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Simple Summary: Discovery of anticancer targets with minimal side effects is a major challenge
in drug discovery and development. This study developed a fuzzy optimization framework for
identifying anticancer targets. The framework was applied to identify not only gene regulator
targets but also metabolite- and reaction-centric targets. The computational results show that the
combination of a carbon metabolism target and any one-target gene that participates in the sphin-
golipid, glycerophospholipid, nucleotide, cholesterol biosynthesis, or pentose phosphate pathways is
more effective for treatment than one-target inhibition is, and a two-target combination of 5-FU and
folate supplement can improve cell viability, reduce metabolic deviation, and reduce side effects of
normal cells.

Abstract: The efficient discovery of anticancer targets with minimal side effects is a major challenge
in drug discovery and development. Early prediction of side effects is key for reducing development
costs, increasing drug efficacy, and increasing drug safety. This study developed a fuzzy optimization
framework for Identifying AntiCancer Targets (IACT) using constraint-based models. Four objectives
were established to evaluate the mortality of treated cancer cells and to minimize side effects causing
toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Fuzzy set
theory was applied to evaluate potential side effects and investigate the magnitude of metabolic
deviations in perturbed cells compared with their normal counterparts. The framework was applied
to identify not only gene regulator targets but also metabolite- and reaction-centric targets. A nested
hybrid differential evolution algorithm with a hierarchical fitness function was applied to solve
multilevel IACT problems. The results show that the combination of a carbon metabolism target
and any one-target gene that participates in the sphingolipid, glycerophospholipid, nucleotide,
cholesterol biosynthesis, or pentose phosphate pathways is more effective for treatment than one-
target inhibition is. A clinical antimetabolite drug 5-fluorouracil (5-FU) has been used to inhibit
synthesis of deoxythymidine-5′-triphosphate for treatment of colorectal cancer. The computational
results reveal that a two-target combination of 5-FU and a folate supplement can improve cell viability,
reduce metabolic deviation, and reduce side effects of normal cells.
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1. Introduction

The process of drug discovery and development is challenging as well as cost and
time intensive. Recent progress in omics fields (e.g., genomics [1], transcriptomics [2],
proteomics [3], metabolomics [4], and fluxomics [5]) can promote the development of
technology for discovering new drug targets [6]. Advancements in high-throughput data
acquisition have been combined with systems biology approaches to increase the time and
cost effectiveness of drug target discovery through computer-aided simulation techniques.
Metabolism is the primary biological mechanism linking genotype with phenotype; study-
ing metabolism facilitates understanding of cell physiology and disease phenotypes caused
by metabolic dysregulation [7–11]. Genome-scale metabolic networks (GSMNs) relate
metabolites and reactions and represent the full set of intracellular metabolic processes
curated using knowledge of cellular functions from the literature. GSMNs combined with
constraint-based approaches are leading approaches for developing methods to simulate
cell behavior, such as flux balance analysis (FBA) [12,13].

Systems biology, a holistic approach to the study of biological systems, involves the
modeling and analysis of metabolic pathways, regulatory networks, and signal transduc-
tion networks to understand cellular behavior. Cellular metabolism is often altered during
disease; therefore, metabolic analysis can facilitate drug discovery. During tumor devel-
opment, the metabolic processes of cancer cells are altered to sustain their uncontrolled
proliferation. Due to progress in research in the last decade, metabolic reprogramming
has become a common focus of cancer studies [14,15]. Numerous studies have employed
metabolic rewiring to understand cancer-specific metabolic networks and to predict anti-
cancer targets that could impair tumor growth or viability [9,10,16–21].

Several publications have applied cancer-specific GSMNs to identify anticancer tar-
gets [7,9,16,21–29]. The integration of omics data, cancer-specific GSMNs, and FBA has
recently utilized the heterogeneity of metabolic patterns to discover biomarkers of can-
cers [30]. Mapping these tissue-specific metabolisms in GSMNs provides deeper insight into
the metabolic basis of physiological and pathological processes. Current context-specific-
model-building algorithms can be broadly categorized into flux-dependent methods and
pruning methods [16,22,23,28,31–37]. Flux-dependent methods identify an optimal GSMN
and include the maximum number of high-confidence reactions as supported by substantial
experimental data. By contrast, pruning methods start with a core set of reactions obtained
through literature reviews or experimental data and proceed by removing reactions from
the reconstruction while maintaining functionality in a core reaction set.

Colorectal cancer (CRC) is a worldwide health burden and it is the third most common
type of cancer and the fourth most common cause of cancer-related death [38]. An estimated
51,020 deaths from CRC were reported in 2019 in the United States [38]. In 2017, the Taiwan
Cancer Registry reported that CRC was the most frequently diagnosed cancer in men and
the second most frequently diagnosed cancer in women [39]. In our previous study, the
human metabolic network Recon 2.2 [40] was incorporated with the Human Protein Atlas
(HPA) [3] to reconstruct GSMNs for cancerous colorectal tissue and its healthy counterpart.
An oncogene inference optimization algorithm was introduced to integrate both models to
predict which dysregulated genes cause tumorigenesis [41]. The algorithm was also applied
to identify oncogenes for head-and-neck cancer [42] and non-small-cell lung carcinoma [43].
This study introduced a tri-level optimization framework (TLOP) for identifying anticancer
targets (IACT) for treatment of cancers. The IACT framework, extended from the oncogene
inference optimization algorithm [41,42], identified not only gene regulator targets but also
metabolite- and reaction-centric targets. Fuzzy set theory was also applied to investigate
cell viability, metabolic deviation, and side effects after target treatment. CRC was used as
a case study to illustrate the performance of IACT.
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2. Materials and Methods
2.1. Reconstruction of Tissue-Specific GSMNs

This study combined a human metabolic network (Recon 3D) [12] with RNA-Seq
expression data from The Cancer Genome Atlas (TCGA) database [44] to reconstruct
population-based tissue-specific GSMNs for CRC and healthy counterpart tissue. The RNA-
Seq data of 41 healthy colorectal samples with FPKM-UQ normalized expression value
and 478 colon adenocarcinoma samples with different TCGA barcode were downloaded
from the TCGA database and normalized using quantile normalization; then the mean,
confidence interval, and coefficient of dispersion were calculated for each gene. This
information was used to evaluate supportive genes and classify them into four groups
(high, medium, low, and not detected). Based on the four gene groups and Recon 3D,
the CORDA algorithm was used to reconstruct GSMNs for cancer and healthy tissue. We
developed a systems biology program to automatically build stoichiometric and gene-
protein-reaction models in the General Algebraic Modeling System (GAMS) to discover the
anticancer targets with few side effects. The workflow of the reconstruction of the GSMM
for CRC is shown in Figure 1.

