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Thanks to recent advances in sequencing and computational technologies, many researchers with biolog-
ical and/or medical backgrounds are now producing multiple data sets with an embedded temporal
dimension. Multi-modalities enable researchers to explore and investigate different biological and
physico-chemical processes with various technologies. Motivated to explore multi-omics data and
time-series multi-omics specifically, the exploration process has been hindered by the separation intro-
duced by each omics-type. To effectively explore such temporal data sets, discover anomalies, find pat-
terns, and better understand their intricacies, expertise in computer science and bioinformatics is
required. Here we present MOVIS, a modular time-series multi-omics exploration tool with a user-
friendly web interface that facilitates the data exploration of such data. It brings into equal participation
each time-series omic-type for analysis and visualization. As of the time of writing, two time-series
multi-omics data sets have been integrated and successfully reproduced. The resulting visualizations
are task-specific, reproducible, and publication-ready. MOVIS is built on open-source software and is
easily extendable to accommodate different analytical tasks. An online version of MOVIS is available
under https://movis.mathematik.uni-marburg.de/ and on Docker Hub (https://hub.docker.com/r/
aanzel/movis).
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

High-throughput technologies allow us to generate large
amounts of data that could be used for medical and biological
research. Multi-omics data sets have been extensively used to pro-
vide new insight into certain diseases such as cardiovascular dis-
eases [1], type 2 diabetes [2], cancer [3], and infectious diseases
[4]. With the new technologies mentioned above and technical
advances in computational power, data sampling could become
more granular. Data sets taken at one point in time can now be
easily extended by creating new data sets at other time points, pro-
viding a more detailed picture of the underlying biological phe-
nomena. These types of time-series data sets are becoming more
common and are often explored using machine learning methods
[5]. Although the demand for integrative, analytical, and explo-
rative tools for such data is high, only a handful exists, e.g., TIMEOR
[6], PyIOmica [7], and Functional Heatmap [8]. Functional Heatmap
was developed as a web-based tool for time-series transcriptomics
data sets. Analysis results can be exported in textual format or
visually thanks to data visualizations, yet only using heatmaps or
parallel coordinate plots. TIMEOR was also developed as a web-
based tool for defining regulated gene networks from gene-
related time-series data sets using RNA-seq, and protein-DNA
interaction (such as ChIP-seq [9] and CUT&RUN [10]) techniques.
In contrast, PyIOmica was developed as a Python [11] library with
the ability to work with different time-series omics data sets, like
proteomics, metabolomics, etc. It also includes gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses. PyIOmica currently represents the most
complete solution for working with time-series multi-omics data
sets. Still, as a library, it does not allow domain specialists like biol-
ogists and biophysicists to conduct an exploratory data analysis.
Besides that, none of these tools allow a step-wise, easy-to-
follow pipeline, providing both control and freedom to explore
the data and discover irregularities or trends in the data. With
the challenge of multi-modal and temporal data, the analysis of
multiple omics should provide multiple aspects that vary in scope
and detail. For example, a side-by-side view of the outcome of each
analysis integrating the same time span is necessary. To overcome
these limitations and reduce the separation between each omic-
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type data, we developed the Multi-Omics VISualization (MOVIS)
tool. MOVIS is a web-based, modular tool that enables easy explo-
ration of time-series multi-omics data sets in a side-by-side fash-
ion. In turn, it enables both developers and domain specialists to
formulate and test their hypotheses. While the modularity of the
core components enables developers to separate and recombine
low-level functionalities, it supports requests for additional func-
tionalities or omics-specific tasks. By means of modularity and
using open-source libraries, it can be easily extended to accommo-
date new use case scenarios. To our knowledge, MOVIS is the first
freely available time-series multi-omics data exploration tool and a
pipeline for creating publication-ready visualizations.

