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Abstract

Background: Speech data for medical research can be collected noninvasively and in large volumes. Speech analysis has shown
promise in diagnosing neurodegenerative disease. To effectively leverage speech data, transcription is important, as there is
valuable information contained in lexical content. Manual transcription, while highly accurate, limits the potential scalability and
cost savings associated with language-based screening.

Objective: To better understand the use of automatic transcription for classification of neurodegenerative disease, namely,
Alzheimer disease (AD), mild cognitive impairment (MCI), or subjective memory complaints (SMC) versus healthy controls,
we compared automatically generated transcripts against transcripts that went through manual correction.

Methods: We recruited individuals from a memory clinic (“patients”) with a diagnosis of mild-to-moderate AD, (n=44, 30%),
MCI (n=20, 13%), SMC (n=8, 5%), as well as healthy controls (n=77, 52%) living in the community. Participants were asked to
describe a standardized picture, read a paragraph, and recall a pleasant life experience. We compared transcripts generated using
Google speech-to-text software to manually verified transcripts by examining transcription confidence scores, transcription error
rates, and machine learning classification accuracy. For the classification tasks, logistic regression, Gaussian naive Bayes, and
random forests were used.

Results: The transcription software showed higher confidence scores (P<.001) and lower error rates (P>.05) for speech from
healthy controls compared with patients. Classification models using human-verified transcripts significantly (P<.001) outperformed
automatically generated transcript models for both spontaneous speech tasks. This comparison showed no difference in the reading
task. Manually adding pauses to transcripts had no impact on classification performance. However, manually correcting both
spontaneous speech tasks led to significantly higher performances in the machine learning models.

Conclusions: We found that automatically transcribed speech data could be used to distinguish patients with a diagnosis of AD,
MCI, or SMC from controls. We recommend a human verification step to improve the performance of automatic transcripts,
especially for spontaneous tasks. Moreover, human verification can focus on correcting errors and adding punctuation to transcripts.
However, manual addition of pauses is not needed, which can simplify the human verification step to more efficiently process
large volumes of speech data.
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Introduction

Identifying individuals with Alzheimer disease (AD) and mild
cognitive impairment (MCI) early is beneficial for patient care,
family support, and resource planning for the health care system
[1]. Identification of individuals who are in the earliest stages
of neurodegenerative disease, before irreversible brain changes
have occurred, may also allow for the use of disease-modifying
therapies when they would be most effective [2].

Analysis of speech to aid in the identification of individuals
with early neurodegenerative disease can be a promising
strategy, as speech recording is noninvasive, scalable, and easily
repeated over time. This contrasts with the current methods for
screening for AD or MCI, such as nuclear medicine scans or
spinal fluid analysis, which can be both expensive and invasive
[3]. Short samples of spontaneous or prompted speech can be
collected remotely by telephone or videoconference. To date,
speech and language have shown promising results in a
significant number of studies aiming to classify AD or MCI [4].

For AD classification using speech, transcription is a key step
to leverage the wealth of information contained in lexical data
[5,6]. DementiaBank [7], the largest cohort of MCI and AD
speech data for research, is entirely manually transcribed.
Manual transcription, while highly accurate, is very low
throughput (eg, requiring 4 minutes of transcriber time for each
minute of audio [8]), limiting the potential scalability and cost
savings associated with language-based screening for MCI and
AD. As a result, there is a move toward automatically
preprocessing medical speech as opposed to manual
transcription.

To date, some groups have investigated AD/MCI classification
using only automatically generated transcripts produced by
transcription software [9,10]. While automatic transcription
allows high-throughput speech transcription for a very low cost
per sample, these systems can vary in their accuracy (ranging
from 68% to 87% in past work [11]), which may affect the
performance of downstream linguistic analysis [12].
Furthermore, the impact of automatic preprocessing on
classification is not fully understood and should be investigated
before continuing downstream investigations.

To better understand the use of automatic transcription for
AD/MCI classification, we compared the automatically
generated transcripts from Google speech-to-text [13]
(“automatic transcripts”) against automatic transcripts that went
through a second stage of manual correction (“manually
corrected transcripts”). These manually corrected transcripts
were used as ground truth. 

