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SUMMARY

Although PD-1-blocking immunotherapies demonstrate significant therapeutic promise, a subset of

the patients could develop hyperprogressive disease (HPD) with accelerated tumor growth after

anti-PD1 immunotherapy. To elucidate the underlying mechanisms, we compared the mutational

and transcriptional landscapes between the pre- and post-therapy tumors of two patients developing

HPD after anti-PD-1 immunotherapy. In post-therapy HPD tumors, somatic mutations were found in

known cancer genes, including tumor suppressor genes such as TSC2 and VHL, along with transcrip-

tional upregulation of oncogenic pathways, including IGF-1, ERK/MAPK, PI3K/AKT, and TGF-b. We

found that post-therapy HPD tumors were less immunogenic than pre-therapy tumors, concurrent

with an increased presence of ILC3 cells, a subset of innate lymphoid cells. We also developed a

gene expression signature predictive of HPD. In summary, we identified the genomics and immune

features associated with HPD, which may help identify patients at risk of adverse clinical outcome

after anti-PD-1 immunotherapy.

INTRODUCTION

Immune checkpoint therapies including those targeting PD-1, or its primary ligand PD-L1, have demon-

strated therapeutic responses across a broad range of cancer types (Sharma and Allison, 2015). Anti-

PD-1 therapy blocks the interaction of PD-1, an inhibitory receptor on tumor-infiltrating T cells, with its

ligands PD-L1 and PD-L2 that are predominantly expressed on tumor cells and antigen-presenting cells

(APCs), respectively (Topalian et al., 2012). Despite the success of anti-PD-1 immunotherapy in approxi-

mately 20%–30% of patients with cancer, the majority of patients do not respond to this treatment (Sharma

et al., 2017). In addition, increasing clinical evidence suggests that a significant subset of nonresponsive

patients may experience acceleration of disease progression after treatment with anti-PD-1, a phenome-

non known as hyperprogressive disease (HPD). Although accurate identification of the frequency of

patients developing HPD has been limited by variability in diagnostic criteria, conservative estimates sug-

gest that HPD may occur in as many as 10% of patients treated with anti-PD-1 (Champiat et al., 2017; Kato

et al., 2017; Saada-Bouzid et al., 2017).

In contrast to identifying factors that predict responsiveness to PD-1-blocking therapies such as tumor

expression of PD-L1, high tumor mutational burden, and the presence of tumor-infiltrating CD8+ T cells,

little is known about the mechanisms underlying HPD. Although a pilot study suggested that some patients

with MDM2 family amplification or EGFR aberrations developed HPD after treatment with PD-1 or PD-L1

inhibitors (Kato et al., 2017), it is likely that alterations beyond those identified in that study are important

in facilitating accelerated disease progression.

To comprehensively examine the mechanisms of HPD, we performed whole-exome sequencing (WES) and

RNA sequencing (RNA-seq) analyses of formalin-fixed paraffin-embedded (FFPE) samples of tumors

before and after anti-PD-1 therapy in patients with clinical evidence of HPD. We identified individual

somatic mutations and mutation clusters associated with clonal evolution that may contribute to the accel-

erated tumor growth observed in HPD. We also identified characteristic decreases in HPD tumor immuno-

genicity. Finally, we identified a gene signature that may be predictive of HPD development. These

changes were HPD patient specific, and were not found in the tumors of anti-PD-1-treated patients without

HPD phenotypes from previous studies. Overall, our study identified the genomics and immune features

associated with HPD tumors after anti-PD-1 immunotherapy.
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Patient Gender Specimen Cancer Treatment OtherClinical Phenotype % Tumor

#1 Male S1624794 Esophageal squamous cell

carcinoma

Pre-anti-PD-1 Metastatic to lymph node 75

S1707359 Esophageal squamous cell

carcinoma

Post-anti-PD-1 Metastatic to lymph node 75

#2 Female M16248 Clear cell renal cell

carcinoma

Pre-anti-PD-1 Metastatic to the pleura and

shoulder

50

S1701860 Clear cell renal cell

carcinoma

Post-anti-PD-1 Metastatic to the pleura and

shoulder

75

Table 1. Characteristics of the Four FFPE Specimens from Two Patients, Consisting of Paired Pre- and Post-anti-PD-1 (Pembrolizumab) Treatment

Samples
RESULTS

Mutation Patterns Are Altered in HPD Tumors after Anti-PD-1 Treatment

This study included two patients who received anti-PD-1 blockade immunotherapy. Relevant characteris-

tics of the four FFPE tumor samples are summarized in Table 1. Paired tumor samples before and after anti-

PD-1 treatment were obtained from amale patient with esophageal squamous cell carcinomametastatic to

lymph nodes (Patient 1) and from a female patient with clear cell renal cell cancer (ccRCC) that had metas-

tasized to the bone (shoulder) and pleura (Patient 2). Following anti-PD-1 treatment that consisted of pem-

brolizumab (Merck), these two patients demonstrated HPD, as defined by the accelerated tumor growth

rate and clinical deterioration using existing criteria (Kato et al., 2017). Each patient demonstrated progres-

sion at first radiologic evaluation (less than 2 months after anti-PD-1 therapy initiation). Before enrollment,

written informed consent was obtained from all patients to use their tumor samples for research purposes.

The study was approved by theMedical College ofWisconsin Institutional Review Board in accordance with

federal regulations.

To understand the global changes that take place in HPD tumors after treatment with anti-PD-1, we per-

formed mutational analysis on tumors obtained before and after treatment with pembrolizumab. We

observed that Patient 1 had 195 somatic mutations before anti-PD-1 treatment and 338 somatic mutations

after treatment; Patient 2 had 156 somatic mutations before treatment and 251 somatic mutations after

treatment (Table S1). There were 154 and 124 common somatic mutations shared by the HPD and pre-ther-

apy tumors for Patients 1 and 2, respectively (Figure S1). Our results were in line with another group’s results

showing increased tumor mutation load from baseline in PD (progressive disease) in patients with mela-

noma after anti-PD-1 therapy (nivolumab) initiation (Riaz et al., 2017). In the latter, the tumor mutation

load was decreased in the responding patients (complete response/partial response) from baseline since

nivolumab initiation, consistent with immunoediting (Riaz et al., 2017). We also analyzed the mutation pro-

files of these two patients in the context of known cancer genes based on a comprehensive list of cancer-

related genes (downloaded from http://www.bushmanlab.org/links/genelists). There were 47 cancer

genes mutated in at least one of the tumors from Patient 1 and 40 cancer genes mutated in at least one

of the tumors from Patient 2 (Figure 1, Table S2). Four cancer genes (APH1A, ARHGEF12, GPER1, and

KIF14) mutated in the pre-therapy tumor of Patient 1 were not mutated in the HPD tumors, suggesting

that the tumor clones containing these four cancer genes were eliminated by anti-PD-1 treatment. How-

ever, the HPD tumor of Patient 1 had somatic mutations in 20 cancer genes, including IGFBP2, KMT2C,

MAP3K4,MUC16,MUC2,NCOR2, andNOTCH4, which were not present in the pre-therapy tumors. Similar

patterns were also observed for Patient 2. Four cancer genes (APC2, OBSCN, PHLPP1, and SATB1) that

were mutated in the pre-therapy tumor of Patient 2 were not mutated in the post-treatment tumors,

whereas the HPD tumor of Patient 2 had somatic mutations in 21 cancer genes, including IGFBP2,

MUC4, NCOR2, NFE2L2, TSC2, and VHL, which were not present in the pre-therapy tumors. The identified

mutations in these genes were not present in the tumors of non-HPD patients after anti-PD-1 treatment

when compared with previous studies (Biton et al., 2018; Gong et al., 2017; Hanna et al., 2018; Hugo

et al., 2016; Miao et al., 2018; Riaz et al., 2017; Rizvi et al., 2015; Teo et al., 2018; Yoshikawa et al., 2017;

Zaretsky et al., 2016). These data indicate that the mutational landscape of tumors was significantly altered

after anti-PD-1 therapy in patients who demonstrated hyperprogression after anti-PD-1 treatment.
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Figure 1. Profiles of Mutated Cancer Genes (Nonsilent Somatic Mutations) in the Pre- and Post-anti-PD-1

Treatment Tumor Samples

(A) Mutation pattern of Patient 1.

(B) Mutation pattern of Patient 2. Indel: insertions or deletions.

See also Figure S1, Tables S1 and S2.
For comparison in the context of corresponding cancer populations, we analyzed the numbers of somatic

mutations of the esophageal carcinoma (ESCA, n = 184) and kidney renal clear cell carcinoma (KIRC,

n = 384) samples from The Cancer Genome Atlas (TCGA). The numbers of nonsilent somatic mutations

were in the range of 4–1,763 for ESCA and 15–1,349 for KIRC. The lower quartile, median, and upper quar-

tile were 85, 110, and 168 for ESCA and 54, 77, and 109 for KIRC, respectively (Figure S2). The numbers of

nonsilent somatic mutations in the before and after anti-PD-1 therapy tumors of the two HPD patients in

this study were 195 and 338 for the patient with ESCA and 156 and 251 for the patient with KIRC. Therefore,

they were all above the upper quartiles of TCGA ESCA and KIRC datasets, which suggested that these two

patients have an exceptionally high number of somatic mutations compared with the TCGA esophageal

cancer (ESCA) and ccRCC (KIRC).
HPD Tumors Contain Deleterious Mutations and Significantly Activated Oncogenic Signaling

Pathways

To determine if certain genes were altered in both patients with HPD tumors, we searched for gene

mutations that were common for the HPD tumors of both patients. Four genes were mutated in the
260 iScience 9, 258–277, November 30, 2018
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Figure 2. Mutation Signatures of Post-anti-PD-1 Treatment Hyperprogressor Tumors

(A–C) (A) Commonly mutated genes in the two hyperprogressor tumors, (B) specific mutated genes in Patient 1’s hyperprogressor tumor, and (C) specific

mutated genes in Patient 2’s hyperprogressor tumor. See also Figure S1, Tables S1 and S3.
post-treatment tumors of both patients: NCOR2, GXYLT1, ZFPM1, and IGFBP2 (Figure 2A). There were 96

and 64 subject-specific nonsilent somatic mutations from 154 genes in post-treatment tumors of Patients 1

and 2, respectively (Figures 2B and 2C). The detailed information of these mutations are given in Table S3.

