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Abstract
Bio-signal based hand motion recognition plays a critical role in the tasks of human-machine interaction, such as the natural 
control of multifunctional prostheses. Although a large number of classification technologies have been taken to improve the 
motion recognition accuracy, it is still a challenge to achieve acceptable performance for multiple modality input. This study 
proposes a multi-modality deep forest (MMDF) framework to identify hand motions, in which surface electromyographic 
signals (sEMG) and acceleration signals (ACC) are fused at the input level. The proposed MMDF framework constitutes of 
three main stages, sEMG and ACC feature extraction, feature dimension reduction, and a cascade structure deep forest for 
classification. A public database “Ninapro DB7” is used to evaluate the performance of the proposed framework, and the 
experimental results show that it can achieve a significantly higher accuracy than that of competitors. Besides, our experi-
mental results also show that MMDF outperforms other traditional classifiers with the input of the single modality of sEMG 
signals. In sum, this study verifies that ACC signals can be an excellent supplementary for sEMG, and MMDF is a plausible 
solution to fuse mulit-modality bio-signals for human motion recognition.

Keywords Deep forest · sEMG signals · Acceleration signals · Hand gesture classification

1 Introduction

Amputation is the main cause of disability and prostheses 
play an important role in assisting amputees to conduct daily 
activities [1]. Functionality, controllability and aesthetics are 
three key elements in the design of prosthetic hands [2]. 
Using surface electromyographic signals(sEMG) to con-
trol prostheses owns its natural advantage, since sEMG 
naturally reflects muscular activities that originally drive 
the skeleton joints to move [2, 3]. However, for complex 
hand movements, it is still a challenge to predict the human 
intentions from multi-channels of sEMG signals. Despite 

the technological advances, existing prostheses cannot fully 
meet the actual needs of amputees in terms of dexterity. 
Therefore, how to naturally interact with a multi-functional 
and dexterous prosthesis becomes a challenging problem [4].

To make these robotic devices work accurately, the 
basic problem is how to distinguish users’intentions from 
the obtained bio-signals. Recent decade witnesses the fast 
progress of pattern recognition technology, and it has been 
widely applied to predict human intentions from sEMG 
signals [5]. However, there exits a major issue regarding 
technology assessment for a fair comparison, because of 
the diversity of experimental setups, including the types 
and the number of gestures, the construction of the dataset, 
differs in the number of samples obtained, the shape, ori-
gin, and type of sensor used [6]. As a result, experimental 
results are not always reproducible. A possible solution is 
to establish public benchmark databases and set down rules 
for the experiments. Ninapro (Non-Invasive Adaptive Hand 
Prosthetics (http://ninaweb.hevs.ch/) [7–9]) is one of the 
most famous sEMG databases for the evaluation of machine 
learning algorithms for upper limb prosthesis control, which 
somewhat becomes a benchmark database. With different 
researching targets and experimental setups, Ninapro can 
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be divided into several sub-ones ranged from DB1 to DB9. 
The number of gestures in Ninapro can be up to 50, which 
becomes one of its main characteristic.

The main novelties and contributions of this study are 
as follows: (1) to the best of our knowledge, it is the first 
attempt to take deep forests in classifying hand motions from 
sEMG signals; (2) this study modifies the original gcFor-
est [10] via replacing the multi-grained scanning by feature 
extraction technology, and applies it in the fusion of sEMG 
and ACC modalities; (3) this study verifies the importance 
of ACC signals as a complement for hand motion recogni-
tion, and the proposed MMDF can be a decent solution for 
multi-modality data fusion at input level.

2  Related works

A pattern recognition system using single modality of sEMG 
signals would be negatively influenced by the arm position 
[11–13]. Thus, ACC signals are usually taken as additional 
modality to counteract it, and they can be easily measured 
via integrating into the prosthesis receiving cavity without 
much cost. The combination of sEMG and ACC has been 
used in motor rehabilitation [14], sign language recogni-
tion [15], and prosthesis control [12, 16, 17]. For instance, 
Fougner et al. [12] demonstrated the average classification 
error can be reduced from 18% to lower than 6% via fusing 
ACC signals (collected under different arm positions) with 
sEMG signals. Khushaba et al. [16] studied the combined 
effects of forearm orientation and muscle contraction level, 
and verified that the use of accelerometers is beneficial to the 
classification performance. Liu et al. [14] take sEMG and 
ACC as multi-feedback user interface for upper limb motor 
rehabilitation user training, and the method improves the 
users’ initiative and performance.

