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Retinal vessels are known to be associated with various cardiovascular and cerebrovascular disease outcomes. Recent research has

shown significant correlations between retinal characteristics and the presence of cerebral small vessel disease as measured by white

matter hyperintensities from cerebral magnetic resonance imaging. Early detection of age-related white matter changes using retinal

images is potentially helpful for population screening and allow early behavioural and lifestyle intervention. This study investigates

the ability of the machine-learning method for the localization of brain white matter hyperintensities. All subjects were age 65 or

above without any history of stroke and dementia and recruited from local community centres and community networks. Subjects

with known retinal disease or disease influencing vessel structure in colour retina images were excluded. All subjects received MRI

on the brain, and age-related white matter changes grading was determined from MRI as the primary endpoint. The presence of

age-related white matter changes on each of the six brain regions was also studied. Retinal images were captured using a fundus

camera, and the analysis was done based on a machine-learning approach. A total of 240 subjects are included in the study. The

analysis of various brain regions included the left and right sides of frontal lobes, parietal–occipital lobes and basal ganglia. Our

results suggested that data from both eyes are essential for detecting age-related white matter changes in the brain regions, but the

retinal parameters useful for estimation of the probability of age-related white matter changes in each of the brain regions may dif-

fer for different locations. Using a classification and regression tree approach, we also found that at least three significant heteroge-

neous subgroups of subjects were identified to be essential for the localization of age-related white matter changes. Namely those

with age-related white matter changes in the right frontal lobe, those without age-related white matter changes in the right frontal

lobe but with age-related white matter changes in the left parietal–occipital lobe, and the rest of the subjects. Outcomes such as

risks of severe grading of age-related white matter changes and the proportion of hypertension were significantly related to these

subgroups. Our study showed that automatic retinal image analysis is a convenient and non-invasive screening tool for detecting

age-related white matter changes and cerebral small vessel disease with good overall performance. The localization analysis for

various brain regions shows that the classification models on each of the six brain regions can be done, and it opens up potential

future clinical application.
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Introduction
Dementia is a global health problem with an annual soci-

etal cost of US$818 billion, affecting 50 million people

worldwide, and the number is expected to triple by

2050. The World Health Organization has recently

announced a new set of guidelines on primary prevention

of dementia through risk factors modification. Still, the

crux of the problem remains to be how to identify indi-

viduals at risk.1 It has been well established that cerebral

small vessel disease (SVD) is strongly associated with all-

cause dementia, stroke, depression, Parkinsonism and

mortality.2–6 Cerebral SVD is used to describe a range of

pathologies with various aetiologies associated with the

small vessels, typically small arteries and arterioles, in the

brain.3,7 The manifestation of cerebral SVD can be myr-

iad—the most common findings on brain imaging are

white matter hyperintensity (WMH) of presumed vascular

origin, lacune of presumed vascular origin, perivascular

space and cerebral microbleeds.7,8 In particular, WMH

are vigorously studied in recent years.

White matter hyperintensity reflects demyelination and

axonal loss in white matter, presumably secondary to

chronic ischaemia. It is a highly prevalent phenomenon9

related to age and vascular risk factors.10–12 WMH

implies a 2- to 3-fold risk of incident cognitive decline or

dementia and a 3-fold risk of stroke.3,13 Moreover,

increasing progression in WMH is a good predictor of

these adverse clinical outcomes.14–16 Nonetheless, its pro-

gression can be curbed or even reversed through vascular

risk factors modification and ameliorating the progression

is associated with a decreased likelihood of these adverse

outcomes.8,16,17 Since WMH commonly harbours in the

brain for years before clinical symptoms appear, this sub-

clinical phase, if identified early with a screening tool,

provides a window for risk factors modification.18

The current gold standard for assessing WMH remains

to be MRI, while other imaging modalities, such as
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diffusion tensor imaging to detect early white matter

changes, are also under development.11 However, they

are unlikely candidates for population-based screening

tool due to limitation by cost, availability and operators’

expertise.