Bioinformatics analyses of these 161 mutations led to the identification of 11 potentially deleterious so-

matic variants in the HPD tumors, which were predicted to be ‘‘deleterious’’ by SIFT, ‘‘probably damaging’’

by PolyPhen-2, and ‘‘potentially associated with cancer’’ by FATHMM (Table 2). The 11 genes having these

deleterious mutations were TRPC4, POTEE, FBN2, KMT2C, FUT10, PQBP1, TSC2, MFSD6, CYP2D6, VHL,

and RAD54B. Of the 11 mutations, 10 were located at evolutionarily conserved sites, as predicted by

GERP++ (scores >2; Table 2). IPA (Ingenuity Pathway Analysis, Qiagen Inc., MD, USA), based on the 11

genes with the deleterious somatic mutations, identified a network involving these mutated genes that

contributes to suppression of the TP53 tumor suppressor and activation ofMYC, CCND1, and VEGF onco-

genes (Figure S3). Themutated TSC2 gene carrying amissensemutation, p.Y1611S, was in the center of this

network and is linked to inhibition of the TP53 pathway and activation of the MYC, CCND1, and VEGF path-

ways (Figure S3). TSC2 (also known as TUBERIN) is a tumor suppressor that negatively regulates cellular

signaling networks that control cellular growth and proliferation (Dang et al., 2017). The MuPIT interactive

protein mutation analysis (Niknafs et al., 2013) showed that the pY1611S mutation is located in the Rap/ran-

GAP domain of the TSC2 protein, which is critical for the biological function of TSC2 (Figure S4). Previous

studies showed that TSC2 knockdown transforms mouse and human renal epithelial cells into neoplastic

stem cells that can serially propagate upon re-inoculation in mice (Dang et al., 2017). Together, it is reason-

able to hypothesize that the deleterious p.Y1611S mutation could result in the loss of function of the TSC2

protein, which in turn will lead to uncontrolled proliferation of cancer cells in the HPD tumors that survive

anti-PD-1 treatment.

Based on the differentially expressed genes, IPA identified four significantly activated oncogenic signaling

pathways in the HPD tumors after anti-PD-1 therapy compared with the pre-therapy tumors (p value <0.01,

Z score >2, Figure 3A). They were the insulin growth factor (IGF)-1, extracellular signal-regulated kinase

(ERK)/mitogen-activated protein kinase (MAPK), Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/

AKT, and transforming growth factor (TGF)-b signaling pathways. A large number of genes in these onco-

genic pathways were upregulated in the HPD tumors (Figure 3B). Such concerted gene expression changes

may synergistically contribute to the generation of the HPD tumors after anti-PD-1 immunotherapy.
Clonal Evolution Was Detected in HPD Tumors after Anti-PD-1 Therapy

The generation of WES data allowed us to quantify the mutant allele frequencies in all cases. Based on mu-

tation clustering results, we inferred the identity of three clones having distinct sets of mutations (clusters)

in pre-therapy tumors when compared with post-therapy HPD tumors of the two patients. Multiple muta-

tion clusters (n = 3) were present in each of the pre-therapy tumors of the two HPD patients. In Patient 1, the

post-anti-PD-1 treatment HPD tumor was associated with the outgrowth of new clone(s) represented by

mutations in cancer-associated genes including KMT2C, NCOR2, COL28A1, ING3, CAMKK2, and

CARD8 (Figures 4A and 4C). The pre-therapy tumor clone(s) characterized by mutations in APH1A,

ARHGEF12, GPER1, and KIF14 genes was eliminated by anti-PD-1 treatment (Figures 4A and 4C). The

clone(s) represented by mutations in the cancer genes EP400, CUBN, SPP1, PHLPP2, PALB2, ERCC1,

TFRC, MARK4, and MDM4 remained stable under the selection pressure of anti-PD-1 treatment (Figures

4A and 4C). In Patient 2, the post-anti-PD-1 treatment HPD tumor was associated with the evolution of

new clone(s) represented by mutations in the cancer genes including BAP1, CARD11, CBFA2T3,

CYP2D6, PBRM1, TSC2, and VHL (Figures 4B and 4D), whereas the pre-therapy tumor clone with mutations

in APC2, CDC27, OBSCN, PHLPP1, and SATB1 was not detectable after anti-PD-1 treatment (Figures 4B

and 4D). Other clones, including those represented by mutations in COL4A3, TTC40, NPHS1, UGT2A3,

RYR1, AGGF1, and LANCL1, remained stable before and after anti-PD-1 treatment (Figures 4B and 4D).

The tumor clonal evolution pattern associated with anti-PD-1 treatment was further validated by analyzing

an independent dataset from a previous study, which conducted WES of paired baseline and relapsed tu-

mors (before and after anti-PD-1 treatment) of four patients with melanoma (Zaretsky et al., 2016). As can be
262 iScience 9, 258–277, November 30, 2018



Gene Genomic

Positiona
Genomic

Mutation

Exon Protein

Alteration

Predicted Effect of Somatic Mutation snp137 ESP

MAFf
SIFTb PolyPhen-2c FATHMMd GERP++e

TRPC4 chr13:

38211734

c.G2045A 10 p.R682H Deleterious

(0.00)

Probably

damaging

(0.999)

Potentially

associated with

cancer (�2.83)

6.06 NA NA

POTEE chr2:

132021334

c.A2306T 15 p.Y769F Deleterious

(0.00)

Probably

damaging

(0.997)

Potentially

associated with

cancer (�4.69)

NA NA NA

FBN2 chr5:

127666313

c.C4297T 33 p.R1433C Deleterious

(0.00)

Probably

damaging

(0.983)

Potentially

associated with

cancer (�2.9)

4.21 NA 7.70 3

10�5

KMT2C chr7:

151932981

c.G2690C 16 p.R897P Deleterious

(0.00)

Probably

damaging

(0.995)

Potentially

associated with

cancer (�2.21)

5.1 NA NA

FUT10 chr8:

33246817

c.G876T 4 p.K292N Deleterious

(0.00)

Probably

damaging

(1.00)

Potentially

associated with

cancer (�4.75)

3.42 NA NA

PQBP1 chrX:

48759773

c.C256T 4 p.P86S Deleterious

(0.00)

Probably

damaging

(0.996)

Potentially

associated with

cancer (�1.13)

5.02 NA NA

TSC2 chr16:

2137907

c.A4832C 37 p.Y1611S Deleterious

(0.02)

Probably

damaging

(0.997)

Potentially

associated with

cancer (�3.16)

4.59 NA NA

MFSD6 chr2:

191301728

c.G973A 3 p.G325R Deleterious

(0.00)

Probably

damaging

(0.998)

Potentially

associated with

cancer (�2.42)

6.07 NA NA

CYP2D6 chr22:

42522990

c.C1025T 7 p.T342M Deleterious

(0.00)

Probably

damaging

(0.996)

Potentially

associated with

cancer (�2.26)

4.06 NA NA

VHL chr3:

10191479

c.C349G 2 p.L117V Deleterious

(0.00)

Probably

damaging

(0.994)

Potentially

associated with

cancer (�6.95)

3.07 NA NA

RAD54B chr8:

95411747

c.T721G 6 p.F241V Deleterious

(0.01)

Probably

damaging

(0.996)

Potentially

associated with

cancer (�3.01)

5.55 NA NA

Table 2. Characteristics of the 11 Deleterious Somatic Mutations in the HPD Tumors after Anti-PD-1 Treatment

ESP, NHLBI Exome Sequencing Project; NA, not available. See also Figure S3.
aGenomic positions are given according to the UCSC Genome Browser hg19 reference assembly.
bSIFT scores range from 0 to 1. The amino acid substitution is predicted to be damaging if the score is %0.05 and tolerated if the score is >0.05.
cPolyPhen-2 scores 0.85–1 are interpreted as probably damaging, scores 0.2–0.85 are possibly damaging, and sores 0–0.2 are benign.
dPredictions with FATHMM scores less than 0.75 indicate that the mutation is potentially associated with cancer; otherwise the mutation is not associated with

cancer.
eThere is an indication of evolutionary conservation if a given site shows a GERP++ score >2.
fMAFs are according to the NHLBI GO Exome Sequencing Project (ESP6500SI-V2 release) Exome Variant Server v.0.0.21 (August 2013).
seen from Figures S5 and S6, all four melanoma cases demonstrated allele clusters after anti-PD-1 therapy.

Variant allele frequencies (VAFs) of the Cluster 1 mutations were not significantly changed by PD-1

blockade; Cluster 2 mutations had reduced VAFs but were still prevalent in the relapsing tumor after

PD-1 blockade; Cluster 3 mutations represented the newly evolved tumor clone(s) in the relapsing tumor

after PD-1 blockade; Cluster 4 mutated genes represented the tumor clone(s) that diminished to
iScience 9, 258–277, November 30, 2018 263



Figure 3. Activation of Oncogenic Pathways in HP Tumors after Anti-PD-1 Therapy

(A and B) (A) Four oncogenic pathways were activated in the HP tumors. (B) The differentially expressed genes in these

oncogenic pathways. Most of the genes were upregulated in the HP tumors after anti-PD-1 therapy. HP,

hyperprogressive.

264 iScience 9, 258–277, November 30, 2018



Figure 4. Illustration of Clonal Evolution of the Tumors before and after Anti-PD-1 Immunotherapy of the Two

Patients with HPD

(A–D) (A) Tumor clonal evolution in Patient 1 and (B) tumor clonal evolution in Patient 2. The gray area denotes the tumor

clones unaffected by anti-PD-1 therapy, the green and blue areas denote the tumor clones diminishing and appearing

due to anti-PD-1 therapy. The dynamics of these clones represented by changes in the variant allele frequency between

the pre- and post-therapy tumors was plotted for (C) Patient 1 and (D) Patient 2. See also Figures S5 and S6.
undetectable levels after PD-1 blockade. These data are consistent with our own analysis of tumors from

HPD patients before and after anti-PD-1 therapy.
HPD Tumors Demonstrate Decreased Immunogenicity Relative to Pre-therapy Tumors

Since anti-PD-1 treatment renders its effects on tumors in a manner completely dependent on immunity,

we investigated whether HPD tumors demonstrated changes in their capacity to elicit productive immune

reactions using an in silico immunophenogram approach (Charoentong et al., 2017). The results showed

that HPD tumors had much smaller immunophenoscores compared with the pre-therapy tumors for

both patients (Figure 5). Expression of HLAs (human leukocyte antigens) was downregulated in the post-

therapy HPD tumors compared with the pre-therapy tumors, whereas checkpoint genes were upregulated

in the HPD tumors (Figure 5). These changes resulted in the overall reduction of immunophenoscores in

HPD tumors. Consistent with results from the immunophenogram analysis, the differential expression anal-

ysis showed that seven genes involved in antigen processing were downregulated in the HPD tumors, i.e.,

B2M, HLA-B, HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-E, and HLA-F (Figure 6A). In addition, eight genes
iScience 9, 258–277, November 30, 2018 265



encoding immune checkpoints or modulators were upregulated in the HPD tumors, i.e., CTLA4, KDR,

CD96, CD70, TNFRSF18, TNFRSF25, BTNL2, and TNFRSF8 (Figure 6A). Changes in expression of these im-

mune-related genes were likely contributors to the weakened immunogenicity of the HPD tumors.