Figure 1. Roadmap of the reconstruction of genome-scale metabolic models. Workflows for recon-
structing genome-scale metabolic models for CRC and its corresponding healthy tissue. (A) Down-
load RNA-Seq data of CRC from the TCGA database. (B–G) A series statistical analyses of the
download RNA-Seq data. (H) Download general human metabolic network model (Recon3D) from
Bigg Models or VMH database. (I) Integrate the Recon3D model with the RNA-Seq data to classify
all enzyme-encoded genes into four classes. (J) Retrieve gene-protein-reaction associations from the
Recon3D model. (K) Compute the confidence score for each reaction based on the gene-protein-
reaction associations, and classify all reactions into four groups. (L) Reconstruct tissue-specific
metabolic models for healthy and cancer cells using the CORDA algorithm. (M) Create GAMS codes
for tissue-specific metabolic models using the SBP platform.

2.2. Optimization Framework for Target Identification

We aimed to identify anticancer targets that not only are lethal to cancer cells but
also minimize the side effects of toxicity-induced tumorigenesis for normal cells and have
reduced metabolic perturbation. We established a TLOP to mimic a wet-lab experiment
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for identifying targets. The flowchart of the in silico experiment is displayed in Figure 2.
The optimal design concept of the IACT framework is described in Table 1. The TLOP is a
hierarchical optimization problem with four objectives and subject to inner optimization
problems describing the characteristics of cancer cells for targeting treatment and metabolic
perturbation of normal cells caused by treatment. The first objective is to evaluate the
mortality of cancer cells, a common criterion for discovering target problems [18,26,45–47],
that the biomass growth rate of cancer cells for treatment (denoted as treated cells) has a
value as small as possible. Anticancer targets may cause toxicity-induced tumorigenesis in
normal cells and lead to harmful metabolic perturbations (referred to as metabolic pertur-
bation). Therefore, the metabolic perturbation is defined as the normal cells accompanied
with treatment (referred to as perturbed cells) to alter their metabolic flux distributions.
The second objective is to obtain superior cell viability of perturbed cells, that is equivalent
to maximize the ATP production rate and minimize the cell growth rate. We defined two
types of metabolic deviations for perturbed cells to evaluate a side-effect grade. They are
the differences of flux distributions of perturbed cells from cancer template and normal
template, respectively. The third objective is to keep the metabolic deviations of perturbed
cells as dissimilar as possible to the cancer template, and the fourth objective is to keep
the metabolic deviations of perturbed cells as similar as possible to the normal template.
The four objectives are formulated based on the fuzzy set theory [48–52], and detailed in
Supplementary Materials (Figure S1). The constraint-based models for cancer and normal
cells in inner optimization problems are expressed as follows:

Inner optimization problems:

Treatment of cancer cells:

FBA problem
max
v f /b

objCA ≡ (wATPvATP + wbiomassvbiomass)

subject to
NCA

(
v f − vb

)
= 0

vLB,TR
f /b,i ≤ v f /b,i ≤ vUB,TR

f /b,i , zi ∈ ΩTR

vLB
f /b,j ≤ v f /b,j ≤ vUB

f /b,j, zj 6∈ ΩTR

UFD problem
min
v f /b

∑
i∈ΩInt

(v2
f ,i + v2

b,i)

subject to
NCA

(
v f − vb

)
= 0

vLB,TR
f /b,i ≤ v f /b,i ≤ vUB,TR

f /b,i , zi ∈ ΩTR

vLB
f /b,j ≤ v f /b,j ≤ vUB

f /b,j, zj 6∈ ΩTR

obj ≥ obj∗CA
Perturbation of normal cells:

FBA problem
max
v f /b

objBL ≡ (wATPvATP + wbiomassvbiomass)

subject to
NBL

(
v f − vb

)
= 0

vLB,TR
f /b,i ≤ v f /b,i ≤ vUB,TR

f /b,i , zi ∈ ΩTR

vLB
f /b,j ≤ v f /b,j ≤ vUB

f /b,j, zj 6∈ ΩTR

UFD problem
min
v f /b

∑
i∈ΩInt

(v2
f ,i + v2

b,i)

subject to
NBL

(
v f − vb

)
= 0

vLB,TR
f /b,i ≤ v f /b,i ≤ vUB,TR

f /b,i , zi ∈ ΩTR

vLB
f /b,j ≤ v f /b,j ≤ vUB

f /b,j, zj 6∈ ΩTR

obj ≥ obj∗BL

(1)
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where v f /b is the forward/backward flux vector of reversible reactions; the stoichiometric
matrices NCA and NBL for tissue-specific cancer and normal cells, respectively, can be
reconstructed by using Recon 3D [12] with the TCGA [44] or HPA [3] databases; vLB

f /b,i

and vUB
f /b,i are the positive lower and upper bounds of the ith backward/forward flux,

respectively; the integer vector z is used to determine mutated enzymes; and obj∗CA/BL is
the maximum cellular objective obtained from FBA. The aim of the IACT framework is to
determine modulated reactions for metabolite-centric and reaction-centric approaches as
well as for the gene-centric approach. The approaches are dependent on the restrictions for
the lower and upper bounds vLB,TR

f /b,i and vUB,TR
f /b,i of the ith modulated reactions in the inner

optimization problem. The restrictions on the bounds are discussed in Supplementary
Materials (Figure S2).

Figure 2. Work flowchart for identifying anticancer target framework. (A) Tissue-specific genome-
scale metabolic models of cancerous (CA) and normal (BL) cells were reconstructed through biological
data. (B) Flux distribution patterns for cancer tissue can be provided from clinical data if available;
otherwise the template can be computed through FBA and UFD problem without considered dys-
regulated restriction. (C) Flux distribution patterns for normal tissue can be provided from clinical
data if available; otherwise the template can be computed through FBA and UFD problem without
considered dysregulated restriction. (D) A set of anticancer targets are identified by the nest hybrid
differential algorithm (NHDE), and provided to compute the flux distributions for each cancer
treatment. (E) The same targets are provided to compute the perturbated flux distributions of normal
cell during treatment. (F) Using cancer cell growth rate, cell mortality is evaluated. (G) Using mem-
bership function, cancer template and perturbated fluxes are used to compute dissimilarity grade.
(H) Cell viability of perturbed cell is computed using ATP synthesis and cell growth rate. (I) Using
membership function, normal template and perturbated fluxes are used to compute similarity grade.
(J) The four-objective grades are used to evaluate fitness for making decision in the NHDE algorithm.
(K) The next anticancer targets are generated in the NHDE algorithm if the fitness is unsatifactory,
and repeat the procedures. (L) The optimal targets are obtained if the fitness is satisfactory.
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Table 1. Optimization framework for IACT by evaluating the performance of identified targets
according to four objectives.