2. Approach

MOVIS consists of three distinct parts: (1) a graphical web inter-
face, (2) a data analysis core, and (3) a visualization canvas. The
interactive graphical web interface is built on the open-source
framework Streamlit (https://streamlit.io/). The user interface
(UI) allows the user to split the screen into multiple views. Each
view corresponds to one of five omics (genomics, proteomics, tran-
scriptomics, metabolomics, physico-chemical data) available to
work with. This functionality is presented in Fig. 1. UI also consists
of a side panel used for navigation and shows basic information
about the tool. The whole workflow is divided into five well-
defined parts: (1) the original data set presentation, (2) optional
creation of a new data set, (3) optional data set filtering, (4)
optional data clustering, and (5) data set visualization. Some steps
of the workflow are shown in Fig. 2. The data analysis core is
responsible for five sequential core steps: importing, sanitizing, fil-
tering, analyzing, and visualizing all data sets. The core works with
five different types of omics data. In the first core step, i.e., import-
ing, genomics, and proteomics data sets can be provided as
Fig. 1. Split view of multiple omics. One of the most powerful functionalities of MOVIS is
inspect and explore multi-omics data sets at the same time.
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archived FASTA files (ZIP, TAR, etc.) or as precalculated tabular
(CSV or TSV) files. For the genomics data, archived GFF, KO, and
Depth-of-coverage files are also supported. The latter is available
for transcriptomics as well. Metabolomics, transcriptomics, and
physico-chemical data sets can be provided as tabular files. In
the case of transcriptomics data, users can upload multiple tabular
data sets. However, each data set must have the same set of col-
umns with precisely the same names. MOVIS concatenates these
data sets into one unified data set with one new feature (column)
named Type. This column contains the names of all user-uploaded
files. Multi-tabular functionality is provided to enable more acces-
sible work with multiple biological and technical replicate files
simultaneously, which is common when researching gene expres-
sion. The sanitizing step is dependant on the data set format pro-
vided to the core. For archived data sets, the sanitizing step
consists of unpacking the archive, checking the validity of the file
names, and correcting them if they do not adhere to the naming
rules. We created these rules so that file names could hold stan-
dardized temporal information of each file. If a data set is of a tab-
ular format, the sanitizing step consists of various data quality
checks. In this case, temporal information must be included as a
feature of the data set. The filtering step is present only for tabular
data sets. It offers a way to filter a certain time-series period and
remove one or more rows or columns from the data set. The data
analysis step is the central and most intricate part of the data anal-
ysis core. It provides embedding and clustering functionalities, as
well as creating a new physico-chemical data set for archived
FASTA data sets. The visualization step is responsible for visualiz-
ing and additional filtering of the data sets. It also implements
interactivity to the resulting visualizations in the form of a tooltip,
brushing, and/or spanning and zooming. The visualization canvas
provides a unified representational space for all created visualiza-
tions. It enables users to export the created visualization in several
the ability to represent each omic-type in its own view space. This allows the user to

https://streamlit.io/


Fig. 2. Step-wise process of the MOVIS workflow. Data exploration and visualization of each omic are divided into multiple steps. This figure shows steps (1), (2), and (3) for
the metagenomics data set.
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formats. Each visualization can be exported as a PNG or SVG file or
a Vega-Lite [12] source specification. This functionality is pre-
sented in Fig. 3. Currently, MOVIS supports nine different visualiza-
tions of time-series data sets: Correlation heatmap, Time heatmap,
Multiple features parallel chart, Scatter-plot matrix, Scatter plot,
Two features plot, Feature through time, Whisker plot, and Top 10
share through time. The user could use each of the visualizations
for any data set type without any restrictions. However, some basic
data knowledge is advised in order to choose appropriate visualiza-
tions for certain data set types. The visualization canvas, along
with multiple visualizations, is shown in Fig. 4.

3. Methods

MOVIS is built using Python and additional libraries like Pandas
[13], Numpy [14], Scikit-learn [15], Biopython [16], Gensim [17],
Altair [18], and Streamlit. Tabular data sets (CSV or TSV) are inter-
nally imported as Pandas Data Frame structures. Archived data sets
are first unpacked and then cleaned up using built-in Python
libraries. If a FASTA data set is selected for proteomics or genomics,
the web interface provides an option to calculate an additional
physico-chemical data set. These properties are calculated with
task-specific in–house algorithms by importing each FASTA
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sequence, one by one using Biopython, and then processing them.
As of the time of writing, the additional data set created out of
genomics FASTA data set contains three physico-chemical features
— Hydrogen Bond, Stacking Energy, and Solvation. If an option to cre-
ate an additional physico-chemical data set is selected for the pro-
teomics FASTA data set, the data set consists of 43 physico-
chemical features, e.g.,Molecular Weight, Isoelectric Point, Instability
Index, etc. The newly created data set incorporates the temporal
dimension of the source data and can also be visualized as is. We
integrated various methodologies into MOVIS to solve the embed-
ding tasks. One of the central algorithms is the Word2Vec algo-
rithm [19,20] used to embed archived FASTA files into 100-
dimensional vectors. Such embedding supports nucleotide- and
amino-acid-based sequences. The dimension of the output vector
was chosen empirically. Because each FASTA file may contain mul-
tiple sequences, we first embedded each sequence in a 100-
dimensional vector and then averaged them to create one vector
representing the FASTA file containing those sequences. This pro-
cess results in a tabular data set containing the same number of
rows as FASTA files in an archived dataset and 101 columns. Each
column contains the temporal data, and the other 100 include the
100-dimensional vector embedding. The clustering step is pre-
sented with two clustering algorithms as options: KMeans [21]