Deep learning (DL) is a family of machine learning

methods that has gained considerable attention in the sci-

entific community, especially in medical image processing.

DL differs from conventional machine learning methods

by its ability to learn the raw data’s optimal representa-

tion through consecutive nonlinear transformations,

achieving increasingly higher levels of abstraction and

complexity. DL is based on vast neural networks, and so

is its capacity to learn. However, reliable methods must

be developed, which take into account the unique fea-

tures of the images. Indeed, medical images capture

patients’ anatomy and physiology through the measure-

ments of the geometrical, biophysical, and biochemical

properties of their living tissues. These images are

acquired with algorithms that exploit complex medical

imaging processes whose principles must be well under-

stood in order to be helpful in a specific application. The

analysis of the retinal image for detection of WMH is a

perfect example.

As retinal and cerebral vessels share the same embryon-

ic origin, the two microvascular systems have similar ana-

tomical and pathophysiological characteristics. It is also

well established that retinal vessel architecture correlates

well with MRI measures of WMH.19 Being the only

microvasculature that can be directly seen in our body,

we have shown that retinal fundus imaging is an excel-

lent potential candidate for an accurate, rapid, economic-

al, convenient and non-invasive screening tool for WMH

and cerebral SVD.20 In addition to the estimation of total

volume or overall severity grading of WMH, the localiza-

tion of WMH in various regions of the brain may con-

tain additional valuable information for further

understanding of progression or future development of a

preventive intervention. In this study, we hypothesized

that retinal image analysis could be used to identify the

locations of WMH in various brain regions and study

the patterns of WMH development.

Methods

Study population

The study population was a community-based cohort—

The Chinese University of Hong Kong—Risk index for

Subclinical Brain Lesions in Hong Kong. The inclusion

and exclusion criteria of this cohort have been previously

detailed in Lau et al.20 In brief, we included participants

aged 65 or above who provided written consent and par-

ticipated in cognitive testing. But we excluded subjects

with conditions that would affect the quality of MRI or

retinal imaging obtained and those with documented

neurological diseases, such as stroke, transient ischaemic

attack, dementia and brain tumours. Written informed

consents were obtained from all subjects, and the project

was done according to the guidelines of the Declaration

of Helsinki and approved by the Joint Chinese University

of Hong Kong—New Territories East Cluster Clinical

Research Ethics Committee (CREC Ref. No. 2012.085).20

Vascular risk factors

Vascular risk factors of the subjects were also considered

in this study. Details of the definitions were also

described in Lau et al..20 Hypertension, diabetes and

hyperlipidaemia were defined according to established

local guidelines or on current medical treatment.

Cardiovascular conditions, such as ischaemic heart dis-

ease, arrhythmia and structural heart diseases, were also

taken into account in this study.

Brain MRI acquisition and analysis

Brain MRIs of the subjects were acquired on a 3.0-T

scanner using standard protocols as previously reported

in Lau et al. 2019: ‘Sequences used in this study include

T1-weighted, T2-weighted and FLAIR. WMH was deter-

mined as ill-defined hyperintensities in white matter on

FLAIR and T2-weighted sequences, but isointense or

hypointense with normal brain parenchyma on T1-

weighed images.7 All scans were rated visually by trained

independent raters according to the age-related white

matter changes (ARWMC) scale.21 A global ARWMC

score (i.e. highest ARWMC score among the ten brain

regions with score 0, 1, 2 and 3 representing nil, focal le-

sion, early confluent and confluent lesions, respectively)

were calculated. Subject with severe or high-risk WMH

was defined as having a global ARWMC score � 2.