Objectives in the outer optimization problem

1. The first objective is to measure the mortality of treated cancer cells.
2. The second objective is to obtain superior cell viability of normal cells in cancer treatment.
3. The third objective is to keep the metabolic deviation of perturbed cells as dissimilar as

possible to the cancer template.
4. The fourth objective is to keep the metabolic deviation of perturbed cells as similar as

possible to the normal template.
subject to the constraint-based models in the inner optimization problems

1. FBA and UFD problems for treated cancer cells.
2. FBA and UFD problems for perturbation of normal cells due to cancer treatment.

2.3. Hierarchical Fitness in Outer Optimization

The IACT framework (Table 1) is expressed as a fuzzy multiobjective optimization
problem (i.e., a hierarchical optimization problem). A bilevel optimization problem is a
simple hierarchical optimization problem that converts the inner optimization problem
into constraints in its outer-level problem by using duality theory. However, the inner
problems in Equation (1) include two loops that are difficult to convert to constraints in the
outer problem. The nested hybrid differential evolution (NHDE) algorithm was applied to
predict oncogenes of various cancers [41,42]. This study extends the NHDE to solve the
IACT problem. The computational procedures are presented in Supplementary Materials
(Figure S3) and the implementation code in the GAMS (General Algebraic Modeling
System) modeling language can be downloaded from https://chopin.ccu.edu.tw/?link=38
a8SPuu6p (accessed on 1 July 2021). The outer optimization problem consists of three fuzzy
goals and one crisp goal as shown in detail in Supplementary Materials (Figure S1). In
fuzzy set theory [52], fuzzy objectives can be attributed membership functions to convert
the objectives into decision criteria and thus convert the fuzzy optimization problem into a
maximizing decision-making problem [50].

A linear membership grade was applied to normalize each objective between zero
and one; thus, the multiobjective functions were converted to a hierarchical fitness function
for evaluating the fitness of the NHDE algorithm. The definition and computation for
each membership grade are described in Supplementary Materials (Figure S1), and the
hierarchical fitness function is defined as follows:

ηD =
ηCV + min(ηCV , ηDV)

2
(2)

where the first priority grade ηCV in the hierarchical fitness is the membership grade for
the cell growth rates of the treated and perturbed cells. This grade is computed by the
mean-min evaluation for both cells as follows:

ηCV =

ηTR
CV+ηPB

CV
2 + min(ηTR

CV , ηPB
CV)

2
(3)

where the membership grade ηTR
CV is the measure of the mortality of cancer cells in response

to treatment, and the membership grade ηPB
CV is an evaluation of cell viability for normal

cells perturbed by treatment. This evaluation assesses the minimization of cell growth and
maximization of ATP production for the perturbed cells and is computed by the mean-min
evaluation of both grades as follows:

ηPB
CV =

ηPB
biomass+ηPB

ATP
2 + min(ηPB

biomass, ηPB
ATP)

2
(4)

https://chopin.ccu.edu.tw/?link=38a8SPuu6p
https://chopin.ccu.edu.tw/?link=38a8SPuu6p
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where ηPB
biomass and ηPB

ATP are the membership grades for the cell growth and ATP production
of perturbed cells, respectively.

The second priority grade ηDV in the hierarchical fitness function is used to evaluate
metabolic deviations of the perturbed cells (the third and fourth goals of the framework)
by using the following mean-min evaluation:

ηDV =

ηSF+ηSM+ηLF+ηLM+ηv+ηM
6 + min(ηSF , ηSM , ηLF , ηLM , ηv, ηM)

2
(5)

where the membership grades ηSF , ηSM , ηLF , and ηLM of the third goal are used to evaluate
the maximization of the differences in the flux patterns of perturbed cells compared with
templates generated from cancer and normal cells. The membership grades ηv and ηM
of the fourth goal are used to measure the maximization of the flux and metabolite-flow
similarities between perturbed cells and their normal counterparts. A higher membership
grade for metabolic deviation implies a smaller metabolic perturbation due to treatment.
The membership grade of side effects ηSE is defined as follows:

ηSE =

ηPB
CV+ηDV

2 + min(ηPB
CV , ηDV)

2
(6)

This membership grade was used to evaluate the metabolic deviation of the perturbed cells
from templates generated from cancer and normal cells.

2.4. Factor Analysis

Log2 fold changes of all metabolite-flows for each perturbation (denoted as PB) to the
normal (BL) state, and the template at cancer (CA) and normal states were described in
Supplementary Materials (Figure S1), and thus, Perturbation:La

M,m = log2

(
rPBa

m
rBL

m

)
, m ∈ Ωm, a ∈ Ωa

Template:LT
M,m = log2

(
rCA

m
rBL

m

) (7)

where Ωm is the set of metabolites in a GSMN, Ωa is the set of identified anticancer targets,
and the metabolite-flow rates rPB/CA/BL

m of the mth metabolite in each perturbation, cancer,
and normal states were computed as follows:

rPB/CA/BL
m = ∑

i∈Ωc

 ∑
Nij>0,j

Nijv
PB/CA/BL
f ,j − ∑

Nij<0,j
Nijv

PB/CA/BL
b,j

, m ∈ Ωm (8)

Ωc is the set of metabolites located in different compartments of the cell. The expression
enclosed in brackets in Equation (8) indicates the synthesis rate of the ith metabolite
calculated by summing the influxes of the forward and backward reactions. Iterated
principal factor analysis by using an orthogonal quartimax rotation method in SAS software
(https://www.sas.com/, accessed on 1 July 2020) was used to analyze the log2 fold changes
(LT

M,m, La
M,m; a ∈ Ωa) of the template and all perturbations.