Fig. 3. Exported visualizations for example data 1. The user has the ability to export resulting visualizations in several lossless formats with just a few mouse clicks. In this
figure, we can see save buttons for the scatter-plot visualization of embedded genomics data. Similar exported publication-ready visualizations could be seen in Fig. 9.
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(distance-based) and OPTICS [22] (density-based). By having two
different methods that achieve the same goal, different types of
inductive principles are covered. The visualizations are created
according to the nested model of visualization [23] and follow
good data visualization practices [24]. That is to say, design consid-
erations are taken to accommodate color blind users and enhance
the accessibility of the visualizations to a broader audience. Other
available data visualizations are reported in the supplementary
material. Three different dimensionality reduction techniques are
included to visualize clusters, namely PCA [25,26], MDS [27], and
t-SNE [28]. Although each of these methods aims to reduce the
dimensionality of the data, their goal is different. Therefore, more
1047
choices provide a greater opportunity to distinguish patterns and
anomalies in the data. The effect of choosing different dimension-
ality reduction techniques to visualize clusters of the same data set
can be seen in Fig. 3. In this Figure, PCA was used for the upper, and
MDS for the lower visualization.
4. Results

To demonstrate the usability of MOVIS, we present a case study
based on one of the available examples. The case study is also
built-in into MOVIS as one of the options on the navigation sidebar.



Fig. 4. isualization canvas with multiple visualizations. Visualization canvas is the part of the UI that holds visualizations for all data sets in use. It is separated from the data
exploration part of MOVIS in order to make the exploration part distraction-free and continuous. This figure also shows the interactive part of every visualization, in this case,
a tooltip with additional information of the underlying data point. Further filtering is available to look at the specific time frame.
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As presented in MOVIS, the case study overview can be seen in
Fig. 5 and 6.
4.1. Case study — Introduction

We focused on the built-in Example 1 [29] (named as in MOVIS)
that contains metagenomics, metaproteomics, metatranscrip-
tomics, metabolomics, and physico-chemical data from the Biolog-
ical WasteWater Treatment Plant (BWWTP). The data was
collected in situ, at weekly intervals, and over 14 months. The
end goal of this case study was to reveal if there were any niche
types, and if there were, how did they respond to the substrate
changes. To limit the scope of this use case, we proposed only using
the functional aspects of the metabolomics data [29].
4.2. Case study — Main findings

Even though BWWTP operation is a controlled process, factors
such as aeration cycles, seasonal changes in temperature, and com-
position of inflow wastewater fluctuate [30]. The physico-chemical
factors may have a meaningful impact on population dynamics and
linked process efficiency [31]. Therefore, the first step of our case
1048
study was to inspect relevant physico-chemical properties of the
wastewater and determine major shifts, if any.
4.2.1. Physico-Chemical data
To demonstrate the function and utility of MOVIS, we selected

the Physico-Chemical data and, more specifically, the Processed data
set 1. The selected data set contains 34 different physico-chemical
properties with a 2-h sampling rate. The properties of interest for
this case study are Volume_aeration m3/h, T C (Temperature in Cel-
sius), and Inflow_conductivity lS/cm. We visualized the properties
of interest using MOVIS in Figs. 7a, 7b, and 7c, respectively. We
chose Feature through time visualization to accomplish this. Even
with a lot of noise present, Fig. 7a showed the shape of a sine curve
with three distinct local maxima (around June 2011, November
2011, and April 2012) and two distinct local minima (around
August 2011 and January 2012). Figs. 7b and 7c had less noise, with
the latter figure showing a distinct increase in temperature near
the end of the sampling period. In order to further examine the
irregular behavior of temperature and conductivity, we visualized
them using Time Heatmap in addition to the existing chart types.
The new visualizations are presented in Figs. 8a and 8b, respec-
tively. Provided with more granularity, we were able to see a



Fig. 5. Case study overview, part 1. We can see all five parts of the tool’s workflow.
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detailed picture of each property. Fig. 8a showed a steady increase
in temperature that peaks in September of 2011 and then slightly
decreases until the start of December 2011. Then, we have a rapid
1049
decrease in temperature that lasts until March 2012 followed by a
rapid increase that peaks in the beginning of April 2012 with tem-
peratures going as high as 29.62 �C. We efficiently inspected values



Fig. 6. Case study overview, part 2. The second part of the overview is consisted only of the visualization canvas, with almost all visualization created for the case study.