Immune Cell Signatures in HPD Tumors Are Predominately Immunosuppressive

Previous studies have characterized the signature genes of 28 immune cell populations critical to immune

responses across multiple cancers (Angelova et al., 2015; Charoentong et al., 2017). Using GSVA (Gene Set

Variation Analysis) (Hanzelmann et al., 2013), we evaluated the immune cell landscape in the HPD tumors

from our two patients. We identified that the activities of eight immune cell populations were significantly

decreased in the HPD tumors after anti-PD-1 treatment (Figure 6B). These populations were monocytes,

central memory CD4 T cells, immature dendritic cells, CD56dim NK (natural killer) cells, NK cells,

gamma-delta (gd) T cells, activated dendritic cells, and follicular helper T cells, most of which are linked

to functional tumor clearance. In addition, the activities of three immune cell populations, i.e., neutrophils,

activated B cells, and neutrophil-like myeloid-derived suppressor cells (MDSC), were upregulated in the

hyperprogressors (Figure 6B). These data suggest that the depletion of monocytes, certain types of

T cells, NK cells, and dendritic cells may contribute to the ability of HPD tumors to escape immune surveil-

lance. Furthermore, the upregulated neutrophil population as well as the neutrophil-like MDSC (i.e., the

MDSC subpopulation with neutrophil signature gene expression) (Zhang et al., 2017) may also contribute

to the immune evasion of HPD tumors since these cell populations have been implicated in generating a

milieu that attenuates immune responses in the tumor microenvironment (Galdiero et al., 2013; Mishalian

et al., 2013; Sagiv et al., 2015; Tuting and de Visser, 2016; Zhang et al., 2017).

ILC3 Innate Lymphocytes Are Upregulated in HPD Tumors

Recent studies have revealed the importance of innate lymphoid cells (ILCs) in homeostasis and inflamma-

tion of tumors (Bjorklund et al., 2016; Wallrapp et al., 2017). Although three main populations of ILCs, ILC1,

ILC2, and ILC3, have been categorized based on their transcription factor profiles and secreted cytokines

(Spits et al., 2013), little is known about their roles in carcinogenesis and immunotherapy resistance. To

evaluate ILCs in HPD tumors, we analyzed the transcriptional levels of the marker genes characteristic of

the ILC1, ILC2, and ILC3 populations (Bjorklund et al., 2016; Wallrapp et al., 2017). GSEA (Subramanian

et al., 2005) showed that the ILC3 marker genes were significantly enriched among the top upregulated

genes in the HPD tumors after anti-PD-1 treatment (Figures 7A and 7B). In contrast, the ILC1 and ILC2

marker genes were not enriched in either the up- or downregulated genes in the HPD tumors (Figure S7).

These data suggest that the ILC3 population is activated in HPD tumors. To validate this finding, we

analyzed the RNA-seq data from other studies that evaluated tumor changes in response to anti-PD-1 ther-

apies. Analysis of the transcriptomes of responding (n = 15) and nonresponding (n = 13) pre-treatment mel-

anoma tumors from the patients subject to PD-1 blockade (Hugo et al., 2016) showed that ILC3 marker

genes were commonly upregulated in the melanoma tumors resistant to anti-PD-1 therapy (Figure 7C).

Based on the RNA-seq data of the KrasG12D mouse model, we also found that there were a large number

of ILC3 marker genes significantly upregulated in murine lung adenocarcinoma tumors that were resistant

to anti-PD-1 therapy when compared with untreated tumors (Koyama et al., 2016) (Figure 7D). These results

are concordant with our HPD RNA-seq data, suggesting that enrichment of the ILC3 population in the HPD

tumors may be a characteristic feature of tumors that are insensitive to anti-PD-1. This finding is consistent

with the previous report that ILC3 lymphocytes contribute to the initiation and progression of cancers (Fung

et al., 2017). The mechanistic connection between ILC3 population and anti-PD-1 therapy effect is un-

known. However, it was reported that ILC3 may promote the growth of mutant tumor cells that express

the receptors needed for oncogenic pathways (Fung et al., 2017; Kirchberger et al., 2013). Our and others’

data (Riaz et al., 2017) suggested that anti-PD-1 therapy increased tumor mutation burden in patients with

cancer with hyperprogressive or progressive tumor phenotype. Therefore, activated ILC3 cell population

may be required for the promotion of the growth of more mutant cells in the patients with cancer with

HPD or PD subjected to anti-PD-1 therapy.

Pro-inflammatory Pathways Were Activated in the Pre-therapy Tumors of Patients with HPD

and Further Activated by Anti-PD-1 Therapy

PD-1 has been demonstrated to inhibit excessive inflammatory responses during infection in mouse

models (Lazar-Molnar et al., 2010). To identify the inflammatory changes in HPD tumors, we evaluated

changes in inflammatory-related genes included in the ‘‘hallmark inflammatory’’ gene set (Liberzon

et al., 2011, 2015). To characterize the inflammation activity in post-anti-PD-1 treatment HPD tumors versus
266 iScience 9, 258–277, November 30, 2018
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Figure 5. Immunophenoscores of the Hyperprogressor versus Non-hyperprogressor Tumors of the Two Patients Subject to Anti-PD-1

Immunotherapy

HLAs were downregulated in the HPD tumors compared with the pre-therapy tumors (shown in the upper left quadrant termed MHC), whereas checkpoints

were upregulated in the HPD tumors (shown in the lower left quadrant termed CP). These changes resulted in the overall reduction of immunophenoscores

in the HPD tumors resistant to anti-PD-1 immunotherapy. See also Figure S14.
pre-treatment tumors, we again utilized GSVA, which identified four founder datasets of inflammation

pathways that were significantly enhanced in the HPD tumors after anti-PD-1 treatment (Figure 8A). In

each of these four pro-inflammatory datasets, many more genes were up- than downregulated (Figures

8B–8E), suggesting an overall pro-inflammatory trend after anti-PD-1 treatment.

For comparison, we analyzed the gene expression data of tumor samples from the GSE52562 dataset

before anti-PD-1 treatment (Westin et al., 2014). This dataset included two potential HPD patients whose

progression-free survival (PFS) was less than 2 months post-pidilizumab treatment (SAMPLE.25 and SAM-

PLE.5 in Table S4) and four responsive patients whose PFS was more than 2 years (24 months) after treat-

ment (SAMPLE.23, SAMPLE.19, SAMPLE.13, and SAMPLE.17 in Table S4). This analysis showed that the tu-

mors of HPD patients have elevated inflammation pathway activity (mainly chemokine activity) even before

anti-PD-1 therapy when compared with tumors from non-HPD patients (Figure S8). These and our data

collectively suggested that anti-PD-1 therapy further boosts the pre-existing high levels of inflammation

in patients who subsequently develop HPD in ways that are not conducive to promoting tumor rejection.
HPD-Associated Gene Expression Signature

Based on the pre-therapy tumor expression data of Dataset_1 (See Transparent Methods), we developed a

121-gene set to differentiate HPD patients from non-HPD patients (Figure S9, Table S5). The effectiveness

of this 121-gene classifier in the identification of HPD patients was tested using the pre-therapy tumor

expression data from Dataset_2 (See Transparent Methods). This classifier had an area under curve

(AUC) value of 0.91 (95% confidence interval [CI], 0.87–0.96), a sensitivity of 71% (95% CI, 51%–87%), and

a specificity of 93% (95% CI, 80%–99%) in predicting HPD patients in Dataset_2 (Figure 9A). Kaplan-Meier

analysis of TCGA data showed that the 121-gene expression signature can significantly separate low-risk

group from high-risk group in the 13 major types of cancers including melanoma (SKCM), glioma, and car-

cinomas of the esophagus (ESCA), stomach (STAD), breast (BRCA), kidney (KIRC), bladder (BLCA), liver

(LIHC), head and neck (HNSC), lung (LUAD and LUSC), colon (COAD), and pancreas (PAAD) (Figures

9B–9D and S10–S12). This panel was able to identify extremely high-risk groups in ESCA, COAD, and

PAAD (Figures 9B–9D).
DISCUSSION

Checkpoint blockade with anti-PD-1 antibodies has resulted in excellent responses in a subset of patients

with cancer. However, there is a sizable proportion of patients with cancer who do not respond to anti-PD-1

treatment, with a subset of these patients developing hyperprogression with accelerated tumor growth

after anti-PD-1 immunotherapy (Champiat et al., 2017; Kato et al., 2017). Currently, there is a lack of system-

atic genome studies to identify the genes or immune factors that predict resistance to immune checkpoint

inhibition or HPD in response to anti-PD-1 treatment. In this study, we utilized WES and RNA-seq ap-

proaches to identify the mutation spectrum and gene expression profiling changes in HPD tumors when

compared with pre-therapy tumors. We also performed pathway and tumor immunogenicity analyses

based on the RNA-seq data. Finally, we combined our data with publicly available datasets and developed

an HPD gene expression signature capable of predicting patients unlikely to respond to anti-PD-1.

The mutation analysis highlighted 11 genes with deleterious mutations in the HPD tumors after anti-PD-1

therapy (Table 2). Most of these genes have not been adequately studied in the context of cancer before.

However, a query of this 11 mutated gene set in the cBioPortal website (http://www.cbioportal.org/)

(Cerami et al., 2012; Gao et al., 2013) showed that this gene set has somatic mutations or copy number ab-

errations (CNAs) in 8,887 (22%) of the 41,320 sequenced patients. The alterations of these 11 genes were

most frequent in the six major cancer types with an alteration frequency >30% (Figure S13), i.e., prostate

cancer (70.8% tumor samples had mutations or CNAs in at least one of the 11 genes), melanoma (50.2%

altered), renal cell carcinoma (45.3% altered), brain cancer (33.3% altered), breast cancer (31.1% altered),

and colorectal adenocarcinoma (31.0% altered). These data support the cancer linkage to these 11 genes,

the mutations of which could contribute to the tumor hyperprogressive phenotype.
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Figure 6. Changes in the Expression of Critical Immune-Related Genes and the Activity of Immune Cell

Populations Contribute to Decreased Immunogenicity in the Post-a-PD-1 HPD Tumors

(A) Seven genes involved in antigen processing were downregulated, whereas eight genes encoding immune

checkpoints or modulators were upregulated in hyperprogressor tumors.

