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The immunology of smallpox vaccines
Richard B Kennedy1,2, Inna G Ovsyannikova1,2,3, Robert M Jacobson1,4

and Gregory A Poland1,2,3
In spite of the eradication of smallpox over 30 years ago;

orthopox viruses such as smallpox and monkeypox remain

serious public health threats both through the possibility of

bioterrorism and the intentional release of smallpox and

through natural outbreaks of emerging infectious diseases

such as monkeypox. The eradication effort was largely made

possible by the availability of an effective vaccine based on the

immunologically cross-protective vaccinia virus. Although the

concept of vaccination dates back to the late 1800s with

Edward Jenner, it is only in the past decade that modern

immunologic tools have been applied toward deciphering

poxvirus immunity. Smallpox vaccines containing vaccinia

virus elicit strong humoral and cellular immune responses that

confer cross-protective immunity against variola virus for

decades after immunization. Recent studies have focused on:

establishing the longevity of poxvirus-specific immunity,

defining key immune epitopes targeted by T and B cells,

developing subunit-based vaccines, and developing genotypic

and phenotypic immune response profiles that predict either

vaccine response or adverse events following immunization.
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Introduction
Variola virus, the causative agent of smallpox, can be

found throughout human history and probably developed

alongside human civilization [1]. In 1798 Edward Jenner

advanced the concept of using cowpox as a prophylactic

agent against smallpox. Early practitioners used a wide
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variety of pox viruses taken from or grown on cows, sheep,

horses, goats, pigs, and buffaloes [1]. Vaccination quickly

became widespread and by the 20th century almost all

vaccines contained yet another orthopoxvirus: vaccinia

virus (VACV) [1]. In spite of its indefinite origins vaccinia

virus was the basis for extremely effective vaccines that,

together with surveillance and monitoring led to the

eradication of smallpox in 1980. Rare, but potentially

life-threatening adverse events, led to the cessation of

vaccine use among the general public, and recent vacci-

nation programs have highlighted the risk of cardiovas-

cular adverse events [2,3]. During the height of the

eradication effort in the 1960s research efforts focused

on humoral immunity, although the importance of cel-

lular responses was predicted. In fact, there are two

historical definitions of ‘protection’ that, while not

mutually exclusive, do rely on humoral and cellular

immune responses, respectively. These are (1) serum

neutralizing antibody titer > 1:32 [4] and (2) the for-

mation of a ‘take’ or vesicle at the vaccination site due

to cellular immune responses to the local infection [1].

Terrorist activities in the early 21st century as well as

imported outbreaks of monkeypox in the USA spurred

renewed interest in biodefense countermeasures for

these public health threats [5,6]. Faced with inadequate

stocks of smallpox vaccine, an outdated vaccine pro-

duction method, an increasing unvaccinated, and hence

susceptible population, as well as a growing number of

both immunosuppressed individuals and people with

vaccine contraindications (heart conditions, cancer

patients, organ transplant recipients, skin diseases such

as eczema); research efforts focused on increasing our

understanding of poxvirus immunity in order to develop

safe and effective next-generation vaccines. In this

review we will focus on the highlights of research regard-

ing the mechanisms of disease protection elicited by

smallpox vaccines.

Vaccines used during the eradication effort (Dryvax1,

APSV1, Lancy–Vaxina1, L-IVP1) are termed first-

generation vaccines (last produced in the 1970s and early

1980s) and contained live vaccinia virus administered by

puncturing the skin of the upper arm with a bifurcated

needle (Table 1). Successful administration of the

vaccine typically led to the development of a character-

istic pustule at the vaccination site. Historically the de-

velopment of this ‘take’ was considered evidence of

protection [1]. Several recent studies have demonstrated

that these live vaccines can be diluted 5–10-fold with no
www.sciencedirect.com
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Table 1

Smallpox vaccines and vaccine candidates

Vaccine Virus strain Usage Details

Dryvax1 NYCBOH Widespread use Used in US during eradication. Highly effective. Lyophilized stock.