A. Anžel, D. Heider and G. Hattab Computational and Structural Biotechnology Journal 20 (2022) 1044–1055
by using the interactive tooltip feature. It appears upon the mouse
hovering over the cells of interest. On the other hand, Fig. 8b
showed high but steady values from the beginning of sampling
1050
and up until the last week of August 2011. After that, we found a
swift decrease and stabilization of values that continues through-
out the time series.



Fig. 7. Relevant physico-chemical properties of the wastewater sludge. A seasonal pattern is present in the first figure, while we have more irregular readings in Figure (b)
and Figure (c).
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4.2.2. Metaproteomics data
Integrated meta-omics approaches hold the potential to resolve

niches of microbial populations in situ [29]. Therefore, we shifted
our focus to metaproteomics data to identify microbial clusters,
if there were any, using only raw FASTA data. To ascertain the pres-
ence of microbial clusters, we selected Metaproteomics data, and
then Raw FASTA files. When MOVIS completed embedding FASTA
files, we selected the K-Means clustering method and using the
Elbow rule chart we selected three as a number of clusters (cen-
troids) for our clustering method. Then we inspected the evalua-
tion window of the selected clustering method. With a silhouette
score [32] of 0.495, we acknowledged that our method was suc-
cessful, which was further corroborated by other available evalua-
1051
tion scores (e.g., The Davies-Bouldin index (DBI) [33], and The
Calinski-Harabasz (CH) score [34]). Then we chose to visualize
our data using two different dimensionality reduction techniques
in order to determine which one gives a better visual outcome.
The selection of PCA visualization and MDS visualization resulted
in Figs. 9a and 9b, respectively. Both figures provided us with a
visual way to evaluate chosen clustering method. As can be seen
on both Figs. 9a and 9b, their upper-left corner showed a mixture
of class-0 (circles) and class-2 (triangles), which indicated that K-
Means had problems with clustering data embeddings that occupy
that space. However, the clustering was successful since most data
embeddings were placed in cloud points that have been deter-
mined to be in proximity and define a cluster. Inspecting the color



Fig. 8. A closer inspection of temperature and inflow conductivity of the wastewater sludge. Figure (a) shows steady values on the upper half of the heatmap and a
considerable variation on the lower half. Figure (b) shows a rapid transition from higher to lower conductivity values. The shift happens roughly after one-third of the
sampling period.
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gradient of the visualization marks allowed us to discover even
more — samples clustered in the class-1 (rectangles) came in
majority from the later time of the sampling period. The same
could also be said for the class-2 samples, while class-0 samples
1052
came from a more dispersed sampling period. Mouse-hovering
over each sample allowed us to determine the exact time that sam-
ple was collected. MOVIS also supports calculating amino-acid
based physico-chemical properties of the metaproteomics data



Fig. 9. Clustered FASTA embeddings of the metaproteomics data set. Figure (a) used
the PCA dimensionality reduction technique to visualize embedded data, while
Figure (b) used the MDS technique.
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set, which could uncover an even more detailed picture of the
underlying phenomena. For the sake of brevity, we did not select
that option.
4.2.3. Metabolomics data
Since a significant shift in substrates of the influent wastewater

sludge can alter the community composition [35], we moved our
focus to the Metabolomics data set, and more specifically the Pro-
cessed data set 2. The selected data set is of composite nature,
which means that it contains multi-omic information. Almost
95% of the data set represents metabolomics data, and the rest is
physico-chemical data. Pre-combining omics data in such a fashion
allows MOVIS to tap into the integrative aspect of the multi-omics
nature. That aspect is planned but not yet directly available in
MOVIS. Next, we selected Time heatmap visualization and chose
feature named value as a quantitative color feature, param as a y-
axis feature, and Diverging for the color scheme. Our selection
resulted in Fig. 10. Further inspection of Fig. 10 revealed substrate
shift happening from early to mid-November 2011 and early to
mid-December 2011, with noticeably higher values in between.
The substrate shift was defined by higher values of mainly non-
polar metabolites, as well as polar metabolites, among which are
putrescine and various disaccharides. After the end of December
1053
2011, substrate levels normalized, and the community transitioned
back to the pre-disturbance state.