In terms of the fusion approach, sEMG and ACC signals 
can be fused in the feature level or the decision level [18]. 
Xie et al. [19] utilized EMG and ACC signals to predict 
hand movements, which EMG signals are used to recognise 
static hand gesture via a dynamic time warping algorithm 
and KNN classifier, and ACC signals are used to predict 
dynamic wrist movements (indicating left, right, up, and 
down). Eventually, hand gesture and wrist movement are 
combined at the decision level. Liu et al. [4] fused sEMG 
and ACC at the feature level to recognise 17 hand move-
ments, where sEMG features and ACC features are con-
joined as the input vector for classifiers. Similarly, Krasoulis 
et al. [20] fused sEMG with various inertial measurements 
(IM), including accelerometers, gyroscopes and magnetom-
eters, in offline and online hand motion recognition experi-
ments, where several feature combinations (fusion at feature 
level) from multiple modalities are fed to linear discriminant 
analysis (LDA) for classification. Regardless fusing data at 

the feature level or decision level, it is proved that multi-
modal solutions have the potential to improve the usabil-
ity of pattern recognition based upper limb prostheses in 
practical applications. The current study adopts GcForest 
algorithm to fuse sEMG and ACC at the feature level.

GcForest is a highly competitive decision tree ensem-
ble method for deep learning [10]. It employs a cascade 
structure to realize layer-by-layer processing, but its train-
ing process does not rely on back-propagation and gradient 
adjustment. The original framework of GcForest for image 
classification consists of multi-grained scanning and cascade 
forest, and some modified models can be found in [21–24]. 
Compared with deep neural networks, GcForest has fewer 
hyper-parameters and can achieve excellent performance 
across various domains by using even the same parameter 
setting. Daouadi et al. [25] adopted deep forest to classify 
tweet topics, and find that deep forest does not require a 
huge amount of labeled data for training, but can achieve 
better classification performance than that of other state-of-
the-art approaches. Ding et al. [26] compared a deep forest 
model with a deep neural network model in the application 
of mechanical fault diagnosis, and find that the former is 
more effective and shows a stronger generalization ability. 
Sun et al. [24] propose an adaptive feature selection guided 
deep forest for COVID-19 classification with chest com-
puted tomography (CT), and achieve higher classification 
accuracy than traditional classifier. Fang et al. [27] propose 
a multi-feature deep forest (MFDF) model to identify human 
emotions from EEG signals, and achieve competitive clas-
sification performance, which is the first attempt that uses 
human-crafted features to replace a multi-grained scanning 
structure in a deep forest framework. The proposed MMDF 
model of the current study is an extension of MFDF, where 
multiple modality signals are fused in the feature level.

The organization of this study is as follows. Section 3 
introduces the proposed methodology for hand motion clas-
sification, including the feature extraction method and the 
MMDF. Sections 4 and 5 demonstrate the experimental 
results with discussions. Section 6 concludes the study.

3  Materials and methods

This section introduces the overall framework for hand 
motion recognition, including sEMG and ACC signals 
processing and feature extraction, the algorithm of multi-
modality deep forest, and the evaluation procedure.

3.1  Hand motion recognition framework

This study proposes a hand motion recognition framework 
with sEMG and ACC signals as the input, as shown in Fig. 1. 
It follows the guidelines of Englehart and Hudgins’ general 
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framework [28]. Firstly, the original data are filtered to 
remove unexpected noises, and relabeled for classifier train-
ing. Then, features are extracted from sEMG and ACC sig-
nals, and the dimensionality of the ACC feature is reduced 
by PCA(Principal Component Analysis). Thirdly, MMDF 
classifies the feature vector (the combination of sEMG and 
ACC features) into one of the hand gestures.

