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Abstract

Burkholderia pseudomallei (B. pseudomallei) is an intracellular pathogen that causes melioi-

dosis, a life-threatening infection in humans. The bacterium is able to form small colony vari-

ants (SCVs) as part of the adaptive features in response to environmental stress. In this

study, we characterize the genomic characteristics, antimicrobial resistance (AMR), and

metabolic phenotypes of B. pseudomallei SCV and wild type (WT) strains. Whole-genome

sequence analysis was performed to characterize the genomic features of two SCVs (CS

and OS) and their respective parental WT strains (CB and OB). Phylogenetic relationship

between the four draft genomes in this study and 19 publicly available genomes from vari-

ous countries was determined. The four draft genomes showed a close phylogenetic rela-

tionship with other genomes from Southeast Asia. Broth microdilution and phenotype

microarray were conducted to determine the AMR profiles and metabolic features (carbon

utilization, osmolytes sensitivity, and pH conditions) of all strains. The SCV strains exhibited

identical AMR phenotype with their parental WT strains. A limited number of AMR-conferring

genes were identified in the B. pseudomallei genomes. The SCVs and their respective

parental WT strains generally shared similar carbon-utilization profiles, except for D,L-carni-

tine (CS), g-hydroxybutyric acid (OS), and succinamic acid (OS) which were utilized by the

SCVs only. No difference was observed in the osmolytes sensitivity of all strains. In compari-

son, WT strains were more resistant to alkaline condition, while SCVs showed variable

growth responses at higher acidity. Overall, the genomes of the colony morphology variants

of B. pseudomallei were largely identical, and the phenotypic variations observed among

the different morphotypes were strain-specific.
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Introduction

Intracellular bacterial pathogens are adaptable to various conditions and environmental stress

in host cells. However, due to population heterogeneity [1], only small subsets of bacterial pop-

ulations are able to endure harsh conditions, such as antibiotic stress, pH fluctuation, osmotic

pressure, and nutrient-depauperate environment. Formation of small colony variants (SCVs)

is one of the important bacterial survival strategies, particularly in intracellular bacteria [2].

SCV is characterized by the pinpoint colony, slow growth rate, and rapid reversion to wild

type (WT) phenotype [3]. In general, SCVs have been associated with chronic, relapse and per-

sistent infections [4]. Among the intracellular pathogens known to produce SCVs are Staphy-
lococcus aureus [5], Neisseria gonorrhoeae [6], Burkholderia cepacia [7], and Burkholderia
pseudomallei [8].

B. pseudomallei, a Gram-negative bacteria found in soil and contaminated water, is the

causative agent of melioidosis, a life-threatening infection endemic mainly in Southeast Asia

and Australia [9]. Clinical presentations of melioidosis are diverse; ranging from benign skin

infection to fulminating chronic infection, and the organs typically involved are lungs, spleen,

liver, and prostate [10,11]. Due to the severe infection, aerosol infectivity, and intrinsic resis-

tance to a broad range of antibiotics, B. pseudomallei has been classified as a Tier 1 biological

agent by the U.S. Federal Select Agent Program, presenting the greatest risk of deliberate mis-

use and posing a severe threat to the public health and safety [12].

Previous studies on B. pseudomallei SCVs had reported higher antimicrobial resistance

(AMR) [8], an increase in biofilm production [13], a decrease in virulence [14], and an

increase in persistence as compared to the WT strains [15]. Despite the implication of the

transmission and treatment of B. pseudomallei infection, there is a lack of understanding of the

genotypic and phenotypic characteristics of B. pseudomallei SCVs. Thus, the objective of this

study was to compare the B. pseudomallei SCVs and WTs based on the genomic and pheno-

typic characteristics. The phylogenetic relationship of SCVs and WTs were also compared to

other publicly available B. pseudomallei genomes from different countries.

Materials and methods

Bacterial strains and culture conditions

A total of four B. pseudomallei strains (CB, CS, OB, and OS) analyzed in this study were retrieved

from the archival collection of the Department of Medical Microbiology, Universiti Malaya. The

strains consisted of two WTs (CB and OB) and their corresponding SCVs (CS and OS, respec-

tively). The strains were isolated from the blood of two separate melioidosis cases in University

Malaya Medical Centre (UMMC), Malaysia, and two different morphotypes (WT and SCV) were

found as previously described by Ramli et al. [13]. In brief, these four strains, regardless of their

morphotypes, were previously identified as sequence type (ST) 46 according to multilocus

sequence typing (MLST) analysis [16]. Based on pulsed-field gel electrophoresis (PFGE) analysis

of the colonial variants, CB (WT) and CS (SCV) were 95% similar, but OB and OS shared only

67% similarity [16]. All of the strains were revived on nutrient agar at 37˚C for 24 hours and 48

hours for WTs and SCVs, respectively. The strains were then sub-cultured three times on nutrient

agar to confirm homogeneity. The SCV phenotype was stable (no reversion to WT phenotype) as

confirmed by observation of the colony morphology after sub-culturing.