(B) The activity of eight immune cell populations were weakened and three were strengthened, as detected by GSVA

method.

See also Figure S14.
Among the 11 genes, some have tumor suppressive properties, good examples being TSC2 and VHL. In-

activatingmutations in TSC2 that encode the protein tuberin lead to constitutive activation of mTOR kinase

through the Rheb-GTP signaling axis (Menon et al., 2014; Zoncu et al., 2011), which in turn induces cell

growth, motility, invasion, and development of tumors (Goncharova et al., 2004, 2006). These outcomes

were consistent with our observation that the deleterious pY1611S mutation in the key Rap/ran-GAP

domain of the TSC2 protein (Table 2, Figure S4) occurred in the hyperprogressive tumors after anti-PD-1

therapy. We also found that the VHL gene had a deleterious mutation—pL117V—in the ccRCC hyperprog-

ressive tumors after anti-PD-1 treatment (Table 2). VHL, located on chromosome 3p25, is a major tumor

suppressor gene involved in ccRCC oncogenesis (Gossage et al., 2015). Interestingly, a recent study found

that PD-L1 expression was associated with dense PD-1 expression and wild-type VHL ccRCC, but not with

mutated/inactivated VHL ccRCC (Kammerer-Jacquet et al., 2017). Therefore, only the patients with ccRCC

with wild-type VHL may benefit from immunotherapies inhibiting PD-L1/PD-1 (Kammerer-Jacquet et al.,

2017). In our case, we found that only the post-anti-PD-1 therapy hyperprogressive ccRCC tumor had

detectable deleterious VHL mutation, but the pre-therapy ccRCC tumor did not. This suggested that the

selection pressure of anti-PD-1 therapy eliminated most of the wild-type VHL ccRCC cells but had little ef-

fect on cells with mutated VHL ccRCC, such that these mutated cells were highly enriched in the post-ther-

apy HPD tumors. This has significant implications in that it suggests that ccRCC cells with an altered/

mutated VHL gene may be a key factor leading to HPD after anti-PD-1 therapy.

The pre- and post-treatment tumors in this study were acquired through biopsy from the primary lesion.

After anti-PD-1 therapy, the initial minor subclones of somatic mutations could be boosted by the treat-

ment and expanded in the tumor samples of the two HPD patients as shown in Figure 4, which contributed

to the tumor heterogeneity that may account for changes in the mutational and/or expression landscape.

Clonal evolution analysis (Figure 4) indicates that HPD tumor-specific mutations in TSC2 and VHL along

with mutations in a number of other cancer genes including KMT2C, NCOR2, COL28A1, ING3, CAMKK2,

CARD8, BAP1, CARD11, CBFA2T3, CYP2D6, and PBRM1 could be significant to the progression of nonag-

gressive pre-therapy tumors to the hyperprogressive state after anti-PD-1 treatment. Figure S3 showed

that the mutated KMT2C, TSC2, VHL, and CYP2D6 genes were involved in the gene-gene interaction
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Figure 7. The ILC3 Population Was Activated in the HPD Tumors after Anti-PD-1 Therapy

(A–D) (A) GSEA showed that ILC3 marker genes were significantly enriched in the top upregulated genes in HPD tumors resistant to anti-PD-1 therapy. (B)

Most of the differentially expressed ILC3marker genes in the HPD tumors resistant to anti-PD-1 treatment were upregulated. (C) A higher percentage of ILC3

marker genes were upregulated in the nonresponding melanoma tumors resistant to anti-PD-1 therapy based on the analysis of data from an independent

study in humans. (D) Upregulation of ILC3 marker genes comparing anti-PD-1-treatment-resistant mouse tumors with untreated tumors in the KrasG12D

mouse model.
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Figure 8. Activation of Inflammatory Pathways in the HPD Tumors after Anti-PD-1 Treatment

(A) GSVA identified the activation of four founder datasets of inflammation pathways.

(B) Differentially expressed genes in the inflammatory signature of RESPONSE_TO_CHEMICAL_STIMULUS;

(C) Differentially expressed genes in the inflammatory signature of KEGG_CHEMOKINE_SIGNALING_PATHWAY;

(D) Differentially expressed genes in the inflammatory signature of INFLAMMATORY_RESPONSE; (E) Differentially

expressed genes in the inflammatory signature of CHEMOKINE_ACTIVITY. In each of the four pro-inflammatory datasets

from (B–E), there were much more upregulated than downregulated genes. See also Figure S8.
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Figure 9. Performance of the 121-Gene Set Classifier in the Validation Dataset and Its Effectiveness in the Prognosis ofWorse Survival Outcome in

the TCGA Datasets

(A–D) (A) Receiver operating characteristic (ROC) curves shown for separating HPD patients from non-HPD patients in the validation dataset (Dataset_2, 21

HPD versus 30 non-HPD patients, AUC = 0.91 [95% CI, 0.87–0.96]); Kaplan-Meier analysis showed that the 121-gene set classifier can separate significantly

low- and high-risk groups in all of the 13 major TCGA cancers, of which the top three cancers with greatest hazard ratios (HRs) were shown in (B) ESCA (HR =

100.1, 95% CI, 23.1–433.6); (C) COAD (HR = 17.5, 95% CI, 7.4–40.9), and (D) PAAD datasets (HR = 16.0, 95% CI, 8.8–29.0). See also Figures S9–S12.
network leading to suppression of the TP53 pathway activity. Previous studies showed that KMT2C (MLL3)

co-activates TP53, whereas KMT2C levels decrease during cancer progression, which correlates with

distinct clinical stages (Ford and Dingwall, 2015; Lee et al., 2009; Rabello et al., 2018). These results are

consistent with our observations in HPD tumors after anti-PD-1 treatment.

Our RNA-seq data revealed that the IGF-1, ERK/MAPK, PI3K/AKT, and TGF-b signaling pathways were acti-

vated in the HPD tumors after anti-PD-1 therapy (Figure 3). Recent studies have found that TGF-b signaling

may play an important role in resistance to immunotherapy. For example, Mariathasan et al. reported that

lack of response to anti-PD-L1 antibody was associated with TGF-b signaling in fibroblasts and the exclu-

sion of CD8+ T cells, indicating that TGF-b-mediated stromal remodeling restricts T cell infiltration to
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suppress antitumor immunity and that TGF-b inhibition may enhance the efficacy of immune checkpoint

blockade (Mariathasan et al., 2018). In parallel, Tauriello et al. found that single-agent PD-1/PD-L1 inhibi-

tion had little effect, but co-targeting TGF-b produced a robust antitumor immune response that could

prevent the development of metastasis and eliminate established metastases in a mouse model (Tauriello

et al., 2018). Collectively, these studies indicate that inhibiting TGF-b could significantly improve the effi-

cacy of anti-PD-1/anti-PD-L1 treatment (Mariathasan et al., 2018; Tauriello et al., 2018). Herein, our data

suggest that enhanced TGF-b signaling could also contribute to the development of HPD after anti-

PD-1 therapy. Therefore, inhibiting TGF-b signaling may also help prevent the development of HPD in

response to anti-PD-1 treatment. Another interesting finding is the activation of PI3K/AKT in HPD tumors.

A recent study demonstrated that the activity of PI3K/AKT signaling was crucial for lymphomas with PD-1

deletion (Wartewig et al., 2017). Therefore, when the tumors are exposed to anti-PD-1 therapy, elevated

PI3K/AKT signaling may be another important mechanism for the survival, progression, or even hyperprog-

ression of the tumor cells.

TheHPD tumors had reduced tumor immunogenicitywhen comparedwith the pre-therapy tumors. Such reduc-

tionmaybecausedbydownregulation of antigen-processinggenes, including severalHLAgenes andB2M, and

upregulation of certain immune checkpoint or modulator genes other than PD-1/PD-L1 (Figures 5 and 6). In the

context of studying 28 immune cell populations critical to pan-cancer immunogenomics (Angelova et al., 2015;

Charoentong et al., 2017), we found that the activity of eight immune cell populations were weakened and two

were strengthened in theHPD tumors. Theweakened immune cell populations includingmonocytes, CD4 help-

erT cells, dendritic cells, andNKcellsmaycontribute to theability ofHPD tumors toescape immunesurveillance.

The enhanced cell populations such as neutrophils are known to have a number of pro-tumor properties (Gal-

diero et al., 2013;Mishalian et al., 2013; Sagiv et al., 2015; Tuting anddeVisser, 2016), thus the increase in neutro-

phil activity in HPD tumors was not surprising.

The two patients developed HPD after anti-PD-1 therapy, indicating the adverse immunity changes that

may result in an immunosuppressive environment. The decreased portion of immune cell phenotypes af-

ter anti-PD-1 therapy led us to speculate whether anti-PD-1 therapy contributed to accelerated AICD

(activation-induced cell death) in these two patients. To test this hypothesis, we applied the GSVA

approach to the apoptosis gene sets collected in the MSigDB database (Liberzon et al., 2015). It can

be seen that five apoptosis gene sets were activated in the two patients after anti-PD-1 therapy (Fig-

ure S14A), of which 27 apoptotic genes including marker genes in caspase/bcl2 pathways (CASP3,

CASP7, BNIP2, and BNIP3L) were significantly upregulated (Figure S14B). This indicated that the acceler-

ated AICD may occur in the anti-tumor activating lymphocytes, which accounted for the decreased

portion of immune cell phenotypes and enhanced immunosuppressive environment after anti-PD-1

therapy.

So far, cancer immunotherapies have largely focused on T lymphocytes. However, ILCs could also play

important roles in the immune response. ILCs were classified into cytotoxic ILCs, such as NK cells, and help-

er-like ILCs, such as the ILC1, ILC2, and ILC3 subsets. Much of the role of ILCs other than NK cells in cancer

and immunotherapy remain elusive. ILCs might represent promising targets in the context of cancer ther-

apy because they are endowed with potent immunomodulatory properties. In the present study, we

analyzed the dynamic changes in the activity of ILC populations associated with anti-PD-1 therapy. This

represents the first study analyzing the ILC populations in hyperprogressive tumors after anti-PD-1 therapy.

Although ILC1 and ILC2 subsets did not show significant changes according to GSEA (Figure S7), the ILC3

population was activated in HPD tumors compared with pre-therapy tumors (Figure 7). Among the three

subsets of ILCs, the role of ILC3 is gaining increased interest for its potential tumor-promoting activities.