ARWMC score was graded by two independent raters

(one neurologist and one trained research assistant) using

anonymized MRI data. There was high interrater reliabil-

ity, and the intraclass correlation coefficient between the

raters for the ARWMC global score was 0.909. On top

of visual rating, WMH volume was also quantified by a

fully automated programme—AccuBrain (BrainNow

Medical Technology Limited, Hong Kong, China).’20

Retinal imaging acquisition and
analysis

Canon non-mydriatic fundus camera (CR-2 AF, Canon

Singapore) and Topcon non-mydriatic retinal camera

(TRC-NW6S, Tokyo Optical Co, Tokyo) were used to

capture the colour retinal images using a 45� field of

view centred on the fovea. Retinal characteristics esti-

mated by the automatic retinal image analysis (ARIA)

will be used in the analysis, they include central retinal

artery equivalent, central retinal vein equivalent, arteri-

ole–venule ratio calculated as the ratio of central retinal
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artery equivalent to central retinal vein equivalent, arteri-

ole-venous nipping, arteriole occlusions, presence of

haemorrhage and exudates, tortuosity, arterioles and ven-

ules bifurcation coefficients, arterioles and venules bifur-

cation angles, arterioles, venules asymmetry and other

variables, such as fractal dimensions, textual parameters

will also be used for model building. Since the retinal

images were generally of high quality, we have included

all retinal images in the analysis after a visual examin-

ation according to our standard protocol for quality

control.

Statistical analysis

We used a fully ARIA method to acquire and analyze

retinal images in our study. ARIA was applied and vali-

dated in different disease cohorts, including stroke, dia-

betes and chronic kidney disease.22–24 The fully ARIA

was developed using R and Matlab computer soft-

ware.25,26 The detailed ARIA method have been reported

(US Patent 8787638 B2; http://www.google.com/patents/

US8787638). The methods include the use of fractal ana-

lysis, high order spectra analysis and statistical texture

analysis incorporating a machine learning approach.

These approaches were used to estimate the probability

of ARWMC score � 2. For the overall validation of the

risk of ARWMC, we use a completely separate set of

subjects with MRI not previously used in the model

building process. A box-plot for the probability of

ARWMC score � 2 for the testing samples between

ARWMC < 2 (i.e. low-risk group) and ARWMC � 2

(i.e. high-risk group) is shown.

For the localization analysis of brain WMH, we

applied transfer learning with the pre-trained deep convo-

lutional neural networks ResNet50 to extract features

from retinal images.27 We then incorporated the extracted

image features with the retinal characteristics and esti-

mated the probability of ARWMC scores corresponding

to each brain region. The following are a description of

the detailed analysis using Matlab. The methodology is

shown in the flow chart (Fig. 1). We applied a DL ap-

proach such as transfer net of ResNet50 convolutional

neural network—input retinal images (RGB and size

224�224�3). Labels are WMH present/absent on each

of six regions. The purpose is to generate features based

on pixels associated with WMH. Next, we extracted the

texture/fractal/spectrum-related features such as high

order spectrum and fractal dimensions from our previous

ARIA automatic algorithm model. Input retinal images

(RGB and size 576�720�3). The purpose is to generate

features based on the above three descriptors associated

with WMH for each of six regions, respectively. After we

extracted the pixel-based features from the above

ResNet50 net at the layer of ‘fc1000_softmax’, we com-

bined them with the above extracted features. All of these

features will be refined by using the glmnet approach to

select important potential features based on penalized

maximum likelihood. These refined features were highly

associated with WMH for each of the six regions. We

then used the above features to estimate retinal character-

istics that are meaningful and interpretable for our study

(Random forest in Matlab was used). Then we applied a

conventional statistical approach such as logistic regres-

sion to find the statistically significant risk factors (which

is highly associated with WMH for each of six regions).

Finally, we applied the classification and regression tree

method to investigate the overall patterns of localization

for the presence of WMH for all six brain regions.28 The

classification and regression tree split the data according

to WMH on a specific location of the brain region as a

node and applied the splitting criterion to decide the

brain region’s choice at that particular level. The splitting

criterion is the maximum difference in probability esti-

mate for the presence or absence of WMH in that node.

The results of the classification and regression tree model

were validated using a 10-folder cross-validation method.