Experimental design

In this study, the difference between SCVs and WTs was determined based on genomic and

phenotypic characteristics (Fig 1). The SCV and WT isolates were subjected to whole-genome

PLOS ONE Genomic and phenomic features of B. pseudomallei morphotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0261382 December 15, 2021 2 / 19

KMV) and Universiti Malaya Research Grant

(UMRG) (RP013B-13HTM)(to CSJT). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0261382


sequencing to determine the genomic contents, including gene functions, subsystems, antimi-

crobial determinants, and the phylogenomic relatedness with other genomes from different

countries. To determine the phenotypic characteristics, the four studied strains were subjected

to broth microdilution and phenotype microarray.

Genome sequencing, assembly and annotation

Genomic DNA was isolated from each strain by using QIAamp DNA Mini Kit (Qiagen, Ger-

many) according to the manufacturer’s instructions. Then, the genome DNAs were sequenced

with Illumina MiSeq platform (Illumina Inc., United State of America (USA)). The 250bp

sequencing reads were assembled de novo using CLC Genomics Workbench 21.0.3 (Qiagen,

Germany). The contigs generated were mapped to the reference genome, B. pseudomallei
K96243 (Genbank accession GCA_000959285), and another Malaysia strain, UKMH10

(Genbank accession SAMEA5606430), using Mauve 2.4.0 [17]. The contigs were mapped to

UKMH10 as well because UKMH10 was previously subtyped as ST46 [18], which is the same

ST as the four studied genomes [16]. Subsequently, the circular genomic maps were con-

structed separately for chromosome 1 and chromosome 2 using Basic Local Alignment Search

Tool (BLAST) ring image generator (BRIG) [19]. The genomic regions of interest were vali-

dated using Nucleotide BLAST (BLASTn) and Protein BLAST (BLASTp) (https://blast.ncbi.

nlm.nih.gov/Blast.cgi).

The four genome sequences were also submitted and annotated in Rapid Annotation using

Subsystem Technology (RAST) (https://rast.nmpdr.org/) server [20–22]. The genomes were

subsequently introduced to SEED-viewer environment (https://pubseed.theseed.org/) to map

the annotated draft genomes to subsystems (proteins grouped by a relationship in function)

and metabolic reconstruction (genes grouped according to a collection of the active variants of

subsystems) [20–22].

Fig 1. Overview of the study. The WTs and SCVs were subjected to genomic and phenotypic analyses, and the results were analyzed and compared.

https://doi.org/10.1371/journal.pone.0261382.g001
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The genome sequences have been deposited in the National Center for Biotechnology

Information (NCBI) GenBank (https://www.ncbi.nlm.nih.gov/genbank/) under the accession

number APLM01000000 for CB, APLN01000000 for CS, APLK01000000 for OB, and

APLL01000000 for OS. This version described in this paper is the second version.

Phylogenomic analysis

The four genomes sequenced in this study were compared with 17 publicly available genomes

of B. pseudomallei from different geographical regions (Malaysia, n = 4; Thailand, n = 4; Aus-

tralia, n = 2; Taiwan, n = 2; Singapore, n = 1; Vietnam, n = 1; Pakistan, n = 1; China, n = 1;

USA, n = 1) by using Reference Sequence Alignment-based Phylogenic Builder (RealPhy)

Online Tools (https://realphy.unibas.ch/realphy/). B. pseudomallei K96243 was used as a refer-

ence genome while Burkholderia thailandensis E264 was used as an outgroup. The genome

sequences were retrieved from NCBI GenBank. The country of origin and accession number

of each genome is listed in Table 1. The phylogenomic trees were generated separately for

chromosome 1 and chromosome 2 and were viewed on FigTree v1.4.4 software (http://tree.

bio.ed.ac.uk/software/figtree/>).

Antimicrobial resistance-conferring genes identification

AMR-conferring genes were identified by submitting the genome sequences to the Resistance

Gene Identifier (RGI) online tool, accessed through the Comprehensive Antibiotic Resistance

Database (CARD) (https://card.mcmaster.ca/). RGI predicts AMR genes from the nucleotide

data based on homology and SNP models mapped to CARD reference sequences.

Antimicrobial susceptibility test

Antimicrobial susceptibility testing of the four strains was performed using broth microdilu-

tion method in accordance with the Clinical and Laboratory Standards Institute (CLSI) guide-

lines [23]. Escherichia coli ATCC 22952 was used as the quality control organism. The

Table 1. List of genomes used for phylogenomic analysis, and country of origin and accession number of the genomes.

Genomes Country of origin Accession number

9 Pakistan SAMN02864945

54 Singapore SAMEA1483597

406e Thailand SAMN03010441

982 Malaysia SAMN04011951

1026b Thailand SAMN02604257

BPHN1 China SAMN07638450

2011756295 USA SAMN06007566

HBPUB10303a Thailand SAMN02902612

Mahidol-1106a Thailand SAMN02866341

MSHR3763 Australia SAMN04226303

MSHR5858 Australia SAMN02902606

Pasteur 52237 Vietnam SAMN02849712

K96243 Thailand SAMN03075610

UKMH10 Malaysia SAMEA5606430

UKMPMC2000 Malaysia SAMEA5606428

UKMR15 Malaysia SAMEA5606427

vgh16R Taiwan SAMN04009759

vgh16W Taiwan SAMN04009760

https://doi.org/10.1371/journal.pone.0261382.t001
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antimicrobial agents tested were amoxicillin-clavulanate, ceftazidime, imipenem, meropenem,

and trimethoprim-sulfamethoxazole. Minimum inhibitory concentration (MIC) was deter-

mined after 24 hours (for WTs) and 48 hours (for SCVs) of incubation at 37˚C.