3. Results and Discussion
3.1. Reconstruction of Healthy and Cancerous Models

The GSMN of Recon 3D consisted of 5835 species, 10,600 reactions, and 2248 associated
genes. We retrieved RNA-Seq data of 41 healthy colorectal samples with FPKM-UQ
normalized expression value and 478 colon adenocarcinoma samples with different TCGA
barcode from the TCGA database to reconstruct tissue-specific GSMNs for healthy (HT)
and cancer (CA) states. The CORDA algorithm was used to reconstruct the HT and CA
colorectal models. The HT model comprised 3742 species, 6023 reactions, and 1934 genes,
and the CA model comprised 4402 species, 7027 reactions, and 1920 genes. Both models

https://www.sas.com/
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were merged into the basal (BL) or normal model that was the union set of the HT and CA
models and included 4541 species, 7453 reactions, and 1986 genes. The numbers listed in
the overlapping regions of Figure 3 denote the number of identical species, reactions, and
genes for the HT and CA models.

Figure 3. Comparison of metabolic network data between HT and CA models. Statistics of cancer
(CA) and healthy (HT) reconstructed metabolic models. The basal (BL) model is the union set of the
CA and HT models.

3.2. Gene-Centric Approach

The NHDE algorithm [41,42] was first applied to solve the IACT problem by using a
gene-centric approach to identify optimal targets. The NHDE algorithm determined a set of
one-target genes having the highest hierarchical fitness among 1934 candidates and the best
20 target genes, as shown in Table 2. The determined 17 out of 20 target genes are the same
genes predicted by using the NCI-60 cancer cell lines [16]. This study identified three new
targets genes CRLS1, PGS1 and ADSS2 for treatment. We downloaded the dataset of can-
cer cell lines from the Cancer Dependency Map (DepMap, https://depmap.org/portal/,
accessed on 1 July 2020), and 51 colon cancer cell lines from the dataset (2021Q1 version)
were collected. Surveying the dataset, we observed that most of the target genes could
cause cell death for a high percentage of colon cancer cell lines except for EBP, LSS, and
NSDHL. These genes participate in the cholesterol biosynthesis III pathway. Using the
STRING database (https://string-db.org/, accessed on 1 July 2020) and a Markov cluster-
ing method, we classified these gene-encoded enzymes into four classes of protein-protein
interaction (PPI) (Figure 4A) that participate in the sphingolipid, glycerophospholipid,
nucleotide, cholesterol biosynthesis, and pentose phosphate pathways.

Figure 4. Protein-protein interactions. Protein-protein interactions of identified (A) one-target
anticancer genes and (B) two-target combinations. MCL clustering in the STRING database was
applied to classify one-target enzymes into four classes and two-target enzymes to five classes. The
first class contained nine enzymes in terpenoid backbone biosynthesis, the second class included five
enzymes in metabolism of nucleotides, the third class had four enzymes in sphingolipid metabolism,
and the fourth class included two enzymes in glycerophospholipid biosynthetic pathway. For the
one-target case, RPIA in the pentose phosphate pathway was categorized in the first class, but that
in the two-target case was considered to participate in glycosaminoglycan metabolism or central
carbon metabolism.

https://depmap.org/portal/
https://string-db.org/
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Table 2. Top 20 one-target genes obtained using the IACT framework. SPTLC1/2/3 is a complex of serine palmitoyltransferase
constructed by SPTLC1, SPTLC2, and SPTLC3. Other genes each encode for a single enzyme, as shown in the abbreviations
section. The symbol (–) denotes that data are unavailable.

Gene ηCV
† ηDV

‡ ηSE
§ N/D [ nDrugs \ Ave. AE ] Pathway ¶

HMGCR 0.719 0.675 0.637 50/51 20 8.77 Cholesterol Biosynthesis, Statin Pathway,
Mevalonate Pathway

MVK 0.719 0.669 0.636 50/51 1 – Mevalonate Pathway, Regulation of
Cholesterol Biosynthesis By SREBP

MVD 0.719 0.669 0.636 48/51 – – Mevalonate Pathway, Regulation of
Cholesterol Biosynthesis By SREBP

PMVK 0.719 0.669 0.636 23/51 – – Mevalonate Pathway, Regulation of
Cholesterol Biosynthesis By SREBP

SQLE 0.719 0.672 0.637 3/51 4 6.73 Cholesterol Biosynthesis III, Statin Pathway
FDFT1 0.719 0.674 0.637 8/51 1 – Cholesterol Biosynthesis III, Statin Pathway

EBP 0.719 0.674 0.637 0/51 1 8.94 Cholesterol Biosynthesis III
LSS 0.719 0.672 0.637 0/51 2 – Cholesterol Biosynthesis III

NSDHL 0.719 0.674 0.637 0/51 1 – Cholesterol Biosynthesis III
SPTLC1/2/3 0.719 0.670 0.636 37/51 2 – Sphingolipid Metabolism

KDSR 0.719 0.670 0.636 6/51 – – Sphingolipid Metabolism
CRLS1 0.719 0.669 0.636 38/51 – – Glycerophospholipid Biosynthesis
PGS1 0.719 0.448 0.492 50/51 – – Glycerophospholipid Biosynthesis

PTDSS1 1.0 0.303 0.477 8/51 1 – Glycerophospholipid Biosynthesis

ADSL 0.719 0.669 0.636 49/51 – – Metabolism of Nucleotides, Purine
Metabolism

ADSS2 0.719 0.669 0.636 37/51 3 – Metabolism of Nucleotides, Purine
Metabolism

UMPS 0.719 0.655 0.632 29/51 2 9.82 Metabolism of Nucleotides, Pyrimidine
Biosynthesis

DHODH 0.719 0.448 0.492 19/51 26 10.04 Metabolism of Nucleotides, Pyrimidine
Biosynthesis

CAD 0.719 0.669 0.636 27/51 3 8.9 Metabolism of Nucleotides, Pyrimidine
Biosynthesis

RPIA 0.719 0.675 0.637 6/51 1 – Pentose Phosphate Pathway
† Cell viability grade as evaluated from cancer cell treatment and the perturbations of normal cells due to treatment; ‡ Metabolic deviation
grade indicating the perturbance of the cellular flux patterns as measured by dissimilarity to the cancer template and similarity to the
basal template; § Side effect grade. A higher ηSE indicates fewer predicted side effects; [ The cell death number (N) divided by the total
number of colon cancer cells (D) used for the test from DepMap; \ The number of drugs retrieved from DrugBank that modulate each gene;
] Average grade of adverse events for drugs acting on an identified gene; ¶ Accessed from GeneCards.