Sample size estimation

We have included 180 subjects from the previous data

pool as training samples. From the previous publication,

we observed sensitivity and specificity of 93% and 98%,

respectively.20 Therefore, we postulated that the prospect-

ive testing samples’ sensitivity and specificity should reach

about 90%. To obtain sensitivity and specificity values of

0.9 or higher with a lower bound of at least 0.7 based

Figure 1 Flowchart for the development of classification

model.
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on 95% confidence intervals (CIs), we need to have at

least 25 subjects in each of the ‘high-risk’ group (i.e. glo-

bal ARWMC � 2) and the ‘low-risk’ group (i.e.

ARWMC < 2).29 The analysis was carried out once we

have acquired an adequate number of cases for subjects

with a global ARWMC score � 2. In summary, we pro-

spectively recruited 60 subjects, with 31 subjects in the

‘low-risk’ group and 29 subjects in the ‘high-risk’ group.

In the localization analysis, all 240 subjects were used to

maximize the number of subjects with ARWMC in each

of the brain regions.

Data availability

The data that support the findings of this manuscript are

available from the corresponding author, upon reasonable

request.

Results

Overall results

The overall data set for this study includes a total of 240

subjects. The characteristics for the 180 samples of train-

ing data that are significantly different between those

with ARWMC grade 0 and 1, (i.e. low-risk group) and

ARWMC grade 2 and 3 (i.e. high-risk group) are shown

in Table 1. The average age was about 70 years old, with

54 (30%) males. The high-risk group’s average age was

significantly higher than that of the low-risk group (P ¼
0.005). There were significantly more hypertension sub-

jects in the high-risk group (78.5%) than the low-risk

group (53.5%). The prevalence of diabetes (P¼ 0.020)

and WMH volume (P< 0.001) is also significantly higher

in the high-risk group. For the 60 testing samples, the

characteristics are shown in Table 2. Only WMH volume

is significantly higher in the high-risk group.

The retinal image analysis model on calculating the

probability of having ARWMC score � 2 was developed

based on the 180 training samples. The model was then

validated using the 60 testing samples. Figure 2 shows a

box-plot for the probability of ARWMC � 2 in the test-

ing samples between the ARWMC < 2 (i.e. low-risk

group) and the ARWMC � 2 (i.e. high-risk group). The

median probabilities of the low and high-risk groups

were about 0.2 and 0.6, respectively, while the mean

probabilities for the low and high-risk groups were 0.218

(n¼ 31, SD¼ 0.1337, 95% CI from 0.169–0.267) and

0.609 (n¼ 29, SD¼ 0.0876, 95% CI from 0.575–0.642),

respectively. The probabilities of the two groups are sig-

nificantly different, and the classification result is

excellent.

Among the 29 subjects with an ARWMC score � 2,

26 were correctly identified as high risk by the model

with a sensitivity of 89.7% (95% CI: 0.715–0.973) using

a cutoff point of 0.5. The three incorrect classifications

have probabilities only slightly lower than the 0.5 cutoffs.

Among the 31 subjects with grades 0 and 1 age-related

white matter hyperintensities, 30 were correctly classified

as low risk with a specificity of 96.8% (95% CI: 0.815–

0.998).

This result demonstrated that the accuracy of the classi-

fication is high except for a single case in the group

ARWMC grade 1 which is an outlier due to poor retinal

image quality, as the retinal vessel’s structure was not

clearly presented due to borderline vagueness of back-

ground for both retinal images (Fig. 3). The mean proba-

bilities of the four ARWMC groups from grades 0 to 3

were 0.173 (n¼ 4, SD¼ 0.0864, 95% CI: 0.035–0.310),

0.225 (n¼ 27, SD¼ 0.1393, 95% CI: 0.170–280), 0.593

(n¼ 19, SD¼ 0.0840, 95% CI: 0.552–0.633) and 0.639

(n¼ 10, SD¼ 0.0903, 95% CI: 0.575–0.704) respectively.