3.1.1   Filtering

Following Krasoulis’suggestion [20], the ACC data were 
low-pass filtered at a cutoff frequency of 5 Hz by a zero-
phase second order Butterworth filter to remove high fre-
quency noise components. For sEMG signals, a Hampel 
filter is applied to remove 50 Hz powerline noise and its 
harmonics power-line interference.

3.1.2  Relabeling

It is unrealistic to make the subjects perfectly mimic the kin-
ematics of the video stimulus due to human reaction delay. 
The authors of the database had applied an offline general-
ized likelihood ratio algorithm to correct the fault labels, 
which realigned the movement boundaries by maximizing 
the likelihood of a rest-movement-rest sequence [3].

3.1.3  Feature extraction

A sliding window is taken in this study for extracting sEMG 
and ACC features. The choice of the window size trades the 
balance between the prediction delays and the classification 
accuracy [8, 28]. This study follows Krasoulis’ suggestion 
and selects the sliding window of 265 ms with the increment 
of 50 ms to divide the sEMG and ACC signals [20], which 
meets the suggested maximum allowable delay of 300 ms 
[16].

Feature selection is an essential stage in sEMG classifica-
tion, and a large amount of features have been evaluated in 
myoelectric control design [9]. Although frequency domain 

features are much more complex than time domain (TD) fea-
tures, it has not been found that frequency domain features 
outperform TD features [29]. To guarantee the real-time per-
formance of the recognition framework, time domain (TD) 
sEMG features are taken in this study. For ACC features, the 
mean value (MEAN) are calculated from AAC signals, as sug-
gested by Fougner et al. [30].

Five classic TD sEMG features [29, 31], including Mean 
Absolute Value (MAV), Waveform Length (WL), Zero 
Crossing(ZC), Slope Sign Changes(SSC) and Autoregressive 
coefficients 4 (AR4), are used in the current study. The defini-
tion of these sEMG features is provided as follows, where N 
is the sliding window size, and xi an instant sEMG value at 
the time point i. MAV is the average of absolute value in a 
window, which somewhat demonstrates the envelope of sEMG 
signals, and can also be used as muscle activation [32]. It is 
defined in Eq. (1).

WL is the cumulative length of the waveform of EMG sig-
nals. It is defined in Eq. (2).

ZC is the number of times that the signals crosses zero, 
which is somewhat associated with the frequency of EMG 
signals. It is defined in Eq. (3).

where

and � is the threshold to avoid low-level noises.
SSC provides another measure of the frequency content 

measuring the number of times the slope of the waveform 
changes the sign. It is defined in Eq. (5).

where

(1)MAV =
1

N

N∑
i=1

|xi|.

(2)WL =

N−1∑
i=1

|xi+1 − xi|.

(3)ZC =

N−1∑
i=1

sgn
(
−xixi+1

)
,

(4)sgn(x) =
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0, x ≤ 𝜀
,

(5)SSC =
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f
(
xi−1, xi, xi+1

)
,

(6)

f
�
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�
=

⎧
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1,
�
xi+1 − xi

��
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�
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�
0 else

.

Original Signal

（sEMG and ACC）
Filtering

Relabeling

sEMG and ACC

Feature Extraction

Feature Processing:

Dimension Reduction
MMDF ClassifierPredicted Gesture

Fig. 1  The diagram of hand motion recognition framework, where 
signals reprocessing, feature extraction, feature dimension reduction, 
and MMDF classifiers are included
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In the current study, � is set to 2 for both ZC and SSC.
An auto-regressive (AR) model specifies that the output 

variable depends linearly on its own previous values and a 
stochastic term, as shown in Eq. (7).

where P is the order of the model. �j is the jth coefficient 
of the model. Et is the residual white noise, and k is the kth 
sampling point in the sEMG sequence.

In addition, the MEAN value is used as the features of 
ACC signals, which is defined in Eq. (8).

where N is the number of sampling point to calculate the 
MEAN value.

3.2  Multi‑modality deep forest

The proposed MMDF can be divided into two parts: the 
input part and the cascade forest.