On the basis of this computation, we found that cancer cells died (cell growth
rate ≤ 10−10) for each one-target gene treatment and that although the growth of nor-
mal cells was nearly zero, the ATP production rate was 63% of the maximum level. The
cell viability grade ηPB

CV for each perturbed cell was 0.625. Thus, the cell viability grade for
treated and perturbed cells reached 0.719. However, the metabolic deviation grades ηDV of
these genes were greater than 0.65, except for that of PGS1, PTDSS1, and DHODH, which
were less than 0.448. Therefore, side effect grades ηSE for PGS1, PTDSS1, and DHODH
were lower than those of other genes. A lower ηSE implies more side effects, that is, the
normal cells have a higher chance of tumorigenesis or significant metabolic perturbation
due to the treatment.

The NHDE is a genetic algorithm that can obtain and rank targets with higher grade.
We used two groups of candidates in the algorithm to identify multiple targets for reducing
computational burden. The first candidate group includes 20 identified targets in Table 2,
and the second group includes the other candidate genes. We performed a series of
computations to obtain a set of two-target combinations and determine their optimal grades
as shown in Figure 5. For each combination, cancer cells died and the ATP production
rate of the perturbed cells was greater than 95%. Thus, cell viability grades were greater
than 0.944 for all treatments except for combinations including PCK1 (Figure 5). Most
metabolic deviation grades ηDV improved by approximately 5% compared with similar
single-target treatments. All combinations with PCK1 achieved cell viability grades of at
least 0.67. These results demonstrate that cell viability grade can be reduced to improve
metabolic deviation and reduce side effects. We used the identified enzyme-encoding genes
to investigate the PPI network (Figure 4B) by using the STRING database. The PPI network
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has five classes of interaction that are similar to interactions of the one-target enzymes. We
observed that treatment predictions were superior for two-target combinations that had
one target involved in glycosaminoglycan metabolism or central carbon metabolism, and
the other target involved in any of the cholesterol, sphingolipid, glycerophospholipid, or
nucleotide pathways. The gene-encoded enzyme PTDSS1 combined with any one target
in central carbon metabolism does not have better performance than one-target inhibitors
did (Figure 5). We found the two-target combination of PTDSS1 and PTDSS2 increase
metabolic deviation grade to 0.674 (or side effect grade of 0.676), but decrease cell viability
grade to 0.762. We also identified a three-target combination (PTDSS1, PTDSS2, and ENO1)
with cell variability grade of 0.953, metabolic deviation grade of 0.689, and side effect
grade of 0.751. The side effect grade for the three-target combination has been a significant
improvement, and the performance of treatment is nearly identical to those of two-targets
shown in Figure 5.

Figure 5. Membership grades for two-target combinations. Membership grades of cell viability (ηCV ),
metabolic deviation (ηDV), and side effect (ηSE) for two-target combinations of anticancer enzymes
for colon cancer treatment. Cancer cell cytotoxicity was observed for each treatment. Therefore, the
cell viability grade represents the cell growth viability of normal cells during treatment. Higher
metabolic deviation grades indicate that the flux pattern of the perturbed cells was more dissimilar
to the cancer template and more similar to the normal template. Higher side effect grades indicate
fewer side effects. The numbers of drugs identified from DrugBank acting on each first target are
shown in Table 2. The numbers of drugs acting on second targets are listed in brackets as follows:
GAPDH (7), PGK1 (6), ENO1 (6), RPIA (1), BPGM (Not Available), and PCK1 (6). Error bar around
each estimate was obtained through ten repeated executions.
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The metabolic pathway modulated by the identified genes is shown in Figure 6.
These identified genes could be modulated by many drugs from DrugBank [53]. Of the
drugs retrieved from DrugBank, 26 act on DHODH and 20 act on HMG-CoA reductase
(HMGCR) (Table 2). DHODH catalyzes the oxidation of dihydroorotate (dhor-S) to orotate
(orot) by using ubiquinone as an electron acceptor. Orotate is then catalyzed by uridine
monophosphate synthetase (UMPS) to generate uridine monophosphate (ump), which is
essential for the de novo production of pyrimidines for RNA and DNA replication. UMPS
was also identified by the IACT framework as shown in Table 2. Both DHODH and UMPS
inhibition may be effective for treating CRC [54,55]. Some literature has suggested that
DHODH can be used to treat other diseases such as small-cell lung cancer [56], acute
myeloid leukemia [57], and autoimmune diseases [58]. On the basis of the computation,
we observed that DHODH achieved a lower side effect grade (ηSE = 0.492), implying
that normal cells are more likely to undergo tumorigenesis or have significant metabolic
perturbation due to the treatment.

Figure 6. Mean fold changes of metabolite-flows for perturbed cases and the template. The log2
fold changes of metabolite-flows for the identified targets in (A) the first group and (B) the second
group. The identified gene-encoding enzymes are represented in red. The identified antimetabolites
are presented in gray. The values in yellow boxes denote log2 fold changes of metabolite-flows
log2(r

CA
m /rBL

m ) for the template, whereas the green box displays log2(r
MUa
m /rBL

m ) for each perturbation.
A positive value indicates that the metabolite-flow of cancer cells or the perturbation is higher than
basal. A negative value represents lower flow.

DHODH was acted on by 26 drugs surveyed from DrugBank. Table 2 lists the number
of available drugs for the identified one-target inhibitors. These drugs were used to investi-
gate the grades of the adverse events by using a SIDER survey (http://sideeffects.embl.de/,
accessed on 1 July 2020) and the ADDReSS (http://www.bio-add.org/ADReCS/, accessed
on 1 July 2020) databases. The National Cancer Institute Common Terminology Criteria
for Adverse Events (CTCAE) provide unique clinical descriptions of severity for adverse
events (AE) from mild to death graded on a scale from 1 to 5. The average grade for each
drug determined by using the CTCAE is shown in Supplementary Materials (Table S1). Of
the 26 drugs acting on DHODH, 3 (leflunomide, atovaquone, and teriflunomide) have AE
grades. The overall average AE grade was at most 10.04 (Table 2). This trend was consistent
with the smaller computed ηSE implying higher flux and metabolite-flow perturbations.
Eight drugs (Supplementary Materials, Table S2) acting on HMGCR had an overall average
AE grade of 8.77. The computed ηSE was 0.637 for this target.