4.2.4. Metagenomics data
One way of estimating population abundance is by using

metagenomic depth-of-coverage. Since MOVIS is not explicitly
designed to work with meta-omics data, no taxa linking is cur-
rently enabled. However, by inspecting average depth-of-
coverage values, we could get some insights into the overall popu-
lation dynamics over time. Therefore, we selected Metagenomics
data, and then Depth-of-coverage, which presented us with a direc-
tory hierarchy of the underlying data set. After MOVIS automati-
cally calculated important statistical values of the data set in use,
we visualized results using Whisker plot. The visualization men-
tioned earlier can be seen in Fig. 11. The third quartile (Q3) and
upper limits form the shape of a sine curve with a period of around
one month and a slight discrepancy around the beginning of
November 2011. The discrepancy is caused by the increase of out-
liers (not shown in Fig. 11) while calculating statistical values. We
then visualized Mean depth-of-coverage values using Feature
through time visualization. However, that did not provide us with
any new insight.

4.3. Case study — Conclusion

The simultaneous exploration of multi-metaomics data sets
using MOVIS allowed us to uncover temporal patterns and discrep-
ancies of one metaomic data set and efficiently connect them with
other metaomic data sets. Furthermore, a swift visualization of siz-
able time-series multi-modal data sets revealed significant micro-
bial clusters and temporal points of interest. Withal, we are now
empowered further to analyze temporal points of interest with
metaomic-specific tools and uncover metaomic-specific details.

5. Discussion

First and foremost, MOVIS is the only time-series omics data
exploration tool that is able to generate publication-ready visual-
izations of the underlying data by following best practices for user
interface and data visualization design. Second, since it was writ-
ten in a procedural way, it allows quick extensions with minor
modifications. For example, the adoption of a new omic-type data
requires the addition of one high-level function to the data analysis
core. Third, the data analysis core presupposes that the data is pre-
processed, that is to say, quality controlled and filtered. While
FASTA files may be directly used as input, specific data such as
raw microarray-based data cannot be used directly as input. The
complexity of each omics domain knowledge makes this a chal-
lenging problem. Fourth, to support data exploration and visual
analytic tasks, we rely on direct data interaction for tabular data.
This interactivity lays the foundation for solving visual analytic
tasks [36]. Fifth, clear and concise data analysis guidelines benefit
multi-omics time-series analyses. Indeed, further omics-wide
guidelines, time-series-specific, and data-specific standards are
required. Sixth and last, we plan to integrate and make available
many more data sets, omic-types data, clustering algorithms,
dimensionality reduction methods, and visualizations. Moreover,
the implementation of many other embedding algorithms should
provide users with ample choice to accommodate the varying nat-
ure of the underlying imported data. In this line of reasoning, we
are open to requests to include more data in the tool. Currently,
two sample data sets are already integrated and available for
exploration [29,37]. Since the scope of the data and its size can



Fig. 10. Metabolite and physico-chemical values over time. A major shift of multiple parameters can be clearly observed around November 2011. Important abbreviation:
bnp — intracellular nonpolar metabolites, bp — intracellular polar metabolites, ratio — metabolite intracellular/extracellular ratio, snp — extracellular nonpolar metabolites,
sp — extracellular polar metabolites.

Fig. 11. Metagenomics depth-of-coverage over time. A sinusoid wave formed by third quartile and upper limit values can be observed.
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have a significant impact on computational performance, we also
plan to adapt MOVIS to cloud computing.
6. Conclusion

MOVIS is created as a modular and easy-to-use solution that
includes state-of-the-art libraries and models to import, embed,
cluster, and visualize temporal omics data. We expect that the pro-
posed MOVIS will be a valuable tool to complement and enhance
traditional data exploration approaches for temporal omics data
and offer further insights into the patterns and anomalies of any
of the five available omics types and their potential combination.
1054
MOVIS currently supports genomics, transcriptomics, metabolo-
mics, proteomics, physico-chemical data, and metaomic aspects
of aforementioned omic types.
Data availability

We provide MOVIS as a web service at https://movis.mathe-
matik.uni-marburg.de/ and as a Docker container at https://hub.-
docker.com/r/aanzel/movis. The website version is free and open
to all users, without any registration requirements. Source code,
help, and documentation can be found at https://github.com/AAn-
zel/MOVIS. MOVIS is licensed under the GNU General Public
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License, Version 3.0, and can be manipulated, improved, and
extended freely by any user.
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