Localization analysis of brain WMH

We first investigated if there are significant retinal param-

eters significantly associated with WMH in various

regions of the brain. All 240 subjects were used in this

Table 1 Characteristics of the study participants—training data (N¼ 180)

ARWMC < 2 (N 5 101) ARWMC � 2 (N 5 79) P-value

Age, median (IQR)a, years 69.00 (66.00–69.00) 71.00 (68.00–75.23) 0.005

Education, median (IQR)a, years 7 (4–11.25) 9 (6–12) 0.120

Male, N (%)b 26 (25.7%) 28 (35.4%) 0.138

MoCA< 21, N (%)b 33 (32.7%) 27 (34.2%) 0.799

Hypertension, N (%)b 54 (53.5%) 62 (78.5%) <0.001

Diabetes Mellitus, N (%)b 10 (9.9%) 18 (22.8%) 0.020

WMH volume, median (IQR)a, ml 2.362 (1.501–4.292) 8.743 (4.161–17.066) <0.001

Log-transformed WMH volume, mean (IQR)a 0.860 (0.406–1.456) 2.168 (1.426–2.837) <0.001

Frontal lobe (left) � 1, N (%)b 46 (45.5%) 70 (88.6%) <0.001

Frontal lobe (right) � 1, N (%)b 50 (49.5%) 70 (88.6%) <0.001

Parietal–occipital lobe (left) � 1, N (%)b 30 (29.7%) 64 (81.0%) <0.001

Parietal–occipital lobe (right) � 1, N (%)b 28 (27.7%) 66 (83.5%) <0.001

Basal Ganglia (left) � 1, N (%)b 3 (3.0%) 20 (25.3%) <0.001

Basal Ganglia (right) � 1, N (%)b 5 (5.0%) 21 (26.6%) <0.001

ARWMC, age-related white matter changes; IQR, interquartile range; MoCA, Montreal Cognitive Assessment; WMH, white matter hyperintensity.
aMann–Whitney U-test.
bChi-square test.
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analysis. This study’s brain regions included left and right

frontal lobes, parietal–occipital lobes and basal ganglia.

The specific parameters that were significantly associated

with the ARWMC in the bilateral frontal lobes, parietal–

occipital lobes and basal ganglia are listed in Tables 3–5.

Only the retinal parameters that were statistically

different at a P-value of less than 0.20 level between low

and high-risk groups are shown in Tables 3–5. These

results suggested that data from both eyes are essential

for the detection of WMH in the unilateral brain regions,

but the retinal parameters useful for estimation of the

probability of WMH in each of the brain regions may

different for different locations. Classification models

used for each of the regions was developed using a

similar methodology.

Since the presence of WMH in each of the brain

regions are not entirely independent, we have also

analyzed the importance and relationship among the

brain regions with respect to the presence of WMH using

classification and regression tree analysis. This method

takes into account potential interactions among various

brain regions. The response variable for the classification

and regression tree analysis was ARWMC � 1, i.e. the

presence of WMH. An optimal splitting criterion of the

brain regions into homogeneous groups was used to de-

termine the best classification results. We found that

there are at least three subgroups of subjects identified to

be important for the localization of WMH, namely

Group 1: those with WMH in the right frontal lobe,

Group 2: those without WMH in the right frontal lobe

but with WMH in the left parietal–occipital lobe, and

Group 3: the rest of subjects without WMH in the right

frontal lobe and left parietal–occipital lobe. The results

are shown in Fig. 4. WMH of the six brain regions were

used to determine the overall severity grading of

ARWMC in the form of a classification and regression

tree model. The sensitivity and specificity were calculated

based on the cross-validation approach with 98.8% and

92.0%, respectively, an area under the receiver operating

characteristic curve of 0.955.

Figure 2 Probability of ARWMC� 2 estimated from retinal

images for the low-risk group (ARWMC < 2, Group 5 0)

and the high-risk group (ARWMC� 2, Group 5 1).