Specifically, we first examined a confidence metric in the
transcription software for transcribing speech recordings from
memory clinic patients versus healthy controls. Second, we
measured the word-level accuracy of the automatic transcripts
against ground truth. Third, we compared classification

performances of machine learning models using data from
automatic versus manually-corrected transcripts. Based on these
results, we discuss accuracy trade-offs associated with manual
transcript verification in the context of dementia classification,
and we suggest more efficient manual verification methods to
improve the performance of automatically generated transcripts. 

This investigation aims to highlight differences in human versus
automatically processed transcripts to drive future automatic
transcription–based research. Therefore, we focus here on
comparing transcription methods using existing machine
learning algorithms rather than building a novel model that
outperforms state-of-the-art models.

This work has 4 main contributions addressing knowledge gaps
in the existing literature. First, we evaluate automatic
transcription and manual transcription on a data set of older
adults for AD/MCI classification using 3 measures: transcription
confidence, error rates, and machine learning classification
accuracy. To our knowledge, this approach for evaluating
transcriptions has not been used previously.

Second, our investigation is novel in that we are exploring the
robustness of automatic transcription in a cohort of older adults,
including those with cognitive impairment and dementia. The
aging process includes changes to voice and speech (eg,
presbyphonia, word-finding difficulties), which may affect
automatic transcription. However, previous investigations on
transcription methods have focused solely on younger or
heterogeneous cohorts [12,14]. To our knowledge, this is the
first investigation on the impact of transcription methods in a
cohort of older adults.

Third, based on the evaluation results, we make practical
suggestions about how to use automatic transcription. These
suggestions will help researchers to better leverage automatic
transcription for building natural language processing
(NLP)–based screening methods using large data sets for
AD/MCI or subjective memory complaints (SMC), which can
be a prodromal state for MCI and AD [15].

Finally, while our results are generated with an AD/MCI data
set, our findings could also be extrapolated to other neurological
and psychiatric conditions where speech analysis is being
investigated as a classification tool. This includes stroke [16],
Parkinson disease [17], concussion [18], anxiety [19], bipolar
disorder [20], depression, and suicidal ideation [21,22].

Methods

Overview
This study involved 3 main phases: (1) data collection, (2)
transcription, and (3) evaluation. Our workflow is summarized
in Figure 1. As part of a larger study examining machine
learning algorithms for classification of memory clinic patients
versus healthy controls, we recruited participants with a clinical
diagnosis of mild-to-moderate AD, MCI, or SMC (“patients”)

JMIR Aging 2022 | vol. 5 | iss. 3 | e33460 | p. 2https://aging.jmir.org/2022/3/e33460
(page number not for citation purposes)

Soroski et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


from a subspecialty memory clinic and healthy volunteer
controls from the community. Participants underwent a test
battery that included describing the “Cookie Theft” picture from
the Boston Diagnostic Aphasia Examination, a reading task
incorporating a sixth-grade level paragraph from the
International Reading Speed Texts (IReST), and recounting a
pleasant past experience. Their speech was recorded, and we
used Google Cloud speech-to-text (STT) to automatically
transcribe speech data. We then manually corrected errors in
the automatic transcripts. 

For evaluation, we first aggregated transcription confidence
levels provided by the software to determine whether
transcription software confidence levels vary between patients
and controls. Using manually corrected transcripts as the gold
standard, we calculated the error rate of automatic transcripts.
Then, we compared the performance of machine learning models
trained with either automatic or manually corrected transcripts
in classifying transcripts as belonging to “patients” versus
“controls.”

Figure 1. Diagram of our methods and process.

Data Collection

Recruitment
Patients were recruited from a memory clinic in British
Columbia, Canada, and diagnosed with AD, MCI, or SMC.
Control participants were recruited from the community, with
efforts made to age- and sex-match patient participants. All
participants were conversationally fluent in English, could
engage in a spontaneous conversation, and were aged 50 or
older (mean 68.8, SD 9.5 years). Clinic patients were excluded
if they had psychiatric medication changes under 18 months
ago or neurological conditions other than SMC, MCI, or AD.
We report data from 72 memory clinic patients, of which 44
(30%) were diagnosed with mild-to-moderate AD, 20 (13%)
with MCI, and 8 (5%) with SMC (mean age 71.9, SD 8.9 years),
along with 77 (52%) healthy volunteers (mean age 65.7, SD 9.1
years). 