(7)xi,k =

P∑
j=1

�jxi,k−j + Et,

(8)MEAN =
1

N

N∑
i=1

xi,

The input part is responsible for extracting features from 
12 channels of sEMG and 12 channels of ACC, and then 
combining the features into a feature vector. The schematic 
diagram of feature fusion is shown in Fig. 2.

After feature extraction, the feature vector of an EMG 
sample can be defined in Eq. (9).

where

where i ranges from 1 to 12, indicating the channel num-
ber. Therefore, the length of the EMG feature vector is 12×
8 = 96 , where 8 is the number of types of features and 12 
is the number of channels. For the ACC feature vector, the 
original length is 36, including 12 channels and 3 sensory 
directions for each channel. Following Liu’s advice [4], to 
reduce the redundant information in ACC signals, PCA 
based dimension reduction is applied to obtain the first 18 
main components, which can be defined in Eq. (11).

where MEANi indicates the ith main components after PCA. 
Therefore, the final fusion of SEMG and SACC is

(9)SEMG =
[
f1, f2,… , f12

]
,

(10)fi =
[
MAVi,WLi,AR1i,AR2i,AR3i,AR4i, SSCi, ZCi

]
,

(11)SACC =
[
MEAN1,MEAN2,…MEAN18

]
,

Fig. 2  The structure of feature 
extraction; The feature extrac-
tion process of the sEMG and 
the ACC has a lot in common, 
and it is necessary to perform 
window segmentation on the 
data of each channel separately, 
and then extract the features. 
The difference is that five 
features of MAV, WL, AR4, 
SSC, and ZC are extracted for 
the sEMG, and only the average 
value is extracted for the ACC. 
Finally, the two data types are 
merged into one feature vector
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where y indicates the label in 40 types of gestures.
The architecture of the cascade forest can be found in 

Fig. 3, where the input is in the form of a feature vector, 
which is processed by several layers of the forest group 
ordered from level 1 to level n, leading to the classification 
output. Four forests compose a forest group, and each group 
contains two types of forests: completely-random tree forest 
and random forest [10, 33, 34].

Given an instance, each forest can produce an estimation 
of the class probability distribution, by counting the percent-
age of each class of training examples at the leaf node in 
which the concerned instance falls, and then averaging the 
class probability distributions estimated by various trees in 
the same forest. After expanding a new level, the perfor-
mance of the whole cascade can be estimated on a validation 
set, and the training procedure will terminate if there is no 
significant performance gain. Thus, the number of cascade 
levels can be automatically determined.

The training procedure of a deep forest can be formalized 
as follows. Considering the supervised learning problem of 
learning a mapping from the feature space X

to the label space Y where Y = {1, 2,… ,C}, Z = [0, 1]C 
and training set S =

((
�1, y1

)
,… ,

(
�m, ym

))
 can be drawn 

from distribution D. A deep forest model is defined by a 
triplet (�, � , �) where

• � =
(
h1,… , hT

)
 , where ht is the ensemble of forests at 

level t, and ht is a member of hypothesis class Ht.

(12)S =
[
SEMG, SACC, y

]
, • � =

(
f1,… , fT

)
 , where ft is the cascade of ensembles of 

forests up to level t.
• � =

(
l1,… , lT

)
 , where lt is the validation error at level t.

At level t ∈ {1,… , T}, ft ∶ X → Z

is defined as follows:

At every level t, ht(⋅) and ft(⋅) output a class vector [
pt
1
,… , pt

C

]
, where pi is the prediction of class i. The input 

of ht is 
[
�, ft−1(�)

]
 except at level t=1, where its input is �.

At level t, if the difference (lt−1 − lt) between the valida-
tion error lt−1 of an input at level t − 1 and the validation 
error lt at level t is less than or equal to the threshold �, it 
needs to go through the next level. Until the Tth layer is 
reached, the difference between the validation error and 
the T − 1 layer is greater than the threshold � , and the 
final layer number T of the deep forest is determined. Each 
triplet (�, � , �) defines a deep forest model g ∶ X → Y  as 
follows:

where t� = argt∈{1,…,T}

(
lt−1 − lt

)
≦ �.

Algorithm 1 summarizes the training algorithm for a 
deep forest. 