APSV1 NYCBOH Widespread use Used in US during eradication. Highly effective. Frozen liquid preparation.

Lancy–Vaxina Lister Widespread use Used world-wide during eradication. Highly effective.

EM-63 NYCBOH Widespread use Used in Russia during eradication. Highly effective.

Temple of Heaven Tian Tian Widespread use Used in China during eradication. Highly effective. Greater number of adverse events

compared to NYCBOH and Lister vaccines.

ACAM1000 NYCBOH Clinical trials Tissue culture (MRC-5 cells). Equivalent immunogenicity to Dryvax1.

ACAM2000 NYCBOH Clinical trials Tissue culture (Vero cells). Equivalent immunogenicity to Dryvax1. FDA approved in

2008. Part of US National Stockpile.

CCSV NYCBOH Clinical trials Tissue culture vaccine. Equivalent immunogenicity to Dryvax1.

Elstree-BN Lister Clinical trials Tissue culture vaccine. Replacement for early Lister vaccines.

MVA Ankara Limited use Lost 15% of genome through serial passage in chick embryo fibroblasts. Cannot

replicate in human cells. Used in Germany with fewer adverse events. Immunogenicity

may not be equal to replication-competent vaccines.

ACAM3000 Ankara Clinical trials Next-generation MVA-based vaccine.

IMVAMUNE Ankara Clinical trials Next-generation MVA-based vaccine.

TBC-MVA Ankara Clinical trials Next-generation MVA-based vaccine.

NYVAC Copenhagen Clinical trials 18 ORFs deleted. Improved safety profile. Not widely tested. Immunogenicity may not

be equal to unattenuated live vaccines.

LC16m8 Lister Limited use Attenuated vaccine based on Lister strain. Used in Japan with good safety record.

No efficacy data. Immunogenicity may not be equal to unattenuated live vaccines.

dVV-L Lister Clinical trials Lister-based vaccine with UDG gene deleted to improve safety. No efficacy data.

Immunogenicity may not be equal to unattenuated live vaccines.

Subunit Various R&D DNA or protein-based subunit vaccines

Characteristics of common smallpox vaccines. Data for this table were compiled from several sources [1,5,9,50].
significant decreases in immunogenicity [7,8]. These

vaccines induced robust humoral immunity characterized

by high antibody titers capable of neutralizing and opso-

nizing viral particles, fixing complement, hemagglutina-

tion, as well as participating in antibody dependent cell

cytotoxicity [1,13,14�]. Similarly, these vaccines induced

strong cellular responses capable of secreting effector

cytokines such as IFNg and lysing infected cells

[1,13,25]. Together, these adaptive immune responses

cleared the localized vaccinia infection at the immuniz-

ation site and elicited long-lived memory responses

capable of recognizing and clearing subsequent variola

infections.

The second-generation vaccines, produced in the past 5–
10 years, contain replication competent viruses produced

in tissue culture and are designed as replacements for

these early vaccines [5]. These replacement vaccines

were commonly compared to Dryvax1 and were

designed to elicit similar levels of immunity [9]. Third

generation vaccine formulations have focused on attenu-

ated vaccinia strains (LC16m8, MVA, NYVAC, dVVL)

with the hope that they have better safety profiles [9] (see

Table 2 for adverse events associated with smallpox

vaccines). Next-generation vaccine development is now

focusing on a variety of subunit (protein and DNA-based)

in order to create safer, yet still efficacious smallpox

vaccines. This review will focus primarily on the immune

responses generated by first-generation and second-

generation vaccines.
www.sciencedirect.com
We focus here on adaptive immune responses due to

vaccination, but the crucial role that innate immunity

plays in poxvirus pathogenesis should not be overlooked.