Diagnoses were made by specialist clinicians using
standard-of-care guidelines. The diagnostic process involves a
combination of cognitive testing, neuroimaging, laboratory data,
medical history, physical exam, and collateral information
collected from individuals close to the patient.

Speech Sample Collection
Participants underwent a 10-minute computer-based battery.
They were asked to complete a total of 3 speech tasks while
their voice was recorded. Participants described the Cookie
Theft photo [23], read a standardized paragraph from the IReST,
and recalled a pleasant past experience. All tasks were carried
out in English. During these spontaneous speech tasks, the audio
was recorded using the Logitech C922x ProStream webcam.
The Cookie Theft picture description task is a validated
spontaneous speech task used extensively in prior work for
AD/MCI classification [6,24-26]. This task has also been used
for predicting the future risk of developing AD in cognitively
normal individuals [27].

For the reading task, a single paragraph was selected from
IReST, a collection of short paragraphs (<200 words) designed
to be readable at a sixth-grade level [28]. To recreate a natural
reading environment such as a book or newspaper, the entire
paragraph was presented on the screen at the same time rather
than displaying each sentence individually, as in some other
investigations [29]. For the final task, participants were asked
to describe a pleasant past experience (“experience description
task”). Several examples were given to participants prior to
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starting the task, such as their first pet, how they met their best
friend, or a place they had traveled.

Automatic Transcription
Following the speech tasks, participant audio data was labeled
with a unique anonymized identifier and converted to the
Waveform audio file format. Next, participant audio was
uploaded to the Google Cloud STT platform using US English
and 16000 Hz settings, with word-level time stamps enabled,
to output the automatic transcripts. 

Each transcribed word was labeled as being within a specific
task or as being extraneous from all tasks. Words spoken outside
of tasks were removed in downstream experiments. 

Human Transcript Correction
After automatic transcript files were generated, human
transcribers listened to the recorded audio files and made manual
corrections to the transcripts based on the recorded audio. This
manual transcription involved 3 steps: fixing transcription errors,
adding punctuation, and adding filled pauses and silent pause
annotations.  

For the first step, which involved fixing transcription errors,
human transcribers manually substituted incorrectly transcribed
words (eg, change “cookie far” to “cookie jar”), inserted missed
words (eg, change “cookie” to “cookie jar”), and deleted extra
words (eg, change “cookie key jar” to “cookie jar”). 

The second step entailed adding punctuation. While Google
STT adds punctuation, it is very rare, with some transcripts
having as few as 0 automatically added punctuation marks. As
NLP preprocessing (eg, parsing) benefits from fully formed
sentences, human transcribers manually added punctuation (ie,
“.”, “!”, and “?”) to the transcripts.

For the third step, which consisted of adding filled pauses and
silent pause annotations, human transcribers manually added
both filled and silent pauses. A filled pause was considered to
be any utterance of “uh” or “um.” Filled pauses were
consistently transcribed as “uh” or “um” regardless of the length
of the pause. Silent pauses were specially labeled as “[pause]”
to distinguish this from the word “pause.” Silent pauses were
considered to be any break or silence in speech for 0.25 seconds
or longer, following Goldman-Eisler [30] and Park [31].
Instances where the participant was not speaking but was not
silent were not labeled as a pause (eg, coughing or laughing).
The duration of pauses was not differentiated.

Figure 2 summarizes the transcription process. Acoustic data
were transcribed with Google Cloud STT to generate “automatic
transcripts.” Then, human transcribers fixed spoken words and
added punctuation based on the audio recording to generate
“manually corrected transcripts without pauses.” Finally, human
transcribers manually added both filled and silent pauses to
generate the “manually corrected transcripts” data set.

Figure 2. Diagram illustrating how the 3 different transcript data sets were generated.

Ethics Approval
This study was approved by the University of British Columbia
Clinical Research Ethics Board (H17-02803). All participants
provided their written informed consent prior to participating
in this study. Baseline demographic characteristics of the
patients and controls are summarized in Multimedia Appendix
1.