Two-target inhibitors, DHODH and PCK1, have been investigated as metabolic thera-
peutic targets for the treatment of CRC metastatic progression [55]. The IACT framework

http://sideeffects.embl.de/
http://www.bio-add.org/ADReCS/
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was applied to investigate the performance of the two-target enzymes in inhibiting treat-
ments and to obtain a superior side effect grade (ηSE = 0.634), as shown in Figure 5.
This side effect grade improved by approximately 29% compared with that of one-target
DHODH. However, the PCK1 treatment was unable to inhibit cancer cell proliferation
according to the computations. PCK1 combined with the other genes such as UMPS was
also evaluated and found to have better grades (Figure 5).

As discussed previously, PCK1 could improve reaction synergism and catalyze the
reversible decarboxylation and phosphorylation of oxaloacetate (oaa) to produce phos-
phoenolpyruvate (pep), as shown in Figure 6. The metabolite pep is also produced by the
conversion of 2-phosphoglycerate (2pg) catalyzed byα-enolase (ENO1). From Figure 5,
we observed that two-target inhibition of DHODH and ENO1 had higher cell viability
and metabolic deviation grades than the two-target inhibition of DHODH and PCK1 did.
Combinations targeting ENO1 and the one-target genes in Table 2 also have higher grades.
The identified target enzymes (e.g., GAPDH, PGK1, BPGM, and RPIA) involved in central
carbon metabolism had similar results.

HMGCR, encoded by HMGCR, is a rate-controlling enzyme of the mevalonate path-
way producing cholesterol and other isoprenoids (Figure 6). A total of 20 drugs targeting
the enzyme HMGCR were retrieved from DrugBank. Cholesterol-lowering drugs targeting
HMGCR are widely available and collectively known as statins. HMGCR has been inves-
tigated as an anticancer target for the clinical treatment of CRC, breast cancer, and other
cancers [59–62]. Computations revealed that the one-target inhibitor could cause cancer cell
toxicity and had a membership grade of 0.719 (Table 2). Two-target combinations targeting
HMGCR and an enzyme participating in the central carbon metabolism (Figure 5) achieved
higher cell viability grades (ηCV > 0.94) than did HMGCR one-target treatments. Moreover,
three enzymes (MVK, MVD, and PMVK) participating in the mevalonate pathway could
block cancer cell growth, and treatments targeting these enzymes could achieve results
approaching that of those targeting HMGCR.

3.3. Metabolite-Centric Approach

The IACT framework was also used for a metabolite-centric approach for identifying
antimetabolites. One-target antimetabolites and two-target antimetabolites for treatment of
CRC were determined as shown in Table 3 and Figure 7, respectively. HMGCR catalyzes
the conversion of hydroxymethylglutaryl coenzyme A (hmgccoa) to mevalonate (mev-R)-a
necessary step in the biosynthesis of cholesterol (Figure 6). A cell viability grade greater
than 0.71 and metabolic deviation grade greater than 0.66 could be achieved with a side
effect grade of 0.63 by blocking either metabolite (hmgcoa or mev-R) (Table 3).

Table 3. Membership grades of cell viability (ηCV), metabolic deviation (ηDV), and side effect (ηSE) for the top 10 one-target
antimetabolites determined by the IACT framework.

Metabolite Symbol ηCV ηDV ηSE Subclass

Hydroxymethylglutaryl
Coenzyme A hmgcoa 0.712 0.668 0.636 Fatty acyl thioesters

Mevalonate mev-R 0.719 0.674 0.637 Fatty acids and conjugates

Orotate orotsumpplementation 0.718 0.673 0.637 Pyrimidines and pyrimidine
derivatives

Deoxythymidine-5′-
Phosphate dtmp 0.719 0.665 0.635 Pyrimidine deoxyribonucleotides

Uridine-5′-Monophosphate ump 0.701 0.67 0.626 Pyrimidine ribonucleoside
monophosphates

Phosphatidylethanolamine pe-hs 0.795 0.691 0.7 Glycerophospholipids
L-Glutamate glu-L 0.783 0.663 0.675 Amino acid
L-Serine ser-L 0.789 0.656 0.672 Amino acid

N-Acylsphingosine crm-hs 0.75 0.664 0.665 The parent compounds of the
ceramide family

Sphingomyelin sphmyln-hs 0.75 0.655 0.658 Phosphosphingolipids, fatty acyl
group
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The metabolites orot, dtmp, and ump are nucleotides participating in the pyrimidine
biosynthetic pathway of DNA synthesis. If these metabolites were inhibited, grades of
0.7, 0.66, and 0.63, were achieved for cell viability, metabolic deviation, and side effects,
respectively. The results were nearly identical to those obtained using the gene-centric
approaches (Table 2 and Figure 6). We also determined other one-target metabolites achiev-
ing satisfactory grades for cellular viability and side effects (Table 3). These metabolites
included glu-L and ser-L in amino acids, pe-hs in a class of glycerophospholipids, and
crm-hs and sphmyln-hs in the ceramide and sphingolipid families, respectively. Serine is a
precursor for numerous other metabolites, including sphmyln-hs and folate (fol), and is
the principal donor of one-carbon fragments in biosynthesis. Serine is also important in
metabolism in that it participates in the biosynthesis of purines and pyrimidines. In this
study, these antimetabolites were identified by the IACT framework, as displayed with
gray symbols in Figure 6.

Figure 7. Membership grades for two-target combinations of antimetabolites. Membership grades of
cell viability (ηCV), metabolic deviation (ηDV), and side effect (ηSE) for two-target combinations of
antimetabolites for colon cancer treatment. Cancer cell cytotoxicity was observed for each treatment.
Inhibition of two-target antimetabolites (except folate enhancement) improved membership grades
compared with one-target counterparts. Glutamate combined with the metabolites in the central
carbon metabolism such as g3p, 3pg, 2pg, pep, and pyr had the highest grades. Error bar around
each estimate was obtained through ten repeated executions.
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Although DHODH inhibition could cause cancer cell toxicity, worse side effects were
predicted. Targeting DHODH and either PCK1 or ENO1 could improve efficacy. DHODH
inhibition blocks orotate (orot) production, whereas PCK1 and ENO1 produce pep. Two-
target antimetabolite inhibition achieved grades of 0.936, 0.695, and 0.751 for cell viability,
metabolic deviation, and side effects, respectively (Figure 7). These grades were nearly
equal to those of the two-target enzyme inhibition for DHODH and ENO1 but superior
than those for DHODH and PCK1. Statins, also known as HMGCR inhibitors, are drugs
that block the conversion of mev-R to hmgcoa and thereby inhibiting cholesterol synthesis.
We found that the two-target combinations of hmgcoa or mev-R with a metabolite in the
central carbon metabolism such as g3p, 3pg, 2pg, pep, or pyr could be applied to treat
CRC satisfactorily (Figure 7). From the data displayed in Figure 7, we identified various
two-target antimetabolite combinations and observed that the highest grades were for
treatments targeting glu-L with central carbon metabolism metabolites such as g3p, 3pg,
2pg, pep, and pyr.