Moulton et al. recently reported that mice lacking com-

ponents of the complement system suffer from increased

disease severity and mortality when challenged with

ectromelia virus (ECTV) [10�]. Poxviruses possess a

number of crucial virulence factors that act as immuno-

modulatory proteins targeting key innate pathways such

as interferons, chemokines, inflammatory cytokines,

complement, and the toll-like receptor (TLR) family

of pattern recognition receptors [11]. These innate

responses, including chemokines, inflammatory cyto-

kines, as well as pattern recognition receptors and their

associated pathways (Figure 1) initiate the more robust

adaptive immune responses, as is evidenced by a recent

report showing that TLR signaling is crucial to the de-

velopment of CD8 T cell memory following vaccinia

infection [12�].

B cell responses
Smallpox vaccine induces strong humoral responses that

play a crucial role in protection against disease [13,14�]. A

prospective study by Mack et al., found that neutralizing

serum antibody titers > 1:32 were associated with pro-

tective immunity against smallpox disease [4]. Vaccinia

Immune Globulin (VIG), prepared from serum of recent

vaccinees, prevents infection of close contacts of smallpox

victims and treats vaccine-related complications [15].

Defects in humoral immunity have severe consequences
Current Opinion in Immunology 2009, 21:314–320
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Table 2

Adverse events associated with live smallpox vaccines

Adverse event Rate of occurrence

Serious and/or life-threatening ( per million vaccinees)

Death 1–2

Postvaccinal Encephalitis 3–9

Progressive Vaccinia 1–7

Eczema Vaccinatum 2–35

Moderate ( per million vaccinees)

Generalized vaccinia 40–200

Myopericarditis 100

Accidental inoculation 100–600

Bacterial Infection Unknown

Non-infectious rashes 1–5%

Mild (these are far more common,

affecting 5–80% of vaccinees)

Itching

Fever

Lymphadenopathy

Headache

Nausea

Pain at vaccination site

Fatigue

Muscle aches

Chills

Adverse reactions noted after smallpox vaccination. Rates of occur-

rence are based on the data combined from results during the

eradication campaign as well as recent civilian and military vaccina-

tion campaigns [2,7,8].
during poxvirus infection. B cell deficient mice are unable

to clear ectromelia infection in spite of detectable levels

of anti-viral CD8+ T cell activity [16]. Similarly, a study

infecting Rhesus macaques with monkeypox virus

demonstrated that vaccinia-specific B cell responses are

essential for protection [17]. Recent data demonstrate

that vaccinia-specific antibody levels (both total IgG and

neutralizing antibody) persist for decades and that vacci-

nia-specific memory B cells are functional, maintained for

more than 50 years, and are able to mount a vigorous

antibody response upon re-vaccination with Dryvax1

[18]. Moreover, the Baltimore Longitudinal Study of
Table 3

Proteins targeted by T and B cells

Epitope typea # of Epitopes recognizedb Targ

B cell 9–15 ORFs (# of ORFs per subject not ascertained) Pred

excl

CD4+ T cell >130 ORFs (�0–20 ORFs per subject) Early

mem

CD8+ T cell >190 ORFs epitope diversity within individuals is

not well studied. Most subjects recognized more

than 1 epitope.

Pred

facto

are

Immune epitopes from VACV.
a Lymphocyte subset recognizing each group of epitopes.
b Top number represents the total # of ORFs for which epitopes have been id

antigenic recognition on a per subject basis.
c Details regarding the proteins targeted by each set of lymphocytes. Data

Immune Epitope Database and Analysis Resource (http://www.iedb.org) [3

Current Opinion in Immunology 2009, 21:314–320
Aging, using 209 individuals who had been vaccinated

as far back as 88 years prior, indicated that nearly 97% of

individuals maintain both vaccinia-specific IgG and neu-

tralizing antibodies at protection levels against smallpox

[19].