Phenotype microarray analysis

The metabolic profile of WTs and SCVs were analyzed using four 96-well Phenotype Microarray

(Biolog, Hayward, USA) microplates, which consisted of two microplates of carbon substrates (C-

substrates) (PM1 and PM2A), one microplate of various osmolytes concentrations (PM9), and

one microplate of various pH conditions (PM10). The C-substrates microplates (PM1 and

PM2A) contained a growth control well (A01 well) that contained all nutrients required for cell

growth except for C-substrates [24]. The principle of the PM assay relies on the measurement of

purple color formation from irreversible redox reaction of the proprietary Biolog tetrazolium dye

in response to the production of reduced nicotinamide adenine dinucleotide (NADH) by bacterial

respiration. The assay was performed according to the manufacturer’s protocol for Gram-negative

bacterium, and the reagents were provided by Biolog (Hayward, USA). Briefly, single colonies of

B. pseudomallei strains were harvested from the third subculture on nutrient agar plates using a

sterile cotton swab. For each PM plate, the bacterial cells were suspended into 15 ml of the inocu-

lating fluid [IF-0a GN (1.2 x), dye Mix A (100x) and distilled water] and adjusted to 85% transmit-

tance (T) using a turbidimeter (Biolog Inc.). After the turbidity was adjusted, 100 μL of the

prepared bacterial suspensions were added into each well. For PM9 and PM10, a mixture of IF-

10a GN (1.2X), dye Mix A (100x), and distilled water was added to the prepared bacterial suspen-

sions before 100uL were distributed into each well. The plate lids were placed and sealed with plas-

tic tape to avoid the wells from drying. The PM plates were incubated in OmniLog1 instrument

(Biolog, Hayward, USA) at 37˚C for 48 hours, where digital images of the plates and colorimetric

readings were recorded every 15 minutes at OD600 nm. Klebsiella pneumonia ATCC 700603 was

used as negative control to ensure true positive growth. The identical protocol and incubation

conditions for each plate were performed concurrently using this negative control as previously

described [25]. The PM assay was conducted in duplicate, on two separate occasions to obtain the

true negative and true positive results.

The recorded data were analyzed using OmniLog1 PM software (Biolog, Hayward, USA).

For each well, a time-course kinetic growth curve was plotted based on the color development

of tetrazolium dye. For PM1 and PM2A, the background noise was removed from each well by

referencing to the A1 growth control well using the ‘A1 zero’ option. The threshold separating

positive growing wells from negative growing wells was set according to the average area

under the kinetic growth curve (AUC) and the difference (Tmax ─Tmin) of the kinetic data

obtained in duplicate experiments, as previously described [26]. Positive growth (+) was

defined when AUC value of the well is equal to or higher than 1.5 times the AUC value of the

negative control, and the Tmax ─Tmin value is equal to or higher than OD600nm of 100, which

ensured an increasing signal. For PM9 and PM10, only the Tmax ─Tmin value was used since

these two plates do not have a negative control well. Negative growth (─) was defined when

AUC value of the well is 1.5 times lower than the AUC value of the negative control, and/or

the Tmax ─Tmin value is lower than OD600nm of 100. If the two duplicates had different results,

the well was defined as varies growth.

Results

Genomic features of B. pseudomallei draft genomes

The draft genomes of CB, CS, OB, and OS consisted of genome size of 7,154 Kbp, 7,045 Kbp,

7,115 Kbp, and 7,113 Kbp, respectively with a GC content (number of same strand guanine

PLOS ONE Genomic and phenomic features of B. pseudomallei morphotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0261382 December 15, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0261382


+ cytosine sites divided by DNA sequence length) of 68.2%. The genome size and GC content

were similar to the reference genome B. pseudomallei K96243 (7,247 Kbp; 68.2%) [27]. The

draft genome of all four strains showed an average N50 value of ~80 Kbp and a high total

genome coverage (�144×). Genome annotation using RAST revealed that CB, CS, OB, and

OS contained 7,460, 7,401, 7,388, and 7,360 predicted coding DNA sequences (CDSs), respec-

tively. A summary of the genomic features of these draft genomes are presented in Table 2.

The four draft genomes and UKMH10 were compared in reference to B. pseudomallei
K96243 genome. A visual representation of the genomic similarity between these five genomes

was depicted by the concentric rings in Fig 2. The missing portions of the rings represented

the missing nucleotides in the genomes as compared to B. pseudomallei K96243 genome.

Overall, all five genomes were highly similar to each other as the genomes shared most of the

same missing nucleotides regions.

Table 2. General genomic features of four Burkholderia pseudomallei draft genomes.