Evaluation

Transcription Confidence
For a given audio clip, Google STT outputs transcribed words
and a confidence level between 0 and 1. This is calculated by
aggregating the likelihood values assigned to each word in the
audio. A higher number indicates that the words were more
likely to be transcribed accurately. We used these confidence
levels to determine whether transcription software confidence
levels vary between patients and controls and to determine if
patient speech was more difficult to transcribe than control
speech.
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Error Rate Evaluation
To examine the error rate of automatic transcripts, we compared
these to manually corrected transcripts without pauses. We
chose not to include pauses because automatic transcripts do
not transcribe pauses at all; thus, not denoting a pause would
not be considered an error. 

We calculated standard measures of transcription accuracy,
including word error rate (WER) and match error rate (MER)
[32], using a Python package, JiWER (v2.1.0, Vassen [33]).
These metrics take into account the number of substitutions (eg,
“cookie far” to “cookie jar”), deletions (eg, “cookie key jar” to
“cookie jar”), and insertions (eg, “cookie” to “cookie jar”) in
the manually corrected transcript.

WER represents the rate of errors to the number of input words.
This is calculated as follows:

WER does not weigh insertions and deletions equally. For
example, a 6-word transcript with 30 insertion errors has a WER
value of 5, while a 36-word transcript with 30 deletion errors
has a WER of 0.83.

MER represents the probability of a given word match being
incorrect and is calculated as follows:

For example, a MER of 0.25 means that 1 out of 4 word matches
between the manually corrected transcript and automatic
transcript will be an error. MER is calculated similarly to WER.
However, MER takes into account the maximum number of
words between both the automatic and manually edited
transcripts, as opposed to only the number of words in only the
automatic transcript. MER also weighs insertions and deletions
equally. 

WER and MER were calculated for each individual transcript.
Then, the average and standard deviation of these values were
calculated for patients and controls and for each task (eg, picture
description, reading, and experience description tasks).

Machine Learning Classification
To determine whether manual correction impacts machine
learning classification of patients versus controls, we performed
experiments using both the automatic and manually corrected
transcript data sets.

Table 1 outlines the entire feature set by task. For the picture
description task and the experience description task, we
extracted features from transcripts following the text-based
features in previous work [6,34]. These features are based on
grammar rules, vocabulary, or psycholinguistics. For the
experience description task, we did not include information
units used for the picture description task, each of which
correspond to visual features in the Cookie Theft picture, such
as cookie, jar, boy, or girl. 

Table 1. Features for machine learning classification models.

Feature groups and number of features (n) in each groupTask

Picture description • Cookie Theft image information units (13) 
• Part-of-speech (15), context-free-grammar rules (44), syntactic complexity (24), vocabulary richness (4), psycholin-

guistic (5), repetitiveness (5)

Reading • Syllable count (1), pause count (1)a, total duration (1), total time spent speaking (1), proportion of time spent speaking

(1), speech rate (1), average syllable duration (1), pauses per syllable (1)a, pause rate (1)a, pause duration (3)a

Experience description • Part-of-speech (15), context-free-grammar rules (44), syntactic complexity (24), vocabulary richness (4), psycholin-
guistic (5), repetitiveness (5)

aThese features were computed using acoustic data and transcript data and are also affected by method of pause detection (ie, acoustic vs text data).

For the reading task, we used 12 reading-task–specific features
based on the work of Fraser et al [35]. Extracting text features
from reading task data may be counterintuitive because each
participant reads an identical prompt. However, transcripts may
contain repeated words, incorrectly read words, or filled pauses,
making transcribed text features potentially informative. Since
automatic transcripts do not contain pause information, we first
compared automatic transcripts and manually corrected
transcripts by using acoustic data to detect unfilled pauses. As
an additional comparison for the reading task, we compared
using unfilled pauses detected from audio and using unfilled
pauses annotated in manually corrected transcripts to determine
whether manually adding pauses to transcripts is useful for the
reading task or not.

To parse text data and tag parts of speech, we used Stanford
CoreNLP [36]. Psycholinguistic features were generated using
the MRC database [37], which provides concreteness,
familiarity, and imageability scores of English words. Pauses
in the reading task were detected using pydub (v0.25.1 [38]), a
Python audio processing package. Syllables were detected using
Syllables (v1.0.3 [39]), a Python package.