ILC3 that produces interleukin (IL)-22 has also been shown to promote tumor growth mediated via

STAT3 activation (Kirchberger et al., 2013). Another study showed that ILC3 promoted lymphatic metas-

tasis by modulating the local chemokine milieu of cancer cells (Irshad et al., 2017). ILC3 may also promote

tumor formation and progression by suppressing T cell responses (van Beek et al., 2016). It had been shown

that intestinal ILC3 cells limit T cell responses and induce T cell death via outcompeting T cells for IL-2

(Hepworth et al., 2015). We observed upregulated expression of ILC3 marker genes by anti-PD-1 immuno-

therapy in the two HPD patients, which may contribute to the suppression of T cell responses or the induc-

tion of T cell death. Our findings were in line with those of previous studies, indicating that inhibiting ILC3

may complement anti-PD-1 treatment to reduce the likelihood of developing hyperprogressive tumors

after the therapy.
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It is worth mentioning that IL-22 expression was not detected in the before and after anti-PD-1 treatment FFPE

samples of the two patients, whichmay be due to the influence of the degradation of the RNA samples from the

FFPE specimens on gene expression study. However, previous studies have defined a large group of marker

genes whose expressions were characteristic of the ILC3 cell population (Bjorklund et al., 2016; Wallrapp

et al., 2017). For example, the ILC3 cells were defined by using a repertoire of around 400 genes (Bjorklund

et al., 2016; Wallrapp et al., 2017), which became the basis of our analyses on ILC3 cells. Therefore, we analyzed

the expression pattern changes of these marker genes to study the dynamic changes of ILC cell populations in

response to the anti-PD-1 immunotherapy in the tumors of the HPD patients (Figures 7 and S7).

Previous research showed that PD-1-deficient mice were extraordinarily sensitive to tuberculosis and had

much shorter survival times compared with wild-type mice (Lazar-Molnar et al., 2010). This sensitivity results

from the need for the PD-1 pathway to control excessive inflammatory responses to tuberculosis infection

in the lungs of mice (Lazar-Molnar et al., 2010). This led us to hypothesize that the PD-1 pathwaymay also be

required to control excessive inflammatory responses in patients susceptible to HPD. If anti-PD-1 therapy is

administered to HPD patients, it may contribute to tumor growth by further upregulating inflammatory

pathway activities. The analyses of our data and those of others (Westin et al., 2014) confirmed this hypoth-

esis by showing that anti-PD-1 therapy can further boost the pre-existing high levels of inflammation in HPD

patients, and thus contribute to the hyperprogressive phenotype (Figures 8 and S8).

On the basis of genome-wide expression data of tumors from our study, and two publicly available datasets

(before anti-PD-1 therapy) (Riaz et al., 2017; Westin et al., 2014), we identified and validated a 121-gene

expression signature that can distinguish HPD patients from non-HPD patients. This may have significant

clinical predictive value to identify patients who are suitable for anti-PD-1/anti-PD-L1 immunotherapy. Hav-

ing validated this gene set, we examined whether there exists any mechanism that might explain its asso-

ciation with HPD. Interestingly, most of these genes (70 of 121) belonged to gene sets that we identified as

significant to different aspects of the HPD tumors in our samples. Specifically, these genes could be clas-

sified into the following six categories that were described above as important contributors to the HPD

phenotype (Figure S9): (1) somatic mutated gene sets; (2) oncogenic pathways of IGF-1, ERK/MAPK,

PI3K/AKT, and TGF-b; (3) immune checkpoint genes; (4) ILC3 population marker genes; (5) marker genes

for other immune populations like monocytes, CD4 T cells, and dendritic cells; and (6) differentially ex-

pressed genes in post-anti-PD-1 HPD tumors versus pre-anti-PD-1 non-HPD tumors. Thus, a significant

portion of these HPD signature genes could be involved in the critical biological processes important to

tumor evolution, infiltrated immune cells, and tumor-microenvironment interactions. However, although

we validated the 121-gene set, more patient cohorts subjected to anti-PD-1 therapy that contain HPD

and non-HPD patients are needed for prospective validation.

To better define HPD, especially to differentiate HPD from intermediate and/or late tumor progression,

we compared the mutational and gene expression of the two original samples in our study with the pre-

treatment tumor samples of the four patients (#28, #9, #26, #38) who developed intermediate and/or

late tumor progression (Table S6). Mutation analysis showed that 40 cancer genes had nonsilent somatic

mutations in the original tumors of the HPD patients but no mutations in the tumors of the patients

whose tumor progression was intermediate and/or late (Figure S15). These genes include, for example,

MUC13, MUC6, APC2, ARID2, CDK4, EP400, MARK4, MDM4, MUC2, NOTCH1, and SLIT2. Previous

research demonstrated that MDM4 alteration was significantly associated with hyperprogression in

patients subjected to immunotherapy (Kato et al., 2017), which was consistent with our results. We

tabulated the information of these 40 HPD-associated cancer genes in Table S7. At the transcriptome

level, GSVA identified four gene sets from the MsigDB database that were significantly altered in the

tumors of HPD patients compared with the patients with intermediate and/or late tumor progression.

These gene sets were: HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY, HALLMARK_DNA_

REPAIR, HALLMARK_ADIPOGENESIS, and SINGH_KRAS_DEPENDENCY_SIGNATURE. The first three

pathways, i.e., the reactive oxygen species pathway, the DNA repair pathway, and the adipogenesis

pathway, were significantly inhibited, whereas the KRAS signaling pathway was significantly activated

in the tumors of HPD patients relative to the patients with intermediate and/or late tumor progression

(Figure S16A). The corresponding gene expression changes of the above significantly altered pathways

were also shown (Figure S16B). Together, these mutational and transcriptional changes of the tumors

between the HPD and the intermediate/late tumor progression patients may contribute to the better

characterization of the HPD condition.
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Overall, our comprehensive analysis of HPD tumors after anti-PD-1 therapy and pre-therapy tumors

identified the genomics and immune factors contributing to the hyperprogression phenotypes, such as

deleterious somatic mutations in important tumor suppressors such as TSC2 and VHL, downregulated

antigen-processing genes, and upregulated immune checkpoints or modulators other than PD-1/PD-L1.

We also identified immune cell populations with significant activity changes in the HPD tumors; particularly

the ILC subset, ILC3, was found to be activated in the HPD tumors after anti-PD-1 treatment. A gene

expression signature for HPD tumors was also identified and validated using our samples and publicly avail-

able datasets. Our findings may contribute to understanding the mechanisms of the development of HPD

after anti-PD-1 treatment, which is important to identify patients at high risk of developing HPD.

Limitations of Study

In this study, we analyzed the genomics, transcriptomics, and immunogenicity of two patients subjected

to anti-PD-1 immunotherapy who developed hyperprogression after the treatment. We acknowledged

that the patient sample size was small in this study. This is because the majority of the patients either

did not develop hyperprogression or had the pseudo-hyperprogressive phenotype after checkpoint

immunotherapy. Further larger patient samples involving more HPD patients treated with anti-PD-1

are needed to validate and extend our findings. Another limitation is that we only profiled HPD tumor

sample one time upon hyperprogression after anti-PD-1 immunotherapy and did not collect post-hyper-

progression tumor samples at later time points. This design rendered us unable to investigate whether

the associated immunosuppressive profiles of HPD tumors remain as such even at later time points.

However, our study is innovative in terms of analyzing both the before- and after-immunotherapy

DNA/RNA samples of the HPD patients and serves as the starting point for similar studies that are lack-

ing in the field.

Currently, the two outside datasets we used in the manuscript were the only ones that have the transcrip-

tome-level gene expression data available publicly for us to develop a gene expression profile for HPD

(Riaz et al., 2017; Westin et al., 2014). Based on the available data, we characterized a 121-gene expression

profile to differentiate HPD patients from non-HPD patients in both the datasets (Riaz et al., 2017; Westin

et al., 2014) with high AUC values and high sensitivity and specificity as described in the manuscript.

More HPD patients with well-profiled transcriptome data and detailed clinical information related to the

anti-PD-1 treatment are needed to verify our gene expression signature.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY

TheWES and RNA-seq raw sequence reads data from the before and after anti-PD-1 immunotherapy FFPE

samples from the two cancer patients (4 FFPE samples) have been deposited in the Sequence Read Archive

under accession number of PRJNA503522.
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Figure S1. The number of somatic mutations in the pre- and post- anti-PD-1 treatment tumor 

samples of the two patients. Related to Figure 1 and Figure 2. A) Patient 1; B) Patient 2. 

 



   

Figure S2. The distribution of nonsilent somatic mutations in the two TCGA cancer types 

anaylzed in the hyperprogressive tumor context in the present study. Related to Figure 1 

and Figure 2.The numbers of nonsilent somatic mutations of the esophageal carcinoma (ESCA, 

n=184) and kidney renal clear cell carcinoma (KIRC, n=384) samples from TCGA. 
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Figure S3. Key mutated cancer genes interacting network. Related to Table 2. Based 
on the eleven genes with the deleterious somatic mutations, a mechanistic network was 
built by IPA in which ten genes carrying these mutations resulted in the suppression of 
TP53 tumor suppressor pathway and activation of MYC, CCND1 and VEGF oncogenic 
pathways. 

 Inactivation Activation Mutation 



  

Figure S4. Key mutation in the TSC2 protein. Related to Table 2. The 3D structure 
of the TSC2 protein and the location of the amino acid residue harboring the p.Y1611S 
mutation, which is within the Rap/ran-GAP domain of the TSC2 protein critical to its 
biological function. 

Rap/ran-GAP domain p.Y1611S mutation 



 

  

Figure S5. Clonal evolution from the pre-anti-PD1 therapy baseline tumor to post-anti-PD-
1 relapsing tumor in the four melanoma patients from a previous study. Related to Figure 
4. The graphical representation of clonal evolution in the four melanoma patients: (A) Case #1; 
(B) Case #2; (C) Case #3; (D) Case #4.  

Post-anti-PD-1 relapse tumor Pre-anti-PD-1 baseline tumor Case #1 

Post-anti-PD-1 relapse tumor 

 A 

Pre-anti-PD-1 baseline tumor Case #2  B 

Post-anti-PD-1 relapse tumor Pre-anti-PD-1 baseline tumor Case #3  C 

Post-anti-PD-1 relapse tumor Pre-anti-PD-1 baseline tumor Case #4  D 



 

  

Case #1 Case #2 B A 

C Case #3 D Case #4 

Figure S6. The mutation clusters representing clonal evolution from the pre-anti-PD1 
therapy baseline tumor to post-anti-PD-1 relapsing tumor in the four melanoma patients 
from a previous study. Related to Figure 4. The mutation clusters detected in the pre-anti-PD1 
therapy baseline tumor to post-anti-PD-1 relapsing tumor in the patients: (A) Case #1; (B) Case #2; 
(C) Case #3; (D) Case #4. The relationship between the clusters in the pre-therapy and post-
therapy tumors are indicated by lines linking them. 