Strain CB CS OB OS

Genome size (bp) 7,154,485 7,045,712 7,115,466 7,113,814

GC content (%) 68.2 68.2 68.2 68.2

N50 79,268 82,228 78,917 81,997

L50 27 28 28 28

Contigs 245 257 245 245

CDS 7,460 7,401 7,388 7,360

Subsystems 374 369 371 372

RNAs 56 56 56 58

Total genome coverage 152× 144× 150× 175×

https://doi.org/10.1371/journal.pone.0261382.t002

Fig 2. Circular genomic map of chromosome 1 (left) and chromosome 2 (right) in Burkholderia pseudomallei K96243, UKMH10, CB, CS, OB, and OS. The

total genome size of the reference sequence, K96243, is provided in the center of the rings. The coordinate in scale to K96243 is represented by the innermost

ring (black). The black histogram bar represents GC content, whereas the purple-green histogram bar represents GC skew. Colored rings represent orthologous

regions of each genome in reference to K96243 genome sequence (yellow ring) and are shown in the following order (innermost to outermost): K96243

(yellow); UKMH10 (green); CB (light blue); CS (dark blue); OB (purple); OS (pink).

https://doi.org/10.1371/journal.pone.0261382.g002
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Overall, only 23% of the predicted CDSs in all draft genomes were assigned with subsys-

tems. The most represented subsystem among the four draft genomes was amino acid and

derivatives with CDSs ranging from 504 to 517. Other subsystems that were highly presented

were associated with carbohydrates, protein metabolism, and cofactors, vitamins, prosthetic

groups, pigments. The numbers of annotated genes classified according to subsystems are

listed in Table 3.

Table 3. A list of subsystems and the number of CDSs corresponding to each subsystem of four Burkholderia
pseudomallei draft genomes.

Subsystems Strain

CB CS OB OS

Metabolism

Carbohydrates 308 285 291 290

Amino acids and derivatives 506 504 505 517

Fatty acids, lipids, and isoprenoids 125 119 117 118

Cofactors, vitamins, prosthetic groups, pigments 214 219 210 211

Protein metabolism 223 222 222 223

Sulfur metabolism 29 29 30 32

Iron acquisition and metabolism 47 45 48 49

Potassium metabolism 8 8 8 8

RNA metabolism 58 58 58 58

Secondary metabolism 8 9 8 9

DNA metabolism 67 68 68 71

Nitrogen metabolism 65 64 67 65

Metabolism of aromatic compounds 83 82 83 84

Nucleosides and nucleotides 92 94 94 93

Phosphorus metabolism 31 31 31 31

Cellular processes

Cell wall and capsule 56 58 59 58

Motility and chemotaxis 60 60 18 18

Regulation and cell signalling 35 32 34 35

Environments Information Processing

Membrane transport 164 164 162 163

Virulence

Virulence, disease, and defence 65 67 65 63

Phages, prophages, transposable elements, plasmids 13 4 9 10

Stress response 95 94 96 95

Others

Dormancy and sporulation 1 1 1 1

Respiration 153 151 149 153

Miscellaneous 49 49 49 50

Total in subsystems (%) 23 23 23 23

Total 1715 1696 1678 1686

Non-hypothetical 1641 1623 1606 1614

Hypothetical 74 73 72 72

Total not in subsystems (%) 77 77 77 77

Total 5745 5705 5710 5674

Non-hypothetical 2909 2913 2957 2941

Hypothetical 2836 2792 2753 2733

https://doi.org/10.1371/journal.pone.0261382.t003
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Phylogenetic analysis

The four draft genomes from this study and 19 publicly available genomes were compared

using single nucleotide polymorphism (SNP)-based phylogenetic analysis based on chromo-

some 1 (Fig 3A) and chromosome 2 (Fig 3B). Overall, the phylogenetic tree generated revealed

that the genomes from Southeast Asia (Malaysia, Thailand, Singapore, and Vietnam) were

clustered together, with the inclusion of two genomes from Australia (MSHR5858) and Paki-

stan (9). Meanwhile, the other genomes from China, Taiwan, USA, and Australia formed a

separate cluster. The four genomes in this study formed a tight cluster (node-supporting value

>90%) together with another strain from Malaysia, UKMH10. These five genomes also shared

a node with a cluster consisted of HBPUB1303a (Thailand), 9 (Pakistan) and MSHR5858

(Australia).

Antimicrobial resistance-conferring genes

The AMR-conferring genes identified in each genome are compiled in Table 4. All four strains

carried amrB, omp38, OXA-57 and adeF genes. OXA-57 encodes OXA beta-lactamase that

inactivates antibiotic binding site. The omp38 gene encodes a bacterial porin that has reduced

permeability towards beta-lactams. Both adeF and amrB encode resistance-nodulation-cell

division (RND) antibiotic efflux pump.

Antimicrobial susceptibility testing

Antimicrobial susceptibility test revealed that all strains were susceptible to amoxicillin-clavu-

lanate, ceftazidime, imipenem, meropenem and trimethoprim-sulfamethoxazole (Table 5).

Carbon substrates utilization

Based on the PM1 and PM2 carbon utilization, the core (100% utilization of the strains) and

differential carbon sources (utilized by at least one of the strains) utilized by the strains were

identified (Table 6). Among the 190 C-substrates from both plates (95 C-substrates in each

PM plate), all strains utilized 60 C-substrates, particularly carboxylic acid compounds (n = 27

out of 60; 45%). OB and OS utilized 13 C-substrates more than CB and CS. No significant dif-

ference was observed between the WTs (CB-OB) and SCVs (CS-OS) in the utilized C-

substrates.

Both OB and OS utilized a total of 81 C-substrates, but two of the C-substrates were differ-

ent between the two strains. D-glucose-1-phosphate and L-Valine were uniquely utilized by

OB while g-hydroxybutyric acid and succinamic acid were uniquely utilized by OS. Also, D,L-

carnitine was only metabolized by CS. A Venn diagram was constructed to illustrate the core

and differential C-substrates utilized by the B. pseudomallei strains (Fig 4).