Based on these features, we performed binary classification to
distinguish patients from controls. We chose to perform binary
classification due to the data size. The number of data samples
for finer classes (MCI and SMC) was too small for multiclass
classification. To investigate the usefulness of manual
correction, we first compared the performance of automatic to
manually corrected transcripts. To determine the importance of
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pause annotation we compared the performance of manually
corrected transcripts with and without pauses. 

We tested with 3 classification algorithms that have shown best
performances in previous work on dementia classification [40]:
logistic regression (LR), random forest (RF), and Gaussian
naive Bayes (GNB). In addition, we tested with an end-to-end
fine-tuned pretrained model using Bidirectional Encoder
Representations from Transformers (BERT) [41] for the picture
description and experience description tasks. Note that we did
not try BERT models for the reading task because participants
read the same text. We used the Python package scikit-learn
(v0.19.1 [42]) to perform classification. We used a stratified
10-fold cross-validation approach and repeated this process 10
times in total with differently stratified splits, each generated
with a unique random seed. We report the classification
performance in terms of area under the receiver operating
characteristic curve (AUROC). AUROC is an evaluation metric
for classification at various threshold settings and is commonly
used for evaluating diagnostic accuracy [43]. The performance
metric was averaged over the 10 folds and 10 runs. To remove
highly pairwise correlated features and features poorly correlated

with the label, we performed correlation feature selection [44].
Highly correlated features were defined as having a Pearson
correlation coefficient greater than 0.85, while poorly correlated
features had a Pearson correlation coefficient less than 0.20. 

We performed a statistical analysis on the model results to
determine if the different transcript data sets led to significant
changes in model performance. For each classification algorithm
for a given task, we ran a double-sided t-test using the null
hypothesis that the mean AUROC was no different for automatic
and manually corrected transcripts. 

Results

Transcription Confidence Results
Google confidence level results are shown in Figure 3.
Generally, Google STT produced a higher confidence level
when transcribing audio from controls. In the reading task, for
example, the average confidence level was 0.94 (SD 0.05) for
controls, compared to 0.91 (SD 0.07) for patients. Both the
reading and experience description tasks showed a significantly
higher confidence level for controls than patients.

Figure 3. Google speech-to-text confidence results. Error bars represent the standard deviation. * represents P<.001, calculated by t-test.

Error Rate Evaluation Results
Figure 4 shows the error rate results. In general, automatic
transcription had a lower error rate when transcribing control
speech compared to patient speech, as shown by the lower
average WER and MER. 

The reading task was the most accurate overall, showing an
average MER of 0.15 (SD 0.10) for controls and 0.22 (SD 0.19)
for patients. This could be because people tend to enunciate
when they are asked to read a text aloud. WER and MER results

were largely similar overall, suggesting that there were not
disproportionately high rates of insertion errors. In other words,
manual correction did not involve more word addition as
opposed to word deletion or word substitution.

The picture description task was found to have the highest error
rate overall when compared to the reading and experience
description tasks. This indicates more manual corrections or
poorer accuracy of automatic transcription, but it is not clear
why this is the case.
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Figure 4. Average error rates by task and participant type. Error bars represent the standard deviation. There were no significant differences in error
rates between or within tasks. MER: match error rate; WER: word error rate.

Machine Learning Model Results
Models trained on manually corrected transcripts from the
picture description and experience description tasks significantly
outperformed models trained on automatic transcripts (Table
2). However, there was no significant difference in model
performance trained using either transcription method from the

reading task. This finding was true regardless of whether
pause-related features were included or not (Table 3).

Table 4 shows results of the models using manually corrected
transcripts, with and without pauses for the picture description
and experience description tasks. There was no clear trend or
significant change in any AUROC result when comparing
transcripts with and without pauses. 
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Table 2. Machine learning classification results of models trained on automatic transcripts compared to results of models trained on manually corrected
transcripts.

Change in AUROCbManually corrected transcripts AUROCAutomatic transcripts AUROCaTask and model type

Picture description

0.070d0.6870.617RFc

0.063d0.7250.662GNBe

0.072d0.7430.671LRf

0.068d0.6860.618BERTg

Experience description

0.133d0.6360.503RF

0.128d0.6770.549GNB

0.131d0.6740.543LR

0.020d0.6500.630BERT

aAUROC: area under the receiver operating characteristic curve.
bPositive change in AUROC indicates that the manually corrected transcript model outperformed the automatic transcript model.
cRF: random forest.
dIndicates P<.001.
eGNB: Gaussian naive Bayes.
fLR: logistic regression.
gBERT: Bidirectional Encoder Representations from Transformers.