Recently, protein microarrays have been used to charac-

terize humoral immune response profiles to smallpox

vaccines [20�,21�]. These studies have shown that anti-

body responses in humans display considerable interin-

dividual variation and are directed against multiple

vaccinia virus proteins (see Table 3). The proteins tar-

geted by humoral responses are predominantly viral

structural, and membrane proteins, although responses

to core proteins and proteins expressed only in infected

cells have also been observed [22�]. Recent reports have

shown that specific antibodies against both the intracellu-

lar mature (IM) and extracellular enveloped (EE) virions

of vaccinia (and variola) are essential for optimal protec-

tive immunity induced by vaccination [23].

Newer studies of humoral immune response after small-

pox vaccination seek to identify the repertoire of anti-

genic peptides recognized by vaccinia-specific B cells.

For example, the viral B5R protein was found to be the

main target of neutralizing antibodies in VIG [24]. Clearly

defined humoral epitopes may inform development of

new vaccine candidates, antibody-based therapeutics,

and could provide further understanding regarding pro-

tection against smallpox.

T cell responses
Smallpox vaccine induces strong CD4+ and CD8+ T cell

responses that peak at two to four weeks postimmuniza-

tion and then contract to form a stable memory population

of T cells that remain detectable for decades [13,25].

Interestingly, the CD8 T cell memory population appears

to decline faster than memory CD4+ T cells [26]. It has

long been noted that defects in cellular immunity lead to

uncontrolled vaccinia infection, indicating that T cells
et protein characteristicsc

ominantly proteins with late or early/late promoters. Almost

usively membrane and core proteins

, intermediate and late proteins, predominantly structural and

brane proteins as well as DNA replication enzymes.

ominantly early proteins. Multiple functional categories (virulence

rs, viral replication enzymes, transcription factors, structural proteins)

targeted by CTL.

entified. The number(s) in parentheses indicate the extent or diversity of

collated from multiple reports identifying immune epitopes and from the

4,35,36,37�,39,40�].
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Figure 1

Immune response pathways activated by smallpox vaccines. Immunization with the smallpox vaccines elicits a cascading network of integrated

immune pathways. Non-specific innate responses activated by pattern recognition receptors serve to inhibit initial viral replication and to activate

antigen presenting cells in order to properly initiate adaptive immunity. Innate inflammatory cytokines and chemokines then attract effector

lymphocytes into infected tissues. T helper cells supply necessary cytokines (IL-4, IL-5) and costimulatory signals (CD40L) for the B cell maturation,

replication and isotype switching. T cell help (IL-2, IFNg) also promotes CTL activation, clonal expansion and effector function. VACV-specific T helper

cells can also have direct lytic activity. B cells produce antibodies that agglutinate, opsonize, and neutralize viral particles, fix complement and allow

for antibody dependent cell cytotoxicity (ADCC). Activated CD8 T cells lyse infected cells through perforin, granzymes, and through death receptors

such as FasL. Cytokine secretion (IFNg, TNFa) by T lymphocytes can also have direct antiviral activity. Together humoral and adaptive responses halt

viral replication, lyse infected cells, and remove viral particles from the host. Virus-specific lymphocyte numbers then contract to a small, long-lived

memory population capable of rapidly responding to subsequent infection with VACV and more. Electron micrograph of vaccinia virus adapted from

the Centers for Disease Control and Prevention Public Health Image Library, image #2143.

www.sciencedirect.com Current Opinion in Immunology 2009, 21:314–320
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play an important role in protection [27]. More recent

data have shown that CD4+ and CD8+ T cells can

prevent mortality in B cell deficient animals challenged

with VACV [1,28]. Viral infection of CD4 deficient mice

results in delayed viral clearance and increased

mortality [29,30]. By contrast, animals lacking CD8 T

cells are able to clear virus normally [31]. However, in

the absence of humoral immunity, CD8+ T cells can

provide partial protection [30], and immunization with a

single HLA class I restricted epitope can provide vary-

ing degrees of disease protection [32]. The data illus-

trating how effective CD8 T cell responses are in the

absence of humoral immunity greatly depend on the

animal and the virus used. Studies using VACV as a

challenge have shown that T cells are capable of delay-

ing and in some cases clearing infection, while in models

using species-specific pathogens (ECMV in mice or

MXPV in non-human primates), CD8+ T cells are far

less capable of viral clearance. The requirement for

CD4+ T cells in protection is clear-cut as robust pox-

virus-specific antibody responses fail to develop in

animals lacking CD4+ T cells [17,30]. Similarly,

CD4+ T cell help is essential for optimal CTL function

and memory formation [33].