Osmolytes sensitivity

Based on the osmolarity responses (PM9) (Table 7), all the four strains were able to grow in

1% NaCl, but sensitive (no growth) on a higher concentration of salt. We also observed that all

strains were able to grow in sodium sulfate (2–5%), ethylene glycol (5–20%), sodium lactate

(1–4%), sodium phosphate pH 7 (20-200mM), ammonium sulfate pH 8 (10–100 mM), and

sodium nitrate (10–100 mM).

pH conditions

As for the pH sensitivity (PM10) (Table 7), the strains were able to grow from pH 5 to pH 8.5.

However, only the WT strains (CB and OB) were able to grow in pH 9. Both SCVs showed
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Fig 3. The phylogenomic tree inferred based on chromosome 1 (A) and chromosome 2 (B) of the representative Burkholderia pseudomallei strains.

The core genome SNP-based alignment was generated by REALPHY server using B. pseudomallei strain K96243 (chromosome 1 (A) and

chromosome 2 (B)) as the reference genome. The unrooted phylogenomic tree was inferred by approximately Maximum Likelihood (ML) method

using Generalized Time-Reversible (GTR) model with gamma distribution of rates. 100 bootstrap replicates were used to infer the ML tree and the

support value is indicated as a percentage at each node. The B. thailandensis strain E264 represents a phylogenetic outgroup.

https://doi.org/10.1371/journal.pone.0261382.g003
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variable responses for pH 4.5 with certain decarboxylase in all three replicates despite our

effort to standardize the protocol.

The growth patterns of the negative control strain on PM1, PM2A, PM9 and PM10 micro-

plates were significantly different compared to the studied strains. No significant difference

was observed in the two runs conducted separately. Hence, the true positive growth was

determined.

Discussion

In this study, genotypic and phenotypic characteristics of two SCVs (CS and OS) and their cor-

responding WTs (CB and OB) were determined. SNP-based phylogenetic analysis revealed

that the four draft genomes were more closely related to UKMH10 (Malaysia) compared to the

reference genome, K96243 (Thailand). The finding is supported by MLST results as K96243

was assigned as ST10 [29] while the four strains and UKMH10 were assigned as ST46 [16,18].

According to the allelic profile of these two STs, the genomes only shared three identical alleles

at loci of gltB, lepA and lipA. The difference in genome contents of K96243 compared to the

five genomes of ST46 was also demonstrated in the circular genomic map, whereby a number

of missing nucleotide regions were identified. However, the four draft genomes did not show

any gap of approximately 20kb along chromosome 2 as reported in UKMH10 [18]. In addition

to MLST results, the four draft genomes were previously characterized by PFGE, which

revealed that OB and OS only shared 67% similarity in pulsotypes while CB and CS shared

95% similarity in pulsotypes [16]. The discrepancy between MLST and PFGE results has now

been resolved as the close relationship of OB and OS was supported by a high node-supporting

value (90% for chromosome 1; 80% for chromosome 2) based on phylogenetic tree analysis.

Hence, the finding in this study confirmed the close relationship (clonal) between the SCVs

and their respective WTs.

The four draft genomes were found to be closely related to the other genomes from South-

east Asia and two genomes from other regions; MSHR5858 (Australia) and 9 (Pakistan).

Table 4. Predicted antimicrobial resistance genes in Burkholderia pseudomallei strains.

Predicted gene Gene family Gene identity (%)

CB CS OB OS

amrB Resistance-nodulation-cell division (RND) antibiotic efflux pump 100 100 100 100

omp38 Bacterial porin 100 100 100 100

OXA-57 OXA beta lactamase 99.63 99.63 99.63 99.63

adeF Resistance-nodulation-cell division (RND) antibiotic efflux pump 79.49 79.49 79.49 79.49

https://doi.org/10.1371/journal.pone.0261382.t004

Table 5. Antimicrobial susceptibility profiles of Burkholderia pseudomallei strains.

Antimicrobial agents CLSI susceptibility breakpoint (μg/ml)a Susceptibility of B. pseudomallei strains (MIC, μg/ml)a

S I R CB CS OB OS

Amoxicillin-clavulanate �8/4 16/8 �32/16 4 (S) 4 (S) 4 (S) 4 (S)

Ceftazidime �8 16 �32 4 (S) 1 (S) 2 (S) 4 (S)

Imipenem �4 8 �16 0.5 (S) 0.5 (S) 0.5 (S) 0.5 (S)

Meropenemb �4 8 �16 2 (S) 2 (S) 2 (S) 1 (S)

Trimethoprim-sulfamethoxazole �2/38 - �4/76 1 (S) 0.5 (S) 0.5 (S) 1 (S)

a CLSI, Clinical and Laboratory Standards Institute; MIC, minimum inhibitory concentration; S, susceptible; I, intermediate; R, resistant.
b MIC breakpoint value is not available for meropenem, thus CLSI breakpoint value for imipenem is used [28].

https://doi.org/10.1371/journal.pone.0261382.t005
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Table 6. Summary of phenotype microarray results.