Table 3. Machine learning classification results of models trained on reading task data with pause features computed using acoustic data or computed
using text data.

Change in AUROC (3)–(1)(3) Manually corrected tran-

scripts AUROCc
(2) Manually corrected tran-

scripts AUROCb
(1) Automatic tran-

scripts AUROCa,b
Reading task

0.0240.6620.6550.638RFd

0.0160.6930.6770.677GNBe

−0.0210.5680.5870.589LRf

aAUROC: area under the receiver operating characteristic curve.
bPauses detected from acoustic data.
cPauses detected from text data.
dRF: random forest.
eGNB: Gaussian naive Bayes.
fLR: logistic regression.
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Table 4. Machine learning classification results of models trained on manually corrected transcripts without pauses compared to results of models
trained on manually corrected transcripts (with pauses).

Change in AUROCbTranscripts with pauses AUROCTranscripts without pauses AUROCaTask and model type

Picture description

0.0210.6870.666RFc

−0.0050.7250.730GNBd

−0.0120.7430.755LRe

0.0050.6910.686BERTf

Experience description

0.0050.6360.631RF

0.0010.6770.676GNB

−0.0180.6740.692LR

0.0270.6490.622BERT

aAUROC: area under the receiver operating characteristic curve.
bPositive change in AUROC indicates that the pause model outperformed the no-pause model.
cRF: random forest.
dGNB: Gaussian naive Bayes.
eLR: logistic regression.
fBERT: Bidirectional Encoder Representations from Transformers.

Discussion

Transcription Confidence
The transcription confidence results showed that the automatic
transcription software was consistently more confident in
transcribing the speech of controls compared to patients. This
may indicate that patient speech differs from the speech used
to train the automatic transcription software (which was likely
trained using speech from a more general population, including
younger or cognitively unimpaired individuals). This may be
attributed to the fact that people with Alzheimer disease often
have impaired speech production [45], such as distortions (eg,
“ook” instead of “cookie”) and phonological paraphasias (eg,
“tid” instead of “kid”) [46].  It is especially interesting that the
confidence difference between the 2 groups was highest and
most significant for the reading task. This confirms that reading
task speech is effective for distinguishing AD/MCI patients
from controls, as also shown in prior work [35,47,48].

Error Rate Evaluation
Automatic transcriptions were more accurate for healthy controls
compared to patients with AD or MCI, as shown by higher error
rate and information loss in patient transcripts. This result is
logical in the context of the confidence result, as patient
transcripts had significantly lower confidence, meaning that the
transcription software was more unsure about its output.

Our results are markedly different from Google’s reports on the
error rates of their own software (Google Cloud STT has not
disclosed the composition of their training data set). According
to Google, their transcription program achieved a WER of 6.7%
using 12,500 hours of voice search data and a WER of 4.1% in
a dictation task [49]. In contrast, for spontaneous speech tasks,

we found a WER range of 24% to 34% for controls and 29%
to 38% for patients. The reading task showed a lower WER of
15% for controls and 23% for patients. 

While our error rate results differ from Google’s reported results,
they are comparable to the results of other investigations using
Google STT derived from simulated medical encounters. Kim
et al [50] used audio data from 12 simulated patient and medical
student interactions. In this investigation, Google STT showed
an average WER of 34%, similar to our WER result of 34% for
controls and 38% for patients completing the picture description
task. Miner et al [14] recorded audio from 100 patients aged
18-52 (mean age 23) during therapy sessions and found that
Google STT had an average WER of 25%. This result is
comparable to the WER for our experience description task,
which was 29% for patients and 24% for controls. Both
therapy-related discussion and the experience description tasks
typically involve spontaneous speech with minimal prompting. 

Surprisingly, the experience description task showed lower error
rates than the picture description task. This might be because
Google STT repeatedly transcribed certain phrases or words
related to the picture incorrectly across participants, leading to
a higher average error rate in this task. It is also possible that
the experience description is easier for automatic transcription
because it is more conversational, like the material Google STT
may have been trained on. Further investigation into to the
discrepancy in performance between different spontaneous
speech tasks is warranted.