(13)ft(�) =

{
h1(�) t = 1,

ht
([
�, ft−1(�)

])
t > 1.

(14)g(�) = argmax
c∈{1,…,C}

[
ft� (�)

]
c
,

Fig. 3  The structure of cascade 
forest; each layer of the cascade 
consists of two types of random 
forests with different color 
blocks, and the number of layers 
is optimised during the training 
stage
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3.3  Model evaluation

The database utilized in this study is the seventh version 
(DB7) of the publicly available Non Invasive Adaptive 
Prosthetics(NinaPro) database [35], which is designed to 
promote the state of sEMG controlled hand prosthetics. Data 
were collected offline from 20 able-bodied and 2 amputee 

Fig. 4  Sensor placement on able-bodied (left) and amputee subjects 
(centre, right) [20]. Eight EMG-IM sensors are equally spaced around 
the participants’forearm (3 cm below the elbow). Two are place on 

EDC and FDS muscles, and the rest two on biceps and triceps mus-
cles. Elastic bandage is used to fix sensors

Table 1  The medical records of two amputee subjects

Gender Age Type of amputation Cause of amputation Years Missing limb Hand dominance Prosthesis
(prior to amputation) use

Male 28 Transradial Car accident 6 Right Right Split hook
Male 54 Transradial Car accident (epitheliod 

sarcoma)
18 Right Right Split hook

In the current study, each forest in a layer can generate 
40 probability values for each class (i.e. gestures). There-
fore, each layer would generate 160 probability values 
as enhanced features produced by four random forests. 
Except the input of the first layer, all the following layers 
are fed by the contact of 160 enhanced features and the 
original 114 features from EMG and ACC.
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subjects by adopting the NinaPro protocol [7, 8]. Subjects 
were asked to reproduce a series of 40 motions, including 
various individuated-finger, hand, wrist, grasping and func-
tional movements. Each movement was repeated six times 
with 5 s resting interim between each trail. Two amputee 
volunteers were instructed to perform bilateral imaginary 
mirrored movements.

In NinaPro DB7, EMG and IM data were collected by 
using 12 Trigno Wireless electrodes (Delsys, Inc, www.
delsys.com). The sampling frequency was set to 2 kHz for 
myoelectric signals and 128 Hz for ACC data. This data-
base followed the NinaPro protocol to place 12 sensors [7]. 
Figure 4 demonstrates the electrode placement for a healthy 
subjects and an amputee. Two amputee’s medical records is 
also provided in Table 1.

As shown in Fig. 3, each layer in the cascade forest struc-
ture contains four random forests. The number of trees in a 
random forest affects its performance. Training more trees 
is very likely to bring in higher classification accuracy, but 
increase the computational burden. In [10], the number of 
trees was set to 500 for both completely random forest or 
an ordinary random forest, as suggested in [36]. This study 
explores the most appropriate number of trees to determine 
the number of trees in a forest, and the data of one subject 
(s1) are used to evaluate how the number of trees influences 
the classification accuracy. Figure 5 shows the accuracy 
change along the increase of the number of trees. It can be 
found that with the increase of the number of trees, the accu-
racy shows a clear improvement. When the number of trees 

increases to 125, accuracy enhancement becomes stable. 
In order to balance computing resources and classification 
accuracy, this study sets the number of trees in each random 
forest to 125.

Following the same protocol proposed in [20], 6-fold 
cross-validation is applied to obtain the average classifica-
tion accuracy, where five repetitions are used to train the 
MMDF, and the remaining one for testing. This study evalu-
ates MMDF in six aspects.

• Healthy subjects vs amputation subjects. The signals 
acquisition protocol for healthy subjects and amputees 
are different, which leads to the divergence of two groups 
of data. This study evaluates MMDF on both data sets 
from twenty healthy subjects and two amputees to evalu-
ate its robustness.

• Feature fusion vs single modality. To verify the inte-
gration of the ACC signals with EMG can improve the 
classification accuracy, this study compares the achieved 
accuracy by MMDF in three input modalities, including 
EMG + ACC, EMG, and ACC.