To verify the performance of the IACT framework, we evaluated cell viability and
side effect grades of perturbation for normal cells treated with a clinical anticancer drug,
5-fluorouracil (5-FU). 5-FU is an antimetabolite drug commonly used for the treatment
of CRC [63]. The drug inhibits the biosynthesis of dtmp (Figure 6) by acting on a key
enzyme, thymidylate synthetase (TYMS). We used IACT for dtmp synthesis inhibition and
computed a cell viability grade of 0.719 and a metabolic deviation grade of 0.665. We also
evaluated two-target metabolite combination of dtmp and fol and found that inhibiting
dtmp and enhancing fol synthesis achieved a cell viability grade of 0.978 but reduced the
metabolic deviation grade to 0.597 (Figure 7). However, the side effect grade increased
to 0.678. The reduction of ηDV was consistent with observations in review articles [63,64].
To increase the anticancer activity of 5-FU, a modulation cotreatment with leucovorin
to enhance intracellular levels of folate has been used [64–66]. This strategy has been
demonstrated to increase the in vitro and in vivo toxicity of 5-FU for numerous cancer cell
lines [67–69].

Although folate is a substrate for DNA synthesis in cell cycle S phase, the combi-
nation of folate and 5-FU results in synthetic anti-cancer effects due to the shift in the
dump/dtmp metabolism and sensitization of 5-FU cytotoxicity. Such metabolism repro-
gramming can be predicted from our model. In clinical trial for CRC patients, similar
results can also be observed especially in 5-FU continuous infusion which enhancing
thymidylate synthase inhibition. The combination regimen of 5-FU/folinic acid increased
anti-tumor effects without increasing toxicities while 5-FU was continuously infused. In
EORTC40952 clinical trial for untreated metastatic CRC patients, Köhne et al. [70] showed
significantly longer progression free survival in 5-FU continuous infusion plus leucovorin
group (5.6 months vs. continuous 5-FU alone 4.1 months vs. bolus 5-FU plus leucovorin
4.0 months, p = 0.029) and similar stomatitis was observed between continuous 5-FU plus
leucovorin (5%) and continuous 5-FU alone (3%), while especially high in 5-FU bolus plus
leucovorin group (11%).

3.4. Factor Loading of Identified Targets

The log2 fold changes of metabolite-flows were used to form a 1478× 201 matrix that
excluded unchanged flows and included the identified anticancer target genes, identified
antimetabolites, and the template. The matrix data were analyzed through factor analysis
to obtain nine factors and their associated factor loadings as listed in Supplementary
Materials (Table S3). The key concept of factor analysis is that multiple observed variables
have similar response patterns because they are all associated with a latent (i.e., not
directly measured) variable. According to the analysis, the first and second factor loadings
(Figure 8) were 64.19% and 19.32%, respectively. Therefore, these two factors could explain
the key flux alterations for perturbations. The first group around Factor 1 displayed in the
red circle of Figure 8 contained 117 anticancer target genes and antimetabolites from the
two-target combinations and three-target combination of (PTDSS1, PTDSS2, ENO1). The
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flux alternations for genes in the first group (Supplementary Materials, Table S3) are very
similar, because the values of cell viability grades, metabolic deviation grades, and side
effect grades (Figures 5 and 7) of all genes in the group are close to each other. The mean fold
changes of metabolite-flows for the first group are displayed in the green boxes of Figure 6A.
We observed that the metabolite-flows in the central carbon pathway were reduced in
comparison with others. By contrast, the template increased as indicated in the yellow boxes
of Figure 6A. The key metabolic reprogramming in cancer cells is rapid glucose metabolism
to pyruvate, which is then largely converted to lactate. Glutamine is then replenished by
the TCA cycle for proliferation requirement [14,15]. From Figure 6A, we observed that
the flux alterations of the template coincide with the metabolic reprogramming of cancer
progression. Moreover, the fold changes of metabolite-flows for the perturbed cells were
different from the template.

Figure 8. Membership grades for two-target combinations. First and second factor loadings of the
identified anticancer target genes and antimetabolites. The template is the green dot. The first group
around Factor 1 in the red circle contained 116 two-target combinations and a three combination
of (PTDSS1, PTDSS2, ENO1) comprising anticancer target genes and antimetabolites. The second
group around Factor 2 contained 42 anticancer target genes and antimetabolites. Half of these were
two-target combinations. These two-target combinations included the enzyme PCK1.

The second group around Factor 2 contained 42 anticancer target genes and an-
timetabolites. Half of these were from two-target combinations. These two-target combina-
tions involved the enzyme PCK1. The mean fold changes of metabolite-flow for the second
group (Figure 6B) are little different from the results for the first group. Furthermore, the
factor loadings could explain relationship with the membership grades for the identified tar-
gets. The factor loadings for PTDSS1, (PTDSS1, PTDSS2), and (PTDSS1, PTDSS2, ENO1) are
shown by red dots in Figure 8. The identified targets have different cell viability, metabolic
deviation, and side effect grades. The grades of the three-target combinations were very
close to those of the others in the first group. Moreover, the grades for HMGCR (Table 2) are
different to those (Figure 5) of the two-target combination (HMGCR, ENO1), so that they
are separated into two groups in Figure 8. This result indicates that the log2 fold changes
of metabolite-flows for HMGCR can be discriminated from those of (HMGCR, ENO1).

4. Conclusions

A TLOP was designed to identify anticancer targets for the treatment of colon cancer.
This IACT framework was applied to not only determine gene regulator drug targets but
also discover metabolite- and reaction-centric targets. For the gene-centric approach, we
determined one-target-gene-encoding enzymes that participate in the sphingolipid, glyc-
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erophospholipid, nucleotide, cholesterol biosynthesis, and pentose phosphate pathways.
For two-target treatments, combinations of any of the one-target inhibitors and an enzyme
(e.g., GAPDH, PGK1, ENO1, RPIA, BPGM, or PCK1) in the central carbon metabolism
achieved better performance than one-target inhibitors did. For the metabolite-centric
approach, 10 one-target metabolites (two fatty acids, three nucleotides, two amino acids,
two sphingolipids, and one glycerophospholipid) were determined. These targets had
nearly identical cell viability and side effects compared with those of one-target enzymes.
To examine the performance of the IACT framework, cellular viability and side effects due
to metabolic perturbation of normal cells after treatment with a clinical antimetabolite drug
(5-FU) were investigated using the model. The computational results were consistent with
5-FU inhibiting dtmp synthesis to block cancer cell proliferation and with folate supple-
mentation improving cell viability, slightly reducing metabolic deviation, and reducing
side effects in comparison with the one-target 5-FU treatment [64–66]. These computational
results are supported by in vitro experimental observations.
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10.3390/biology10111115/s1, Figure S1: The mathematical formulation of the outer optimization
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Table S1: Average AE grades for drugs acting on DHODH, Table S2: Average AE grades for drugs
acting on HMGCR, Table S3: The log2 fold changes of metabolite-flows for the template, identified
anticancer target genes, and identified antimetabolites.