The reading task WER for our cohort was notably higher than
previous research. Kepuska et al [51] used Google STT to
transcribe audio from 630 speakers reading 10 sentences each
and found an average WER of 9%. This is markedly lower than
the results of our investigation, in which we found that the
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9-sentence reading task produced a WER of 23% for patients
and 15% for controls. One possible reason for this large disparity
is that Google STT is not specific to a particular population (eg,
older adults may experience normal age-related changes to the
larynx and vocal cords over time, known as presbyphonia) and
may produce more accurate transcriptions in a more generalized
sample. 

Machine Learning Models
Despite our previous results showing that automatic transcription
for our data set is more inaccurate than values reported by
Google, our machine learning model results still show that
automatic transcripts are discriminative for AD/MCI. Other
studies using automatic transcription for classification
experiments have noted that inaccuracies or errors in the
audio-to-text transcription do not necessarily affect classification
results [52]. 

However, manually correcting the picture description and
experience description task transcriptions led to significantly
higher performances in the machine learning models. By
comparison, both automatic and manually corrected reading
task transcripts showed similar performance, likely due to the
majority of reading features being computed from audio data.
To address this concern, we examined text versus audio-based
silent pause detection and again found no significant changes
in performance. This indicates that using either audio or text to
detect pauses will produce similar results and that manually
correcting transcripts does not significantly change model
performance.

Surprisingly, the addition of filled and silent pauses did not
significantly change performance for any of the tasks and
algorithms. Moreover, using the pauses from the transcripts
showed similar classification results to using pauses detected
from audio data for the reading task. Previous studies have
shown that people with Alzheimer disease demonstrate a
multitude of disfluencies in their speech, including pauses
[53-55]. However, manually adding pauses as either words
(“um” or “uh”) or tokens (“[pause]”) to transcripts did not seem
to have any effect on classification models. This could be
because older adults also experience age-related changes in their
speech, such as an increase in silent pauses [56], potentially
weakening the association of pauses to either the patient or
control category. Alternatively, this result may be due to the
fact that there are no features that “directly” model pauses for
the description tasks, weakening the association of the tasks
with pauses. 

Limitations
Some limitations with our cohort include varying language
ability and variations between transcribers. In our cohort,
English was not the first language of 13% of the patients and
21% of the control group, which could potentially contribute
to transcription errors. Additionally, our use of 3 different
transcriptionists may have introduced interrater variability,
especially for more subjective correction steps such as adding
punctuation, although variation in manual transcription was
controlled via inter-transcriptionist review and protocol
development for standardized transcription. Another limitation
of our investigation is the size of the data set (N=149), which
is quite small for machine learning experiments. However, this
is an issue facing most work on using machine learning for
dementia classification, especially with newly built data sets
(N=55-82) [5,29,35]. While the DementiaBank and ADReSS
data sets are larger (N=287 with 687 samples and N=156,
respectively), they were originally created in the mid-1980s and
are limited by the diagnostic practices of that time. The work
described herein aims to mitigate this challenge. Our best
practice suggestions for automatic transcription will facilitate
data collection at a much faster rate in the future.

It is also important to note that this investigation was completed
using Google speech-to-text software in an English-speaking
cohort. Competitor speech-to-text software may produce
different results, so readers should be wary when applying our
conclusions to other software. Applying a similar method to a
non-English data set may also produce different results,
especially because automatic transcription in other languages
might not be as advanced as English. Finally, speech-to-text
software is continually being refined and improved. In the future,
automatically generated transcripts may be indistinguishable
from human-generated transcripts. In the meantime, it is still
valuable to understand the impacts of automatic transcription,
especially for medical speech data sets.

Conclusion
Our results showed that automatically transcribed speech data
from a web-based speech recognition platform can be effectively
used to distinguish patients from controls. According to our
results, to improve the classification performance of
automatically generated transcripts, especially those generated
from spontaneous speech tasks, a human verification step is
recommended. Our analyses indicate that human verification
should focus on correcting errors and adding punctuation to
transcripts and that manual addition of pauses is not needed,
which can simplify the human verification step to more
efficiently process large volumes of speech data. 
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