Figure 3 The retinal images with poor quality.

Table 2. Characteristics of the study participants—testing data (N¼ 60)

ARWMC < 2 (N 5 31) ARWMC � 2 (N 5 29) P-value

Age, median (IQR)a, years 71.44 (69.48–73.51) 71.97 (70.32–78.04) 0.119

Education, median (IQR)a, years 11 (4–12) 7 (2.5–11) 0.475

Male, N (%)b 9 (71.0%) 7 (24.1%) 0.668

MoCA< 21, N (%)b 7 (22.6%) 10 (34.5%) 0.301

Hypertension, N (%)b 27 (87.1%) 22 (75.9%) 0.244

Diabetes Mellitus, N (%)b 10 (32.3%) 8 (27.6%) 0.560

WMH volume, median (IQR)a, ml 2.041 (0.786–3.757) 9.654 (4.613–15.349) <0.001

Log-transformed WMH volume, mean (IQR)a 0.712 [(�0.242)–1.322] 2.267 (1.529–2.731) <0.001

Frontal lobe (left) � 1, N (%)b 16 (51.6%) 27 (93.1%) <0.001

Frontal lobe (right) � 1, N (%)b 14 (45.2%) 28 (96.6%) <0.001

Parietal–occipital lobe (left) � 1, N (%)b 12 (38.7%) 26 (89.7%) <0.001

Parietal–occipital lobe (right) � 1, N (%)b 12 (38.7%) 27 (93.1%) <0.001

Basal Ganglia (left) � 1, N (%)b 7 (22.6%) 15 (51.7%) 0.019

Basal Ganglia (right) � 1, N (%)b 6 (19.4%) 16 (55.2%) 0.004

ARWMC, age-related white matter changes; IQR, interquartile range; MoCA, Montreal Cognitive Assessment; WMH, white matter hyperintensity.
aMann–Whitney U-test.
bChi-square test.
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We further investigated the overall grading of

ARWMC for each of the three subgroups, the mean

probabilities of ARWMC � 2 and their 95% CIs for

participants in Groups 1, 2 and 3 were 0.563 (95% CI:

0.510, 0.615), 0.191 (95% CI: 0.065, 0.316) and 0.189

(95% CI: 0.151, 0.228), respectively. This result shows

that Group 1 is significantly higher than Groups 2 and 3

for the probability of ARWMC � 2. There was also a

significant difference among the three subgroups for the

proportion of subjects with hypertension, 131/158

(82.9%), 10/12 (83.3%) and 23/37 (62.2%). The three

subgroups’ differences were significant, with a P-value of

0.019 with 2 degrees of freedom chi-square test. Further

study on patterns of localization of WMH for various

brain regions and their association with the clinical and

cognitive outcome may be useful.

Discussion
Our study showed that ARIA is a good potential candi-

date to be an accurate, rapid, economical, convenient and

non-invasive screening tool for WMH and cerebral SVD

with an excellent overall performance of 89.7% sensitiv-

ity and 96.8% specificity and 93.3% accuracy in a pro-

spective setting for validation. As mentioned before,

earlier detection of WMH prompts risk factors modifica-

tion before clinical symptoms appear.18 Studies have been

carried out to determine effective ways to slow the pro-

gression of WMH. A long-term randomized trial demon-

strated that weight loss and behavioural intervention has

a significant effect on reduction in WMH volumes and

brain atrophy.30 Tighter blood pressure control through

pharmacological intervention and lifestyle modification

were also associated with a more remarkable fall in

WMH volume.31 A combination of sartans and low-dose

statins was also found to be effective in slowing WMH

progression and cognitive decline.32 Therefore, withT
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Figure 4 Regression tree results on localization of cerebral

white matter hyperintensities.

8 | BRAIN COMMUNICATIONS 2021: Page 8 of 11 B. Zee et al.



ARIA being an accurate, economical and convenient

screening tool for WMH, it allows early primary preven-

tion for advanced diseases, such as dementia and stroke.