Category Carbon source Strains

CB CS OB OS

Amino acid L-Proline + + + +

D-Alanine + + + +

L-Glutamic acid + + + +

L-Asparagine + + + +

L-Glutamine + + + +

L-Serine + + + +

L-Alanine + + + +

Ala-Glycine + + + +

L-Histidine + + + +

Hydroxy-L-Proline + + + +

L-Phenylalanine + + + +

L-Aspartic acid – – + +

D-Serine – + + +

L-Threonine – – + +

L-Arginine – + + +

L-Isoleucine – – + +

L-Leucine – – + +

L-Pyroglutamic acid – – + +

L-Valine – – + +

Carbohydrate N-Acetyl-D-Glucosamine + + + +

D-Galactose + + + +

D-Trehalose + + + +

Dulcitol + + + +

D-Sorbitol + + + +

Glycerol + + + +

L-Fucose + + + +

D,L-a-Glycerol Phosphate + + + +

D-Mannitol + + + +

D-Glucose-6-Phosphate + + + +

D-Fructose + + + +

a-D-Glucose + + + +

D-Fructose-6-Phosphate + + + +

m-Inositol + + + +

N-Acetyl-D-Galactosamine + + + +

D-Arabinose + + + +

D-Arabitol + + + +

D-Mannose – + + +

D-Ribose + – + +

D-Glucose-1-Phosphate – – + –

i-Erythritol – – + +

Carboxylic acid Succinic acid + + + +

D-Gluconic acid + + + +

L-Lactic acid + + + +

Formic acid + + + +

D,L-Malic acid + + + +

Acetic acid + + + +

(Continued)
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Previous study has suggested that MSHR5858, assigned as ST562, was from an Asian origin

based on both eBURST analysis and whole-genome SNP-based phylogenetics tree [30]. As for

the genome from Pakistan, there has been lack of information about the true origin of the

genome [31]. However, previous study showed that a genome from Pakistan was clustered

together with genomes from Bangladesh, Myanmar, Laos, Thailand, China, Malaysia and

Indonesia based on SNP-based phylogeny analysis [32].

Table 6. (Continued)

Category Carbon source Strains

CB CS OB OS

D-Glucosaminic acid + + + +

a-Ketoglutaric acid + + + +

a-Ketobutyric acid + + + +

a-Hydroxyglutaric acid-g-Lactone + + + +

a-Hydroxybutyric acid + + + +

Fumaric acid + + + +

Bromosuccinic acid + + + +

Propionic acid + + + +

L-Malic acid + + + +

p-Hydroxyphenyl Acetic acid + + + +

Pyruvic acid + + + +

g-Amino-N-Butyric acid + + + +

Butyric acid + + + +

Caproic acid + + + +

Dihydroxyfumaric acid + + + +

4-Hydroxybenzoic acid + + + +

b-Hydroxybutyric acid + + + +

Malonic acid + + + +

Quinic acid + + + +

Sebacic acid + + + +

Sorbic acid + + + +

D-Galactonic acid-g-Lactone – + + +

Citric acid – – + +

Mono-Methylsuccinate – – + +

g-Hydroxybutyric acid – – – +

Succinamic acid – – + +

D,L-Carnitine – + – –

Fatty acid Tween 20 + + + +

Tween 40 + + + +

Tween 80 + + + +

Amine D,L-Octopamine + + + +

Phenylethylamine – – + +

Putrescine – – + +

Amide L-Alaninamide – + + +

Alcohol 2-Aminoethanol – – + +

Ester Methylpyruvate + + + +

Polymer Gelatin – + + +

Notes: ‘+’, positive growth; ‘─’, negative growth.

https://doi.org/10.1371/journal.pone.0261382.t006
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In general, SCVs population has been reported to be more resistant towards antimicrobial

agents compared to their parental strain [8,33,34]. Thus, the susceptibility of B. pseudomallei
SCV and WT strains in this study were tested with five antimicrobial agents (amoxicillin-cla-

vulanate, ceftazidime, imipenem, meropenem and trimethoprim-sulfamethoxazole) which are

commonly used for meliodosis treatment [35,36]. However, all of the strains were susceptible

to these antimicrobial agents. The results were supported by AMR-conferring genes found in

the four draft genomes. Among the genes identified, OXA-57 was associated with resistance to

cephalosporin and penam through inactivation of the antibiotic binding site [37] while adeF
was associated with resistance to tetracycline and fluoroquinolones [38]. These antimicrobial

groups were not used in this study since B. pseudomallei is inherently resistant to these agents

[39]. The findings suggested that the lack of AMR-conferring genes associated with the five

antimicrobial agents used may have resulted in susceptibility towards the antimicrobial agents

which are important in melioidosis treatment.

B. pseudomallei is an intracellular pathogen and thus, the survival of this bacterium inside

host cells depends on their acquisition of carbon sources from the host environment [40,41].

Based on phenotype microarray results, all B. pseudomallei strains were able to utilize α-D-glu-

cose, D-glucose-6-phosphate, D-fructose, and D-arabitol, which are among the important

C-substrates for glycolysis. Meanwhile, both SCVs and WTs utilized L-proline, L-histidine,

L-glutamine, L-glutamic acid, which are involved in the synthesis of intermediate for

Fig 4. Venn diagram showing the number of core, differential and strain-specific carbon utilization of

Burkholderia pseudomallei strains. The results obtained from the panels PM1 and PM2A are compiled in this

schematic diagram.

https://doi.org/10.1371/journal.pone.0261382.g004
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Table 7. Phenotype microarray results for PM9 and PM10.