• ACC feature reduction. MMDF’s performance are com-
pared before and after ACC feature dimension reduction, 
which aims to prove why the dimension of ACC feature 
need to be reduced.

• Comparison with other traditional classifiers on accu-
racy and speed. This study also compares MMDF with 
SVM, KNN, RF and the original GcForest. Some key 
parameters are adjusted empirically purchasing a higher 
classification accuracy. For KNN, parameter ’k’ is set to 
5. For SVM, RBF-kernel is selected. For RF, the number 
of the decision tree is set to 100. For the evaluation of 
the original GcForest, the original data are processed by 
multi-grained scanning before feeding to the deep forest.

• Confusion matrix. To observe how does the misclassi-
fication happen in MMDF, the confusion matrices of s1 
(healthy subject) and s21 (amputee subject) are demon-
strated.

• Comparison with literature. Relevant studies that take 
EMG and ACC as the input for hand motion classifica-
tion are surveyed for comparison. Since the difference 
on the number of channels, classes, data sets, etc. It is 
hard to make a precise comparison on the performance 
of different classifier. Therefore, this study lists as much 
details as possible to demonstrate the merit of MMDF. 
The hardware environment and software environment 
used in this article are: 3.00GHz CPU 32G memory and 
python 3.8.6.

Fig. 5  The change of classification accuracy when the use of different 
number of trees in each forest
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4  Results

Figure 6 shows the classification accuracy achieved by 
MMDF, in which the performance scores are compared 
between the settings with and without dimensionality reduc-
tion, and between intact subjects and amputees. It is found 
that the obtained accuracy after fusing EMG and ACC fea-
tures is much higher than that of single EMG or ACC for 
all situations. For intact subject, the classification accuracy 
is 89.33 ± 3.14% after fusion, which is 13.35% and 4.41% 
higher than using single modality of sEMG or ACC sig-
nals when the feature dimensionality of ACC is not reduced 
(Fig. 6A). It also can be seen that using single modality 
of ACC signals can obtain higher classification accuracy 
than using only sEMG signals. Consistent results can be also 
found in amputee subjects, regardless whether dimensional-
ity reduction is applied or not. In the comparison between 

intact subjects and amputee subjects, the accuracy improve-
ment (13.35% vs 20.26%) obtained after fusing EMG and 
ACC features is more significant for intact subjects.

Figure 6 also reflects that dimensionality reduction on 
the ACC signals can enhance the performance of MMDF. 
In particular, the accuracy is 91.40 ± 2.02% for EMG+ACC 
with dimensionality reduction in intact subjects, which is 
2.07% higher than the one obtained without dimension-
ality reduction. Also, the accuracy is 77.80 ± 9.61% for 
EMG + ACC with dimensionality reduction in amputee 
subjects, which is 2.57% higher than the one obtained with-
out dimensionality reduction. These results are also reflected 
in Table 2.

Figure 7 and Table 3 show the comparison of MMDF 
with SVM, KNN and RF and the original GcForest. For 
healthy subjects, the average classification accuracy 
obtained by MMDF is up to 91.40 ± 2.02%, while they are 
only 68.88 ± 4.23%, 72.43 ±  5.49%, 72.91 ± 2.73%, and 

Fig. 6  The above figure respectively shows the classification accu-
racy of the intact subject and the amputee subject for three different 
data input EMG+ACC, EMG, ACC, where A is the experimental 
result before dimensionality reduction, B is the result of dimensional-
ity reduction processing on the ACC features using PCA. For intact 

subjects, each bar shows the average classification accuracy across 
20 complete subjects for 40 types of gestures. For amputation sub-
jects, each bar shows the average accuracy of two amputees, where 38 
motions are classified

Table 2  The hand motion recognition accuracy by GcForest under different conditions

Data input Subject type EMG + ACC EMG ACC EMG + ACC (dimen-
sionality reduction)

ACC (dimen-
sionality reduc-
tion)

Accuracy (%) Healthy subjects 89.33 ± 3.14 75.97 ± 3.61 84.92 ± 3.30 91.40 ± 2.02 87.04 ± 2.57
Amputation subjects 75.23 ± 1.94 57.54 ± 4.44 69.30 ± 0.06 77.80 ± 9.61 71.53 ± 2.10
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57.31 ± 4.06% for KNN, RF, SVM, and the original GcFor-
est, respectively. For the amputees (i.e. s21 and s22), MMDF 
achieves the average accuracy at 77.80 ± 9.61%, which is 
38.00%, 20.75%, 19.26%, and 20.47% higher than that of 

KNN, RF, SVM, and the original GcForest, respectively. 
Besides, it can be found that the accuracy obtained from 
amputees are much lower than that of healthy subjects.