  

Figure S7. The ILC1 and ILC2 populations activity do not have significant changes in the 

HPD tumors after anti-PD-1 therapy. Related to Figure 7. (A) The ILC1 and (B) the ILC2 

marker genes were not enriched in either the top up- or down-regulated genes in the HPD 

tumors. 

A. ILC1 population B. ILC2 population 



  

Figure S8. Pre-α-PD-1 therapy tumors of hyperprogressive patients have elevated 

inflammation pathway activity (mainly chemokine activity) compared to the responsive 

patients. Related to Figure 8. (A) GSVA identified the activation of two founder data sets of 

inflammation pathways in the pre-therapy tumors of HPD patients compared to the non-HPD 

patients; (B) The chemokine encoding genes that were up-regulated in the pre-therapy tumors 

of HPD patients compared to the non-HPD patients. 
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Figure S9. Results of the 121-gene expression signature in the discovery data set 

(Dataset_1). Related to Figure 9. ROC curves was shown for separating HPD patients from 

non-HPD patients in the discovery data set (4 HPD vs 16 non-HPD patients, AUC=1). The 

majority of these genes (70 of 121) belonged to the gene sets that we identified as significant to 

different aspects of the HPD tumors in our samples. Specifically, these genes were classified 

into the following six categories. 

AUC=1 

Performance of the 121-gene set in 
the discovery dataset (Dataset_1) 



  

Figure S10. Kaplan–Meier analysis showed that the 121-gene set classifier can separate 

significantly low- and high-risk groups in the 13 major TCGA cancers. Related to Figure 

9. The Kaplan–Meier curves of the TCGA cancer types of (A) LUSC, (B) STAD, (C) glioma, (D) 

BRCA were shown in this figure.  
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Figure S11. Kaplan–Meier analysis showed that the 121-gene set classifier can separate 

significantly low- and high-risk groups in the 13 major TCGA cancers. Related to Figure 

9. The Kaplan–Meier curves of the TCGA cancer types of (A) KIRC, (B) BLCA, (C) LIHC, (D) 

LUAD were shown in this figure.  
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Figure S12. Kaplan–Meier analysis showed that the 121-gene set classifier can separate 

significantly low- and high-risk groups in the 13 major TCGA cancers. Related to Figure 

9. The Kaplan–Meier curves of the TCGA cancer types of (A) HNSC, (B) SKCM were shown in 

this figure.  

 



 

Figure S13. The mutation analysis highlighted eleven genes with deleterious mutations in the HPD 

tumors after anti-PD-1 therapy. Related to Table 2. Most of these genes have not been adequately 

studied in the cancer context before. Querying the HPD tumors associated 11-mutated-gene set in the 

cBioPortal website (http://www.cbioportal.org/) showed that this gene set had somatic mutations or copy 

number aberrations (CNAs) in 8887 (22%) of 41320 sequenced patients. The frequencies of tumor 

samples having somatic alterations in at least one of the eleven genes among each type of cancers 

archived in cBioPortal were shown in the figure. 



Figure S14. Changes of the apoptosis pathway activity in the after anti-PD-1 
immunotherapy tumors of the HPD patients. Related to Figure 5 and Figure 6. (A) Five 
apoptosis gene sets were activated in the two patients after anti-PD-1 immunotherapy; (B) 27 
apoptotic genes of these five apoptosis gene sets including marker genes in caspase/bcl2 
pathways (CASP3, CASP7, BNIP2, BNIP3L) were significantly up-regulated. 
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Figure S15. Comparison of the somatic mutation profiles of pretreatment tumor samples 
between HPD patients and a subset of non-HPD patients. Related to Figure 9. Mutation 
analysis showed that 40 cancer genes had somatic mutations in the original tumors of the HPD 
patients but no mutations in the tumors of the patients whose tumor progression was 
intermediate and/or late. 
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Figure S16. GSVA analysis of the transcriptional profiles of pretreatment tumor 
samples between HPD patients and a subset of non-HPD patients. Related to Figure 9. 
(A) Four gene sets were significantly altered in the tumors of HPD patients compared to the 
patients with intermediate and/or late tumor progression; (B) The corresponding gene 
expression changes of the above significantly altered pathways were also shown. 
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Table S1, Table S2, Table S3 were the supplemental Excel files. 

 
 
Table S4. The clinical information of the eighteen follicular lymphoma patients from the 
GSE52562 study, among whom two patients had PFS less than two months together with 
advanced tumor progression phenotypes after anti-PD-1 treatment. Related to Figure 9. 
  

 
 
 

Table S5. The information of the 121 genes in the expression signature of pre-anti-PD-1 
treatment tumors that may be predictive of HPD (hyperprogressive disease) patients after 
anti-PD-1 immunotherapy. Related to Figure 9. 

Gene Symbol Entrez Gene Name Location Type(s) 
AAK1 AP2 associated kinase 1 Cytoplasm kinase 
ACOT1 acyl-CoA thioesterase 1 Cytoplasm enzyme 
ACOT2 acyl-CoA thioesterase 2 Cytoplasm enzyme 
ADAR adenosine deaminase, RNA specific Nucleus enzyme 
AFF1 AF4/FMR2 family member 1 Nucleus transcription regulator 
ANKS6 ankyrin repeat and sterile alpha motif 

domain containing 6 
Cytoplasm other 

ANXA5 annexin A5 Plasma 
Membrane 

transporter 

ARID2 AT-rich interaction domain 2 Nucleus transcription regulator 

ExpId SampleID gender age pfs.censorship pfs.time.month treatment tissue HPDstatus 

GSM1269893 SAMPLE.25 F 67 1 1.8 pre-pidilizumab tumor biopsy HPD 

GSM1269873 SAMPLE.5 F 79 1 2.0 pre-pidilizumab tumor biopsy HPD 

GSM1269883 SAMPLE.15 M 46 1 3.7 pre-pidilizumab tumor biopsy nonHPD 

GSM1269886 SAMPLE.18 M 69 0 4.1 pre-pidilizumab tumor biopsy nonHPD 

GSM1269877 SAMPLE.9 F 58 1 6.5 pre-pidilizumab tumor biopsy nonHPD 

GSM1269888 SAMPLE.20 F 56 0 7.1 pre-pidilizumab tumor biopsy nonHPD 

GSM1269875 SAMPLE.7 M 60 1 10.1 pre-pidilizumab tumor biopsy nonHPD 

GSM1269889 SAMPLE.21 F 62 1 12.7 pre-pidilizumab tumor biopsy nonHPD 

GSM1269871 SAMPLE.3 M 51 1 13.5 pre-pidilizumab tumor biopsy nonHPD 

GSM1269894 SAMPLE.26 M 58 1 15.3 pre-pidilizumab tumor biopsy nonHPD 

GSM1269890 SAMPLE.22 M 70 1 18.6 pre-pidilizumab tumor biopsy nonHPD 

GSM1269892 SAMPLE.24 M 63 0 18.8 pre-pidilizumab tumor biopsy nonHPD 

GSM1269879 SAMPLE.11 M 67 1 19.6 pre-pidilizumab tumor biopsy nonHPD 

GSM1269869 SAMPLE.1 F 61 1 21.6 pre-pidilizumab tumor biopsy nonHPD 

GSM1269891 SAMPLE.23 F 37 0 26.5 pre-pidilizumab tumor biopsy nonHPD 

GSM1269887 SAMPLE.19 F 41 0 30.4 pre-pidilizumab tumor biopsy nonHPD 

GSM1269881 SAMPLE.13 M 58 0 30.8 pre-pidilizumab tumor biopsy nonHPD 

GSM1269885 SAMPLE.17 F 45 0 35.0 pre-pidilizumab tumor biopsy nonHPD 



ARL1 ADP ribosylation factor like GTPase 1 Cytoplasm enzyme 
ARMC9 armadillo repeat containing 9 Cytoplasm other 
ATF7IP activating transcription factor 7 

interacting protein 
Nucleus transcription regulator 

ATP11C ATPase phospholipid transporting 11C Plasma 
Membrane 

transporter 

ATP5L ATP synthase membrane subunit g Cytoplasm enzyme 
BAZ1B bromodomain adjacent to zinc finger 

domain 1B 
Nucleus transcription regulator 

BAZ2A bromodomain adjacent to zinc finger 
domain 2A 

Nucleus transcription regulator 

C17orf97 chromosome 17 open reading frame 97 Other other 
CAMSAP1 calmodulin regulated spectrin associated 

protein 1 
Cytoplasm other 

CARD8 caspase recruitment domain family 
member 8 

Nucleus other 

CCNA1 cyclin A1 Nucleus other 
CCNT1 cyclin T1 Nucleus transcription regulator 
CD63 CD63 molecule Plasma 

Membrane 
other 

CD96 CD96 molecule Plasma 
Membrane 

other 

CHD4 chromodomain helicase DNA binding 
protein 4 

Nucleus enzyme 

CLSTN3 calsyntenin 3 Plasma 
Membrane 

other 

COL4A1 collagen type IV alpha 1 chain Extracellular 
Space 

other 

COL4A2 collagen type IV alpha 2 chain Extracellular 
Space 

other 

COMMD9 COMM domain containing 9 Cytoplasm other 
CORO1C coronin 1C Cytoplasm other 
CPT1A carnitine palmitoyltransferase 1A Cytoplasm enzyme 
CREBZF CREB/ATF bZIP transcription factor Nucleus transcription regulator 
CSNK1G1 casein kinase 1 gamma 1 Cytoplasm kinase 
CTLA4 cytotoxic T-lymphocyte associated 

protein 4 
Plasma 
Membrane 

transmembrane receptor 

CYP2D6 cytochrome P450 family 2 subfamily D 
member 6 

Cytoplasm enzyme 

DGKD diacylglycerol kinase delta Cytoplasm kinase 
DIAPH1 diaphanous related formin 1 Plasma 

Membrane 
other 

EID2 EP300 interacting inhibitor of 
differentiation 2 

Nucleus other 

ELK4 ELK4, ETS transcription factor Nucleus transcription regulator 
EP300 E1A binding protein p300 Nucleus transcription regulator 
ERN1 endoplasmic reticulum to nucleus 

signaling 1 
Cytoplasm kinase 

FAHD1 fumarylacetoacetate hydrolase domain 
containing 1 

Cytoplasm enzyme 

FAM104B family with sequence similarity 104 
member B 

Other other 

FBXL17 F-box and leucine rich repeat protein 17 Other other 



FPGT fucose-1-phosphate guanylyltransferase Cytoplasm enzyme 
FUBP3 far upstream element binding protein 3 Nucleus transcription regulator 
FUCA2 alpha-L-fucosidase 2 Extracellular 