We have recently reviewed a large number of epitope

mapping studies identifying well over 100 CD8+ T cell

targets [34]. Additional efforts to pinpoint CD4+ T cell

epitopes are underway as well [35–38].

In contrast to cellular responses to other pathogens,

VACV-specific CD4+, and CD8+ T cells recognize a

diverse array of viral proteins with no clear-cut patterns

of immunodominance. CD8+ T cell epitopes are pre-

dominantly found in early, non-structural genes and

transcription factors [39,40�]. Proteins encoded by early

genes may be synthesized and presented more effi-

ciently than those expressed late in the viral life cycle,

and CTL specific for these epitopes are more likely to

lyse infected cells before progeny virions are produced.

By contrast, CD4+ T cell epitopes are concentrated in

late, viral membrane and structural proteins as well as in

enzymes involved in viral replication, and are capable of

recognizing over 68% of viral proteins [37�]. Interest-

ingly, new evidence suggests a close linkage between B

cell and CD4+ T cell epitopes to vaccinia proteins

[41��]. Thus, viral proteins recognized by CD4+ T cells

are also likely to be targeted by humoral responses,

indicating that cognate T helper cell–B cell interactions

may be required to generate robust VACV-specific

antibody responses. Importantly, priming with CD4+

T cell epitopes can protect against lethal infection

[41]. It is logical to assume that this protective effect

may be more pronounced by the inclusion of nearby B

cell epitopes, a conclusion that may account for the

success of many subunit-based smallpox vaccines in

animal studies [23,42–44].
Current Opinion in Immunology 2009, 21:314–320
Conclusions
Smallpox vaccines induce robust T and B cell responses

that target a wide array of viral proteins and provide cross-

protective immunity against important human pathogens

such as variola and monkeypox. Recent advances in

proteome-wide immune profiling and epitope identifi-

cation have provided important information regarding

poxvirus immunology. These types of studies that allow

for deconstructing immune responses will probably be

essential to the development of safer, next-generation

vaccines and anti-viral therapies.

Another important avenue of research is in the understand-

ing of the genetic factors influencing both vaccine response

and adverse events. We have recently reported that gender

is significantly associated with variations in neutralizing

antibody titers developing after smallpox vaccination [45].

Stanley et al. have demonstrated that specific variations in

the IL-1 and IL-18 genes are associated with the devel-

opment of fever following smallpox vaccination [46]. Sim-

ilarly, Reif et al. have identified single nucleotide

polymorphisms in two genes (MTHFR, IRF1) that are

associated with development of adverse reactions to Dry-

vax1 [47]. McKinney et al. have identified patterns of

serum cytokine expression, such as granulocyte colony-

stimulating factor, stem cell factor, monokine induced by

IFN-g (CXCL9), intercellular adhesion molecule-1,

eotaxin, and tissue inhibitor of metalloproteinases-2, after

smallpox vaccination that may play a role in systemic

adverse events [48]. These studies are significant in that

a population could be screened for the presence of genetic

or phenotypic profiles that predict serious adverse events

before vaccination. One could similarly develop an

immune profile that predicts the development of protec-

tive or ineffective vaccine responses, which would allow us

to tailor more appropriate vaccination plans for these

individuals [49]. The continuation of these studies will

also improve our understanding of poxvirus pathogenesis,

and may inform newer vaccine development.
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