Author Contributions: Conceptualization, F.-S.W.; Data curation, C.-T.C., T.-Y.W. and P.-R.C.; Formal
analysis, C.-T.C., T.-Y.W. and P.-R.C.; Funding acquisition, C.-Y.F.H. and F.-S.W.; Investigation, J.-M.L.
and Y.-R.H.; Methodology, W.-H.W.; Project administration, F.-S.W.; Resources, P.M.-H.C. and C.-
Y.F.H.; Software, W.-H.W. and F.-S.W.; Supervision, F.-S.W.; Validation, J.-M.L., P.M.-H.C. and Y.-R.H.;
Visualization, C.-T.C., T.-Y.W. and P.-R.C.; Writing—original draft, F.-S.W.; Writing—review & editing,
W.-H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology of Taiwan (Grant
MOST109-2320-B-030-007 to JML, MOST109-2320-B-075-003 to PMHC, MOST109-2320-B-010-026 to
CYFH, MOST109-2320-B-037-032 and MOST109-2320-B-037-012 to YRH, and MOST109-2320-B-194-
003 to FSW).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
Symbol Enzyme
ADSL Adenylosuccinate lyase
ADSS2 Adenylosuccinate synthetase isozyme 2
BPGM Bisphosphoglycerate mutase
CAD CAD protein
CRLS1 Cardiolipin synthase (CMP-forming)
DHODH Dihydroorotate dehydrogenase (quinone)
EBP 3-β-hydroxysteroid-δ(8),δ(7)-isomerase
ENO1 α-enolase
FDFT1 Squalene synthase
G6PD Glucose-6-phosphate 1-dehydrogenase
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
H6PD GDH/6PGL endoplasmic bifunctional protein
HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase
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KDSR 3-ketodihydrosphingosine reductase
LSS Lanosterol synthase
MVD Diphosphomevalonate decarboxylase
MVK Mevalonate kinase
NSDHL Sterol-4-alpha-carboxylate 3-dehydrogenase
PCK1 Phosphoenolpyruvate carboxykinase
PGK1 Phosphoglycerate kinase 1
PGS1 CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase
PMVK Phosphomevalonate kinase
PTDSS1 Phosphatidylserine synthase 1
RPIA Ribose-5-phosphate isomerase
SPTLC1/2/3 A complex of serine palmitoyltransferase
SQLE Squalene monooxygenase
UMPS Uridine 5′-monophosphate synthase
Symbol Metabolite
13dpg 3-Phospho-D-Glyceroyl Phosphate
2pg 2-Phospho-D-Glycerate
3dsphgn (2S)-1-Hydroxy-3-Oxooctadecan-2-Aminium
3pg 3-Phospho-D-Glycerate
5dpmev (R)-5-Diphosphomevalonate
5mthf 5-Methyltetrahydrofolate
5pmev (R)-5-Phosphonatomevalonate
6pgc 6-Phospho-D-Gluconate
6pgl 6-Phospho-D-Glucono-1,5-Lactone
accoa Acetyl Coenzyme A
ach Acetylcholine
akg 2-Oxoglutarate
amet S-Adenosyl-L-Methionine
amp Adenosine Monophosphate
betald Betaine Aldehyde
cdpdag-hs Cytidine-5′-Diphosphate-Diacylglycerol
chol Choline
cit Citrate
clpn-hs Cardiolipin
crm-hs N-Acylsphingosine
ctp Cytidine-5′-Triphosphate
dhap Dihydroxyacetone Phosphate
dhcrm-hs Dihydroceramide
dhf 7,8-Dihydrofolate
dhor-S (S)-Dihydroorotate
dmgly N,N-Dimethylglycine
dtdp Deoxythymidine-5′-Diphosphate
dtmp Deoxythymidine-5′-Phosphate
dttp Deoxythymidine-5′-Triphosphate
dudp Deoxyuridine-5′-Diphosphate
dump Deoxyuridine-5′-Monophosphate
dutp Deoxyuridine-5′-Triphosphate
f6p D-Fructose 6-Phosphate
fdp D-Fructose 1,6-Bisphosphate
fol Folate
g1p D-Glucose 1-Phosphate
g3p Glyceraldehyde 3-Phosphate
g3pc Glycerophosphocholine
g6p D-Glucose 6-Phosphate
glc-D D-glucose
gln-L L-Glutamine
glu-L L-Glutamate
gly Glycine
gmp Guanosine-5′-Monophosphate
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hmgcoa Hydroxymethylglutaryl Coenzyme A
icit Isocitric Acid
imp Inosine-5′-Monophosphate
ipdp Isopentenyl Diphosphate
maloca Malonyl Coenzyme A
met-L L-Methionine
mev-R (R)-Mevalonate
mlthf 5,10-Methylenetetrahydrofolate
oaa Oxaloacetate
orot Orotate
pa-hs Phosphatidate
pail-hs 1-Phosphatidyl-1D-Myo-Inositol
pchol-hs Phosphatidylcholine
pe-hs Phosphatidylethanolamine
pep Phosphoenolpyruvate
pglyc-hs Phosphatidylglycerol
pgp-hs Phosphatidyl Glycerol Phosphate
pmtcoa Palmitoyl Coenzyme A
prpp 5-Phospho-Alpha-D-Ribose 1-Diphosphate
ps-hs Phosphatidylserine
pyr Pyruvate
r5p Alpha-D-Ribose 5-Phosphate
ser-L L-Serine
sphmyln-hs Sphingomyelin
succoa Succinyl Coenzyme A
thf 5,6,7,8-Tetrahydrofolate
udp Uridine Diphosphate
ump Uridine-5′-Monophosphate
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