Our ARIA model also analyses the localization of brain

WMH for all six brain regions by gauging the retinal

characteristics. Evidence has highlighted the value in

assessing WMH volume in strategic white matter tracts,

which correlates better with variance in cognitive func-

tioning than the total WMH volume, healthy and dis-

eased individuals alike.33–37 Of note, greater WMH

volume in the anterior thalamic radiation and the forceps

minor are significantly associated with poor processing

speed and executive functioning,34,37–39 WMH volume in

the forceps major and minor is found relevant to poor

memory35,38,39; both independent of total WMH volume.

Nonetheless, the topography of WMH is still a topic not

receiving the attention it deserves owing to the limited

availability of advanced lesion-symptom mapping. In this

case, the ARIA model has undoubtedly provided a more

economical and convenient alternative to the current

advanced lesion-symptom analysis. The ability of ARIA

to assess strategically located WMH has several implica-

tions in digital public health and is a potential tool to

improve health equity.

First, understanding regionally located WMH burden

might help diagnose and risk prediction of neurodegener-

ative disorders and the cognitive domains that are more

likely to be impaired. For example, multiple studies have

shown the association of higher parietal WMH load with

an incidence of Alzheimer’s disease and its known risk

factors.14,40,41 Moreover, higher WMH burden in frontal

and parietal lobes was also found to correlate with

increased risk of Parkinsonism.40,42 Precedent post-stroke

studies have also established an association of WMH

locations with both post-stroke global cognitive impair-

ment and specific cognitive domain deficits.43–47 Studies

on the relationship between strategically located WMH

and cognitive conditions are still ongoing. We are opti-

mistic that more exciting discoveries are coming up. With

more associations established, assessing WMH loads in

strategic locations will help healthcare professionals iden-

tify community-dwelling subjects with a high risk of

developing certain neurological conditions. It can also

help recognize acute care patients with potential, more

unsatisfactory clinical outcome. Primary, secondary or

tertiary preventive resources can then be preferentially

allocated to these patients in need, achieving health

equity.

Second, mounting evidence shows that different neuro-

psychiatric symptoms (NPS) are associated with different

locations of WMH lesions.48–50 Given that NPS are ubi-

quitous in people with neurodegenerative disorders. ARIA

might serve as a valuable and quick tool to identify the

possible underlying neuropathologies of NPS and predict

the prognosis in people who have already presented the

symptoms. It might also help predict the risk of develop-

ing NPS in those still free of symptoms.

Third, the assessment of WMH accumulation in stra-

tegic white matter tracts might facilitate personalised

medicine development. Take aerobic exercise training as

an example. Systemic reviews and meta-analyses have

demonstrated that personalizing the exercise modality

may significantly benefit individuals with deficits in spe-

cific cognitive subdomains. For example, aerobic exercise

improves executive function to a greater extent than re-

sistance training,51,52 while resistance training has more

significant memory effects.42 Moreover, multimodal train-

ing has more pronounced effects on enhancing episodic

memory and verbal fluency than aerobic training alone.51

On top of cognitive test results, ARIA may provide us

additional information on the cognitive profiles of the

screened individuals; hence we can allocate them to the

modality of exercise classes that can benefit them most,

achieving health equity.

We acknowledged that there are several limitations to

this study. First, the sample size is limited as it is expen-

sive to have many subjects to have MRI and carry out

extensive grading of WMH. Second, the regional WMH

load in this group is not as high as in other patient

groups. However, this study is essential because it repre-

sents a basic norm from an average population and proof

of concept study.

For the future direction of the study, we aim to explore

the ability of ARIA to differentiate deep and periventricu-

lar WMH on top of location. Current evidence demon-

strates a stronger association between cognitive declines

periventricular than deep WMH.53 Moreover, we also

aim to study the ability of ARIA to assess the severity

and location of other modalities of cerebral SVD, such as

lacunar infarcts and cerebral microbleeds.
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