Well PM conditions Remarks Strains

CB CS OB OS

PM9 Osmolarity sensitivity

A01 1% NaCl osmotic sensitivity, NaCl + + + +

D05 2% Sodium Sulfate osmotic sensitivity, Na2SO4 + + + +

D06 3% Sodium Sulfate osmotic sensitivity, Na2SO4 + + + +

D07 4% Sodium Sulfate osmotic sensitivity, Na2SO4 + + + +

D08 5% Sodium Sulfate osmotic sensitivity, Na2SO4 + + + +

D09 5% Ethylene Glycol osmotic sensitivity, ethylene glycol + + + +

D10 10% Ethylene Glycol osmotic sensitivity, ethylene glycol + + + +

D11 15% Ethylene Glycol osmotic sensitivity, ethylene glycol + + + +

D12 20% Ethylene Glycol osmotic sensitivity, ethylene glycol + + + +

E01 1% Sodium Formate osmotic sensitivity, sodium formate + + + +

E02 2% Sodium Formate osmotic sensitivity, sodium formate + – – V

E07 2% Urea osmotic sensitivity, urea + + + +

E08 3% Urea osmotic sensitivity, urea + + V +

F01 1% Sodium Lactate osmotic sensitivity, sodium lactate + + + +

F02 2% Sodium Lactate osmotic sensitivity, sodium lactate + + + +

F03 3% Sodium Lactate osmotic sensitivity, sodium lactate + + + +

F04 4% Sodium Lactate osmotic sensitivity, sodium lactate + + + +

G01 20mM Sodium Phosphate pH 7 osmotic sensitivity, sodium phosphate + + + +

G02 50mM Sodium Phosphate pH 7 osmotic sensitivity, sodium phosphate + + + +

G03 100mM Sodium Phosphate pH 7 osmotic sensitivity, sodium phosphate + + + +

G04 200mM Sodium Phosphate pH 7 osmotic sensitivity, sodium phosphate + + + +

G05 20mM Sodium Benzoate pH 5.2 toxicity, benzoate + + + +

G09 10mM Ammonium Sulfate pH 8 toxicity, ammonia + + + +

G10 20mM Ammonium Sulfate pH 8 toxicity, ammonia + + + +

G11 50mM Ammonium Sulfate pH 8 toxicity, ammonia + + + +

G12 100mM Ammonium Sulfate pH 8 toxicity, ammonia + + + +

H01 10mM Sodium Nitrate toxicity, nitrate + + + +

H02 20mM Sodium Nitrate toxicity, nitrate + + + +

H03 40mM Sodium Nitrate toxicity, nitrate + + + +

H04 60mM Sodium Nitrate toxicity, nitrate + + + +

H05 80mM Sodium Nitrate toxicity, nitrate + + + +

H06 100mM Sodium Nitrate toxicity, nitrate + + + +

H07 10mM Sodium Nitrite toxicity, nitrite + + + +

H08 20mM Sodium Nitrite toxicity, nitrite + + + +

H09 40mM Sodium Nitrite toxicity, nitrite + + + +

H10 60mM Sodium Nitrite toxicity, nitrite + + + +

H11 80mM Sodium Nitrite toxicity, nitrite + + + –

PM 10 pH conditions

A03 pH 4.5 pH, growth at 4.5 + + + V

A04 pH 5 pH, growth at 5 + + + +

A05 pH 5.5 pH, growth at 5.5 + + + +

A06 pH 6 pH, growth at 6 + + + +

A07 pH 7 pH, growth at 7 + + + +

A08 pH 8 pH, growth at 8 + + + +

A09 pH 8.5 pH, growth at 8.5 + + + +

(Continued)
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Table 7. (Continued)

