteins

are fully ordered proteins in nature. However, most of

the existing methods are only evaluated on datasets
consisting of disordered proteins without or with only
a few fully ordered proteins. As a result, these pre-
dictors prefer to predict a fully ordered protein as a
disordered protein, preventing their real-world appli-
cations.

• In order to solve this problem, we propose a new
method called RFPR-IDP trained and tested with both
fully ordered proteins and disordered proteins. RFPR-
IDP is constructed based on the combination of con-
volution neural network (CNN) and bidirectional long
short-term memory (BiLSTM), in which CNN can cap-
ture the local information or motifs of proteins and
BiLSTM can learn the long-term dependence informa-
tion in both directions of proteins.

• RFPR-IDP outperforms 10 existing state-of-the-art
methods in this field with the lowest FPRs, especially
for predicting the fully ordered proteins. We believe
that other methods will be benefitted from the find-
ings of this study, and they can be further improved
by considering both the fully ordered proteins and
disordered proteins.
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Figure 9. A schematic diagram of protein 1J3WA with IDRs predicted by RFPR_IDR, DISOPRED3, SPOT-disorder and AUCpreD, where yellow residues and red residues

represent ordered and disordered residues, respectively. (A) True IDRs: {1, 5} and {140, 163}; (B) IDR predicted by RFPR_IDR is: {140, 163}; (C) IDRs predicted by DISOPRED3

are: {1, 1} and {153, 163}; (D) IDR predicted by SPOT-disorder is: {1, 1}; (E) IDRs predicted by AUCpreD are {1, 6} and {163, 163}. The curly brace indicates the positional

interval of region in the protein.
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