Fig. 7  The classification accu-
racy comparison among MMDF 
(this study), RF, SVM, KNN 
and the original GcForest across 
all different subjects, including 
two amputees s21 and s22

Table 3  The averaged classification accuracy comparison among MMDF (this study), RF, SVM, KNN and the original GcForest for healthy 
subjects

Classifier KNN RF SVM GcForest MMDF

Accuracy (%) 68.88 ± 4.23 72.43 ± 5.49 72.91 ± 2.73 57.31 ± 4.06 91.40 ± 2.02

Fig. 8  The Confusion matrices obtained from subject s1 (intact) and 
subject s21 (amputee), and are displayed in the left panel and the 
right panel, respectively. The x-axis of the matrices is the class label 

of the predicted results by the proposed methods MMDF, while the 
y-axis shows the actual class label. The change of color shows the 
accuracy
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Figure 8 shows the confusion matrices of the intact sub-
ject s1 and the amputee subject s22 using the proposed 
MMDF method. The overall accuracy for s1 and s22 are 
around 90% and 80%, respectively. It can be seen from 
both matrices that most of the classes are correctly pre-
dicted, and MMDF performs better on the intact subjects 
than on amputee subjects. Besides, it can be also found 
that most misclassifications happen among neighboring 
classes because of their similarity.

Table  4 summaries some related studies regarding 
the fusion of sEMG and ACC signals to conduct hand 
motion recognition. To the best of our knowledge, the only 
study that utilises the same database (i.e. Ninapro DB7) 
to implement hand gesture recognition is by Krasoulis 
et al. [20]. Using the combination of sEMG features (i.e. 
MAV/ML/AR4/LogVar) and ACC feature (i.e.MEAN), 
they obtained the accuracy about 77% for 20 healthy sub-
jects, which is much lower than 91.4% achieved by the 
proposed MMDF. Although Xie et al. [19] and Kong et al. 
[37] achieve a very high classification accuracy ( Both are 
about 96%) using both KNN and LSTM, the number of 
gestures is only 12 and 8, respectively. Based on Ninapro 
DB5, another study obtains the accuracy of 88.7% for the 

classification of 18 gestures [4]. Although the number of 
gestures is half of that of the current study, the accuracy 
is still 2.7% lower.

Figure 9 shows the training time and testing time of each 
classifier under the same laboratory environment. With the 
same amount of data, the time-consuming of the classifier 
with deep forest structure is much greater than that of tra-
ditional classifiers. This is due to the complex structure of 
deep forests. In the comparison with the original GcForest, 
the time-consuming of MMDF is slightly reduced. In practi-
cal applications, time-consuming is a very important factor. 
In future research, more effort will be devoted to reducing 
time-consuming.

5  Discussion

This section discusses the study in three aspects: (1) why 
grained scanning is replaced by human-crafted feature 
extraction; (2) the selected features and the advantage of 
GcForests; (3) the benefit of ACC signals in sEMG based 
hand motion recognition.