Well PM conditions Remarks Strains

CB CS OB OS

A10 pH 9 pH, growth at 9 + – + –

B01 pH 4.5 pH, decarboxylase control + + + V

B02 pH 4.5 + L-Alanine pH, decarboxylase + + + V

B03 pH 4.5 + L-Arginine pH, decarboxylase + + + –

B04 pH 4.5 + L-Asparagine pH, decarboxylase – + + –

B05 pH 4.5 + L-Aspartic acid pH, decarboxylase + V + –

B06 pH 4.5 + L-Glutamic acid pH, decarboxylase – – + –

B07 pH 4.5 + L-Glutamine pH, decarboxylase – – + +

B08 pH 4.5 + Glycine pH, decarboxylase + V + –

B09 pH 4.5 + L-Histidine pH, decarboxylase + V + –

B12 pH 4.5 + L-Lysine pH, decarboxylase + V + –

C01 pH 4.5 + L-Methionine pH, decarboxylase – + + V

C02 pH 4.5 + L-Phenylalanine pH, decarboxylase – V + –

C03 pH 4.5 + L-Proline pH, decarboxylase + + + –

C04 pH 4.5 + L-Serine pH, decarboxylase + + + +

C05 pH 4.5 + L-Threonine pH, decarboxylase + + + +

C07 pH 4.5 + L-Tyrosine pH, decarboxylase + + + V

C08 pH 4.5 + L-Valine pH, decarboxylase + + + V

C09 pH 4.5 + Hydroxy-L-Proline pH, decarboxylase + + + V

C10 pH 4.5 + L-Ornithine pH, decarboxylase + + + –

C11 pH 4.5 + L-Homoarginine pH, decarboxylase + + + –

D03 pH 4.5 + L-Norvaline pH, decarboxylase + + + +

D04 pH 4.5 + a-Amino-N-Butyric acid pH, decarboxylase + + + V

D06 pH 4.5 + L-Cysteic acid pH, decarboxylase + + + V

D07 pH 4.5 + D-Lysine pH, decarboxylase + + + +

D08 pH 4.5 + 5-Hydroxy-L-Lysine pH, decarboxylase + + + V

D10 pH 4.5 + D,L-Diamino-a,e-Pimelic acid pH, decarboxylase – – V V

D11 pH 4.5 + Trimethylamine-N-Oxide pH, decarboxylase V V + –

D12 pH 4.5 + Urea pH, decarboxylase + + + V

H01 X-Caprylate caprylate esterase + + + +

H02 X-a-D-Glucoside a-D-glucosidase + + + +

H03 X-b-D-Glucoside b-D-glucosidase + + + +

H04 X-a-D-Galactoside a-D-galactosidase + + + +

H05 X-b-D-Galactoside b-D-galactosidase + + + +

H06 X-a-D-Glucuronide a-D-glucuronidase + + + +

H07 X-b-D-Glucuronide b-D-glucuronidase + + + +

H08 X-b-D-Glucosaminide b-D-glucosaminidase + + + +

H09 X-b-D-Galactosaminide b-D-galactosaminidase + + + +

H10 X-a-D-Mannoside a-D-mannosidase + + + +

H11 X-PO4 aryl phosphatase + + + +

H12 X-SO4 aryl sulfatase + + + +

Notes: ‘+’, positive growth; ‘─’, negative growth; V, varies growth between replicates.

https://doi.org/10.1371/journal.pone.0261382.t007
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tricarboxylic acids (TCA) cycle (i.e., α-ketoglutarate). Metabolic pathways inferred from SEED

showed that the four B. pseudomallei strains also harboured genes encoded for glycolysis, pen-

tose phosphate cycle and Entner-Doudoroff pathways. The findings were consistent with the

genomic analysis of other B. pseudomallei strains (K96243, MSHR668 and 1106a) which also

demonstrated the involvement of B. pseudomallei in these three metabolic pathways [42].

Previous study by Eisenreich et al. showed that intracellular bacteria prefer substrates such

as glycerol over glucose during infection [40]. In this study, all B. pseudomallei strains were

able to utilize glycerol. Glycerol feeds in the middle of the glycolysis/gluconeogenesis pathways

with the production of glyceraldehyde 3-phosphate (KEGG database). Moreover, the strains

were also able to utilize tween 20, tween 40 and tween 60 which are fatty acids. Previous study

on Mycobacterium tuberculosis revealed that the bacteria metabolized glycerol and fatty acids

as carbon sources in the macrophage environment [43].

When comparing SCVs with their parental WTs based on the phenotypic profile, the only dif-

ference observed was the ability to grow in pH 9. In our study, both morphology variants were

able to grow in the pH range of 4.5 to 8.5. This is consistent with a previous study that reported

the pH range of B. pseudomallei at 4.5–7 [44]. However, the WT strains in this study were able to

grow up to pH 9. Similarly, in a rare case reported by Finkelstein et al. [45], B. pseudomallei has

been isolated from water sources with pH value ranging from pH 2 to pH 9 [44]. In general, the

survival of B. pseudomallei at acidic condition is relatively low since pH 4 or lower is considered

to be bactericidal. On the contrary, a previous study reported that the ability of B. pseudomallei to

survive in acidic condition may be attributed to over-expression of components of the arginine

deiminase system (i.e. arginine deiminase and carbamate kinase), however, this does not provide

any advantage to bacterial intracellular survival or replication [46].

Rather than differentiating WTs and SCVs based on their metabolic phenotypes, significant

differences were observed between the two pair of strains, whereby OB and OS were found to

utilize more C-substrates (n = 81) than CB and CS (n = 61 and n = 67, respectively). The ability

to utilize more C-substrates suggested that OB and OS may survive and adapt better under

stressed environments. Although all four strains were found to be genotypically similar, the

difference in nutrient utilization could be due to epigenetic factors and/or gene expression reg-

ulation rather than genomic differences [47]. It was discussed previously that within different

SCV populations, the commonality between phenotypic and genotypic changes was not found

[3]. Thus, the finding suggested that carbon utilization may be strain-specific rather than mor-

photype-specific.

The limitation of this study was unavailability of the patients’ clinical history such as antibi-

otics administered, severity of the infection (bacteremia, septic shock, or death) and clinical

manifestations. Availability of such information may provide a better insight into the patho-

genesis or virulence of the bacteria in human host.

Based on the data obtained from phenotypic microarray, each pair of colonial variants

(CB-CS and OB-OS) utilized the carbon more similarly for growth while only WTs (CB and

OB) could survive at pH 9. However, based on SNP-based phylogenetic analysis, all the four

studied strains were closely related with the other 18 B. pseudomallei strains from 8 different

countries.
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