Space 
enzyme 

GALNT10 polypeptide N-
acetylgalactosaminyltransferase 10 

Cytoplasm enzyme 

GALNT2 polypeptide N-
acetylgalactosaminyltransferase 2 

Cytoplasm enzyme 

GAPVD1 GTPase activating protein and VPS9 
domains 1 

Cytoplasm other 

GATAD2B GATA zinc finger domain containing 2B Nucleus transcription regulator 
GBF1 golgi brefeldin A resistant guanine 

nucleotide exchange factor 1 
Cytoplasm other 

GOLIM4 golgi integral membrane protein 4 Cytoplasm other 
GPR18 G protein-coupled receptor 18 Plasma 

Membrane 
G-protein coupled 
receptor 

HADH hydroxyacyl-CoA dehydrogenase Cytoplasm enzyme 
HHLA3 HERV-H LTR-associating 3 Other other 
HIVEP1 human immunodeficiency virus type I 

enhancer binding protein 1 
Nucleus transcription regulator 

HIVEP2 human immunodeficiency virus type I 
enhancer binding protein 2 

Nucleus transcription regulator 

HMBS hydroxymethylbilane synthase Cytoplasm enzyme 
HPGDS hematopoietic prostaglandin D synthase Cytoplasm enzyme 
HSPG2 heparan sulfate proteoglycan 2 Extracellular 

Space 
enzyme 

KDM6B lysine demethylase 6B Extracellular 
Space 

enzyme 

KDR kinase insert domain receptor Plasma 
Membrane 

kinase 

KLHDC8B kelch domain containing 8B Cytoplasm other 
LAMTOR3 late endosomal/lysosomal adaptor, 

MAPK and MTOR activator 3 
Cytoplasm other 

LGALS12 galectin 12 Extracellular 
Space 

other 

LNPEP leucyl and cystinyl aminopeptidase Cytoplasm peptidase 
LRP6 LDL receptor related protein 6 Plasma 

Membrane 
transmembrane receptor 

MAGEH1 MAGE family member H1 Cytoplasm other 
MEF2D myocyte enhancer factor 2D Nucleus transcription regulator 
MTIF3 mitochondrial translational initiation 

factor 3 
Cytoplasm translation regulator 

NFE2L2 nuclear factor, erythroid 2 like 2 Nucleus transcription regulator 
NOTCH3 notch 3 Plasma 

Membrane 
transcription regulator 

NPLOC4 NPL4 homolog, ubiquitin recognition 
factor 

Nucleus other 

NSD1 nuclear receptor binding SET domain 
protein 1 

Nucleus transcription regulator 

NUP188 nucleoporin 188 Nucleus other 
OBSCN obscurin, cytoskeletal calmodulin and 

titin-interacting RhoGEF 
Cytoplasm kinase 

OTUD7B OTU deubiquitinase 7B Cytoplasm peptidase 



PAK2 p21 (RAC1) activated kinase 2 Cytoplasm kinase 
PCDHGB7 protocadherin gamma subfamily B, 7 Other other 
PHF8 PHD finger protein 8 Nucleus enzyme 
PPM1L protein phosphatase, Mg2+/Mn2+ 

dependent 1L 
Cytoplasm phosphatase 

PPP2R3C protein phosphatase 2 regulatory subunit 
B''gamma 

Cytoplasm other 

PTPN3 protein tyrosine phosphatase, non-
receptor type 3 

Cytoplasm phosphatase 

PTS 6-pyruvoyltetrahydropterin synthase Cytoplasm enzyme 
RANGAP1 Ran GTPase activating protein 1 Nucleus other 
SATB1 SATB homeobox 1 Nucleus transcription regulator 
SERPINF1 serpin family F member 1 Extracellular 

Space 
other 

SETX senataxin Nucleus enzyme 
SLC25A34 solute carrier family 25 member 34 Cytoplasm other 
SLC27A1 solute carrier family 27 member 1 Plasma 

Membrane 
transporter 

SLC38A6 solute carrier family 38 member 6 Plasma 
Membrane 

transporter 

SLC6A6 solute carrier family 6 member 6 Plasma 
Membrane 

transporter 

SMURF1 SMAD specific E3 ubiquitin protein 
ligase 1 

Cytoplasm enzyme 

SNAPC4 small nuclear RNA activating complex 
polypeptide 4 

Nucleus transcription regulator 

SORT1 sortilin 1 Plasma 
Membrane 

G-protein coupled 
receptor 

SPEN spen family transcriptional repressor Nucleus transcription regulator 
SPIN2A spindlin family member 2A Other other 
SPP1 secreted phosphoprotein 1 Extracellular 

Space 
cytokine 

SSBP2 single stranded DNA binding protein 2 Nucleus transcription regulator 
OBFC1 STN1, CST complex subunit Nucleus other 
SYTL4 synaptotagmin like 4 Cytoplasm transporter 
TCF4 transcription factor 4 Nucleus transcription regulator 
TEX261 testis expressed 261 Extracellular 

Space 
other 

TGOLN2 trans-golgi network protein 2 Cytoplasm other 
TIMM8B translocase of inner mitochondrial 

membrane 8 homolog B 
Cytoplasm transporter 

TLN1 talin 1 Plasma 
Membrane 

other 

TMEM99 transmembrane protein 99 Other other 
TNFRSF25 TNF receptor superfamily member 25 Plasma 

Membrane 
transmembrane receptor 

TNKS2 tankyrase 2 Nucleus enzyme 
TRIO trio Rho guanine nucleotide exchange 

factor 
Cytoplasm kinase 

TRIP12 thyroid hormone receptor interactor 12 Cytoplasm enzyme 
TSC2 TSC complex subunit 2 Cytoplasm other 
TSPAN3 tetraspanin 3 Plasma 

Membrane 
other 



UBTF upstream binding transcription factor, 
RNA polymerase I 

Nucleus transcription regulator 

KIAA2018 upstream transcription factor family 
member 3 

Other other 

VHL von Hippel-Lindau tumor suppressor Nucleus transcription regulator 
WDR44 WD repeat domain 44 Cytoplasm other 
YWHAE tyrosine 3-monooxygenase/tryptophan 

5-monooxygenase activation protein 
epsilon 

Cytoplasm other 

YWHAQ tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein 
theta 

Cytoplasm other 

ZFP36L1 ZFP36 ring finger protein like 1 Nucleus transcription regulator 
ZNF609 zinc finger protein 609 Nucleus other 
ZNF878 zinc finger protein 878 Other other 

 

 



PatientID Sample SampleType PFS 
Censorship 

Clinical  
Phenotype 

PFS 
(days) 

HPD 
status 

Pt103 Pt103_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt106 Pt106_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 56 HPD 

Pt11 Pt11_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 59 HPD 

Pt17 Pt17_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 48 HPD 

Pt1 Pt1_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 54 HPD 

Pt24 Pt24_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt27 Pt27_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt29 Pt29_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt31 Pt31_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt39 Pt39_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 57 HPD 

Pt46 Pt46_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 51 HPD 

Pt47 Pt47_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 57 HPD 

Pt52 Pt52_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 57 HPD 

Pt5 Pt5_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 56 HPD 

Pt62 Pt62_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 56 HPD 

Pt66 Pt66_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 59 HPD 

Pt78 Pt78_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt84 Pt84_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 50 HPD 

Pt85 Pt85_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 49 HPD 

Pt8 Pt8_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 52 HPD 

Pt90 Pt90_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 44 HPD 

Pt101 Pt101_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 612 nonHPD 

Pt10 Pt10_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 119 nonHPD 

Pt18 Pt18_Pre Pre-anti-PD-1 tumor 0 NA 519 nonHPD 

Pt23 Pt23_Pre Pre-anti-PD-1 tumor 0 DEATH PRIOR TO DISEASE 
ASSESSMENT 

52 nonHPD 

Pt26 Pt26_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 294 nonHPD 

Pt28 Pt28_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 61 nonHPD 

Pt2 Pt2_Pre Pre-anti-PD-1 tumor 1 STABLE DISEASE 115 nonHPD 

Pt30 Pt30_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 603 nonHPD 

Pt34 Pt34_Pre Pre-anti-PD-1 tumor 1 NA 834 nonHPD 

Pt36 Pt36_Pre Pre-anti-PD-1 tumor 1 NA 737 nonHPD 

Pt37 Pt37_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 176 nonHPD 

Pt38 Pt38_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 167 nonHPD 

Pt3 Pt3_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 583 nonHPD 

Pt44 Pt44_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 560 nonHPD 

Pt48 Pt48_Pre Pre-anti-PD-1 tumor 1 NA 1046 nonHPD 

Pt49 Pt49_Pre Pre-anti-PD-1 tumor 1 PARTIAL RESPONSE 827 nonHPD 

Pt4 Pt4_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 175 nonHPD 

Pt59 Pt59_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 111 nonHPD 

Pt65 Pt65_Pre Pre-anti-PD-1 tumor 1 STABLE DISEASE 280 nonHPD 

Pt67 Pt67_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 281 nonHPD 

Pt72 Pt72_Pre Pre-anti-PD-1 tumor 0 PARTIAL RESPONSE 333 nonHPD 

Pt76 Pt76_Pre Pre-anti-PD-1 tumor 0 NA 10 nonHPD 

Table S6. The clinical information of the 51 melanoma patients subjected to nivolumab 

immunotherapy from the CA209-038 study, among whom 21 patients had PFS less than two 

months together with post-therapy tumor progression phenotypes. Related to Figure 9. 



 

 
 

 

Pt77 Pt77_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 163 nonHPD 

Pt79 Pt79_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 171 nonHPD 

Pt82 Pt82_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 220 nonHPD 

Pt89 Pt89_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 219 nonHPD 

Pt92 Pt92_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 190 nonHPD 

Pt94 Pt94_Pre Pre-anti-PD-1 tumor 1 COMPLETE RESPONSE 729 nonHPD 

Pt98 Pt98_Pre Pre-anti-PD-1 tumor 0 STABLE DISEASE 408 nonHPD 

Pt9 Pt9_Pre Pre-anti-PD-1 tumor 0 PROGRESSION 66 nonHPD 

Table S7. The information of the 40 HPD associated cancer genes having nonsilent somatic 

mutations in the original tumors of the HPD patients but no mutations in the tumors of the 

patients whose tumor progression was intermediate and/or late. Related to Figure 9. 