Table 4  Related studies on the fusion of sEMG and ACC signals to recognise hand motions on healthy subjects

References Electrodes Classes Features Database Classifier Accuracy (%) Number of subject

[20] 12 40 sEMG (MAV/ML/AR4/LogVar) + ACC 
(MEAN)

Ninapro DB7 LDA About 77 20 (intact)

[19] 8 12 sEMG (MAV) + ACC (MEAN) Self-test KNN 96.11 5 (intact)
[37] 8 8 sEMG) +) ACC Self-test LSTM 96.87 5 (intact)
[4] 12 18 sEMG (MAV) + ACC (MEAN) Ninapro DB5 SVM 88.7 ± 2.6 5 (amputee)
This study 12 40 sEMG (MAV/ML/AR4/SSC) + ACC 

(MEAN)
Ninapro DB7 Deep Forest 91.40 20 (intact)

Fig. 9  The comparison of time 
cost on different classifiers
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5.1  The change in GcForest

The original GcForest algorithm consists of multi-grained 
scanning and cascading forests [10]. Multi-grained scanning 
similar to sliding window technology, which is usually used 
to process raw data for data argumentation for better train-
ing. For instance, Zhai et al. obtain image features through 
grained scanning to predict the level of facial appearance 
[38], and Liu et  al. introduce a multi-grained scanning 
method to enrich features for credit scoring [39]. The current 
study replaces the grained scanning by human-crafted fea-
ture extraction, which significantly reduces the dimension of 
the input for cascading forest, and speeds up model converg-
ing. It is probably the reason why the proposed MMDF can 
achieve higher accuracy than the original GcForest, which 
is consistent with the results in [27].

5.2  Feature selection and the advantage 
of GcForest

Feature extraction is a key factor in sEMG based pattern rec-
ognition, and the quality of feature selection directly affects 
its performance. This study selects five time domain features 
for the experiments as mostly suggested in [31, 40]. How-
ever, it is worthy to be studied that whether including more 
features can further improve its performance.

Random forest, as the basic element of GcForest, it gets 
much lower classification accuracy than that of MMDF in 
our experiments, as summarised in Table 3. It indicates that 
the deep layer-by-layer cascade structure plays a critical 
role in GcForest, where the probability output of each layer 
is used as the input of the next layer. But the reason why 
such cascade structure would improve the performance still 
need further investigation. Whether KNN and SVM can be 
also constructed in cascade structure can be further stud-
ied. Besides, the advantage of MMDF can also be reflected 
by other classifier metrics, including Recall, Precision and 
F-score, seen in Table 5.

5.3  The benefit of accelerometers

The current study proves that ACC plays a significant 
impact on the motion classification performance, which 

is consistent with the ones reported in [4, 19, 20, 37]. For 
a simple comparison, ACC even outperforms sEMG, as 
shown in Fig. 7. ACC seems to be a better choice when 
single modality signals is considered. However, it needs to 
be noticed that the robustness of ACC have not been widely 
investigated, such as the impact of arm position, electrode 
displacement, etc. More importantly, there exists funda-
mental theory that sEMG is somewhat the intrinsic cause 
of hand motions including the applied force, but ACC is 
only the external appearance of the motion from a specific 
angle of view. ACC cannot replace the function of sEMG 
on detecting the onset/offset of movement and predicting the 
muscle force [41]. In sum, ACC can be an important sup-
plement to sEMG for hand motion classification, but could 
not replace EMG. Since multi-channel ACC signals contain 
a large amount of redundant information [4], it is necessary 
to reduce its dimension before classification, which is also 
pointed out in [19].

6  Conclusion

This study proposes a multi-modality deep forest (MMDF) 
framework to identify hand motions, which fuses the input of 
sEMG and ACC signals. Instead of using original EMG sig-
nals, five EMG features (i.e. MAV, WL, ZC, SSC and AR4) 
and an ACC feature (i.e. MEAN) are selected as the input 
of MMDF. Ninapro DB7 is utilised to validate the effec-
tiveness of the proposed framework. The accuracy reaches 
up to 91.40 ± 2.02% (intact subjects) and 77.80 ± 9.61% 
(amputation subjects) for the classification of 40 types of 
hand movements, which is significantly higher than that of 
the competing classifiers. Besides, the study also shows that 
ACC is an excellent supplementary modality for myo-con-
trol, but it is suggested to reduce the feature dimensionality 
of ACC signals. Moreover, the experimental result shows 
that although the training cost of MMDF is expensive, its 
prediction delay is acceptable.

In the future, deep forest structure will be further opti-
mized to improve the classification accuracy and reduce 
its computing burden, and its robustness will also be tested 
towards electrode shift, muscle fatigue, etc.
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