Transparent Methods: 

Whole-exome sequencing (WES) and RNA-seq experimentation and data analyses 

For each set of paired tumor samples, a section of formalin-fixed tissue was examined with 

hematoxylin and eosin (H&E) staining to confirm the presence of tumor and determine the 

relative tumor burden. At least five 10-mm FFPE slides were used for each tumor specimen, 

from which DNA and RNA were purified by a commercial vendor (Omega Bio-tek, Inc., 

Norcross, GA 30071) and subjected to WES and RNA-seq after library purification. The Illumina 

Nextera Rapid Capture Exome kit was used for the preparation of exome libraries, which were 

sequenced to the average depth of 150 X coverage in the paired end 150 bp (PE150) mode 

with a HiSeq 4000 system. The Illumina TruSeq RNA Access kit was used for the preparation of 

total RNA libraries that were sequenced to the average depth of 75 million reads in the paired 

end 100 bp (PE100) mode using the HiSeq 2500 system.  

The WES short reads were aligned to a reference genome (NCBI human genome assembly 

hg19) using the BWA (Burrows-Wheeler Aligner) program (Li and Durbin, 2009). Each 

alignment was assigned a mapping quality score by BWA (Li and Durbin, 2009), which 

generated a Phred-scaled probability that the alignment is correct. Reads with low mapping 

quality scores (< 5) were removed to reduce the false positive rate. The PCR duplicates were 

detected and removed using Picard software. Local realignment of the BWA-aligned reads was 

performed using the Genome Analysis Toolkit (GATK) (McKenna et al., 2010). VarScan 2 

(Koboldt et al., 2012) was used to identify somatic variants based on the local realignment 

results comparing each tumor with the two reference blood samples. Default parameters in 

VarScan 2 were used. The lists of shared SNVs/indels were then annotated using ANNOVAR 

(Wang et al., 2010). Single nucleotide polymorphisms (SNPs) were filtered against dbSNP 

version 142 (dbSNP 142). Plots of mutations were generated using the “oncoPrint” function 

provided by the R package – ComplexHeatmap (Gu et al., 2016). To identify somatic mutations 

with the most significant functional consequences, we predicted the impact of the mutations on 



HPD tumors using the bioinformatics programs SIFT, PolyPhen-2, and FATHMM according to 

our previous approaches (Xiong et al., 2015). Network analysis of the eleven genes having 

deleterious mutations in HPD tumors was performed and graphically depicted using Ingenuity 

Pathway Analysis software (IPA, QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis). Mapping of the 

p.Y1611S mutation to the 3D structure of the TSC2 protein was performed using MuPIT 

software (Niknafs et al., 2013). The bioinformatics tools SciClone (Miller et al., 2014) and 

Clonevol (Dang et al., 2017) were used to identify the clonal structures of the paired tumors of 

the two HPD patients. Plots of the clonal mutation clusters were generated using the fishplot 

software feature (Miller et al., 2016).  

RNA-seq sample quality was analyzed using the FastQC program 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw sequence data reads in fasta 

format were first processed through Perl scripts (Haas et al., 2013). Data were then refined by 

removing reads containing adapter, poly-N, or low-quality reads (Pei et al., 2016; Wang et al., 

2015). All downstream analyses were based on refined data. The “rsem prepare reference” 

script of the RSEM package was used to generate reference transcript sequences by using the 

gene annotation file (GTF) format and the full genome sequence (FASTA) format of human 

GRCh37 assembly. All of the quality reads of different samples were mapped to generated 

reference transcript sequences using the Bowtie-2 program (Langmead et al., 2009) to 

determine the identity between cDNA sequences and corresponding genomic exons in regions 

of exact matches. The “rsem calculate expression” script of RSEM was used to analyze both the 

alignment of reads against reference transcript sequences and the calculation of relative 

abundances. Normalized gene expression values in TPM (Transcripts Per Kilobase Million) 

were used as input of the AltAnalyze software (Olsson et al., 2016) for differential gene 

expression analysis. FDR (False discovery rate) corrected P-values of less than 0.05 were used 

as criteria for significantly regulated genes.  



To perform oncogenic pathway or network analysis, the list of differentially expressed genes 

between paired pre- and post-anti-PD-1 therapy tumors of the two patients was analyzed 

through the use of IPA. The GSVA (Gene Set Variation Analysis) (Hanzelmann et al., 2013) and 

GSEA (Gene Set Enrichment Analysis) (Subramanian et al., 2005) approaches were used to 

analyze the activity and enrichment of immune cell populations, respectively. GSEA analysis 

was performed for pre-ranked differentially expressed genes using the option ‘GseaPreranked’. 

One thousand permutations were used to calculate significance. A gene set was considered to 

be significantly enriched in one of the two groups when the P value was lower than 0.05 and the 

FDR was lower than 0.25 for the corresponding gene set. For inflammatory pathway analysis, 

we performed a focused gene expression study by analyzing the changes of the inflammatory 

related genes included in the Hallmark gene set for inflammatory response named 

“HALLMARK_INFLAMMATORY_RESPONSE” downloaded from the MSigDB database 

(Liberzon et al., 2015; Liberzon et al., 2011).  The GSVA approach (Hanzelmann et al., 2013) 

was used to characterize the activity of inflammation pathways in the post-anti-PD-1 treatment 

HPD tumors vs pre-treatment tumors. All heatmaps of gene expression were generated using 

the R package – heatmap3 (https://cran.r-project.org/web/packages/heatmap3/). 

 

Tumor immunogenicity analysis 

Immunogenicity of the pre-anti-PD-1 treatment tumors and post-treatment HPD tumors was 

analyzed using published criteria (Charoentong et al., 2017; Hakimi et al., 2016). The 

immunophenoscore (IPS) was calculated on an arbitrary 0–10 scale based on the sum of the 

weighted averaged Z score of the four categories shown in Figure 5 in accordance to the 

previous methods (Charoentong et al., 2017; Tappeiner et al., 2017). Briefly, the four categories 

include 20 single factors such as the presence of specific immune cell types along with the 

abundance of MHC molecules, or molecules known to act as immunoinhibitors or 

immunostimulators. For each determinant, a sample-wise Z score from gene expression data 



was calculated. For the six cell types, an average Z score from the corresponding metagenes 

was calculated. The metagenes were defined previously as non-overlapping sets of genes that 

are representative for specific immune cell subpopulations and are not expressed in normal 

tissue (Charoentong et al., 2017). The detailed list of genes included in the metagenes were 

available from the same literature (Charoentong et al., 2017). The determinants were then 

divided into four categories—effector cells (activated CD4+ or CD8+ T cells and effector 

memory CD4+ T cells or CD8+ T cells), and suppressive cells (Tregs and MDSCs [myeloid-

derived suppressor cells]), MHC-related molecules, and checkpoints or immunomodulators are 

color-coded in the outer part of the wheel (red: positive Z score, blue: negative Z score). 

 

Development and validation of an HPD classifier based on gene expression data 

Previously, no gene expression signature had been identified to predict which patients might 

develop HPD after receiving anti-PD-1 immunotherapy. To identify such predictors, we analyzed 

the publicly available gene expression data sets of the anti-PD-1 immunotherapy studies that 

may contain subsets of patients that acquired HPD. Similar to previous studies (Champiat et al., 

2017; Kato et al., 2017; Saada-Bouzid et al., 2017), we defined HPD as (1) progression at first 

restaging on therapy, (2) increase in tumor size > 50%, and (3) >2-fold increase in tumor growth 

rate (TGR). Based on these criteria, we identified two cohorts in these datasets that received 

anti-PD-1 treatment and contained patients that developed putative HPD. The first study 

(Accession # “GSE52562” in the GEO database) performed gene expression profiling of tumor 

biopsies before and after pidilizumab (a humanized anti-PD-1 monoclonal antibody, also called 

“CT-011”) therapy in patients with relapsed follicular lymphoma (Westin et al., 2014). Previously, 

it was suggested that binding to PD-1 was the main driver for pidilizumab’s activity. Recent 

analyses show that pidilizumab binds to a hypoglycosylated /nonglycosylated form of PD-1 that 

is present on a distinct subpopulation of exhausted T cells (Fried et al., 2018). Nevertheless, 

multiple studies have shown that pidilizumab can affect PD-1 function either through binding or 



other mechanisms, so pidilizumab treatment is still considered as anti-PD-1 therapy (Abdin et 

al., 2018; Benson et al., 2010; Jelinek and Hajek, 2016; Mkrtichyan et al., 2011; Rosenblatt et 

al., 2011; Westin et al., 2014). Two of eighteen follicular lymphoma patients from this study had 

PFS less than two months after anti-PD-1 treatment. These two patients were classified as HPD 

patients, while the other sixteen were non-HPD patients (Table S4). To develop an HPD-

associated gene expression signature, the pre-therapy tumor expression data of our two HPD 

patients were combined with the pre-treatment tumor expression data of the two HPD patients 

and sixteen non-HPD patients from the GSE52562 study. This was used as the HPD signature 

discovery dataset (called “Dataset_1”). Another study (quoted as “CA209-038”) assessed 

transcriptome changes in tumors from the patients with advanced melanoma before and after 

nivolumab immunotherapy (Riaz et al., 2017). This CA209-038 study had 21 advanced 

melanoma patients having PFS < 2 months after anti-PD-1 immunotherapy. Therefore, these 21 

patients were classified as the HPD patients while the other 31 patients were classified as non-

HPD patients (Table S6). These 51 patients had pre-therapy gene expression data available, 

and this dataset was used as the validation dataset (called “Dataset_2”). 

Based on the genome-wide expression data of Dataset_1 and Dataset_2, we developed 

and validated a 121-gene classifier using the cancerclass R package (Budczies et al., 2014). 

The performance of the 121-gene set as a classifier was evaluated with the use of receiver-

operating-characteristic curves, calculation of AUC (Hanley and McNeil, 1982), and estimates of 

sensitivity and specificity implemented in the cancerclass R package (Jan et al., 2014). This 

classification protocol starts with a feature selection step and continues with nearest-centroid 

classification. Fisher’s exact test was used for categorical variables. All confidence intervals are 

reported as two-sided binomial 95% confidence intervals. Statistical analysis was performed 

with R software, version 3.2.3 (R Project for Statistical Computing). We also tested the 

prognostic performance of the 121-gene signature using gene expression data from the TCGA 

tumor samples in conjunction with the online biomarker validation tool and database – 



SurvExpress (Aguirre-Gamboa et al., 2013). Specifically, Kaplan-Meier survival analyses were 

implemented to estimate the survival functions after the samples were classified into two risk 

groups according to their risk scores based on the 121-gene set. Differences in survival risk 

between the two risk groups were assessed using the Mantel-Haenszel log-rank test. 
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