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Osteoarthritis (OA), one of the most common degenerative diseases, is characterized
by progressive degeneration of the articular cartilage and subchondral bone, as well as
the synovium. Integrins, comprising a family of heterodimeric transmembrane proteins
containing α subunit and β subunit, play essential roles in various physiological functions
of cells, such as cell attachment, movement, growth, differentiation, and mechanical
signal conduction. Previous studies have shown that integrin dysfunction is involved in
OA pathogenesis. This review article focuses on the roles of integrins in OA, especially
in OA cartilage, subchondral bone and the synovium. A clear understanding of these
roles may influence the future development of treatments for OA.
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INTRODUCTION

As the most common degenerative joint disease, OA can destroy both cartilage and subchondral
bones, causing progressive degeneration of the articular cartilage and subchondral bone, as well
as the synovium (Chen et al., 2017). The unique composition and structure of the cartilage
extracellular matrix (ECM) allows for the long-term load-bearing capabilities of the joint, playing
important roles in joint function. OA can affect the ECM, causing increased catabolic activity
and inflammation changes in the mechanical function of the ECM in the joint (Guilak et al.,
2018). There is evidence that metabolic changes in the ECM play an vital role in the pathological
process of OA (Rahmati et al., 2017). As participants in an integral membrane complex, integrins
play important roles in the transmembrane association, which are involved in the ECM and the
cytoskeleton interactions and take part in transmembrane signals conduction. Previous studies have
shown that integrin dysfunction is involved in OA pathogenesis. This review article focuses on the
roles of integrins in OA, especially in OA cartilage, and subchondral bone, as well as the synovium.
A clear understanding of these roles may influence the future development of treatments for OA.

WHAT ARE INTEGRINS?

Integrins, comprising a heterodimeric transmembrane protein family, contain two subunits (the α

subunit and β subunit). There are eighteen α subunits and eight β subunits. All these can combine
into twenty-four integrin molecules (Ansari and Byrareddy, 2016). The integrin molecules can
act as transmembrane receptors to bind ECM proteins, which can regulate essential physiological
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functions of cells, such as adhesion, migration, the inflammatory
response, and mechanical signal conduction. Depending on the
types of ligands, integrins can be divided into two categories:
Arg-Gly-Asp (RGD)-binding receptors and non-RGD-binding
receptors. Non-RGD binding receptors include collagen-binding
receptors, laminin-binding receptors, and leukocyte-binding
receptors (Margadant and Sonnenberg, 2010; Finney et al., 2017).
As transmembrane molecules, integrins play important roles
in the physiological function of cells. Integrins can mediate
adhesion between cells and their surroundings. Integrin-based
adhesion is formed mainly between the cytoskeleton and the
ECM. For example, lamellipodia and filopodia, the bumps
of the cell surface and cytoskeleton, can attach to the ECM
through integrin-based adhesions (Geoghegan et al., 2019). By
combining with intracellular proteins, like α-actinin, vinculin,
and paxillin, integrins can connect the inner cytoskeleton to
the ECM (Zaidel-Bar et al., 2004). Cell signaling mediated by
integrins can regulate the functions of cells, including their
matrix remodeling, adhesion, migration, and mechanical signal
conduction (Loeser, 2002). In addition, integrins, working in
concert with the cytoskeleton, can receive external mechanical
stimulation and transmit information on the mechanical status
of the ECM into the cell. As mechanical sensors, integrins
play important roles in facilitating cell movement, generating
tension on the ECM, activating intracellular signaling pathways,
and producing biological reactions (Humphries et al., 2019;
Sun et al., 2019).

More and more results showed that the dysregulated function
of integrins was implicated in OA pathogenesis. Animal
experiments showed that α4, α5, and α2 integrin expression
was increased in cartilage and that the content of proteoglycan
and fibronectin was also changed (Almonte-Becerril et al.,
2014). High levels of α1β1 and α3β1 were detected in OA
cartilage tissues, potentially facilitating the modulation of ECM
deformation and promoting chondrocyte hypertrophy (Häusler
et al., 2002). The components of the ECM play important
roles in maintaining chondrocyte homeostasis. For example,
the stiffness of collagen in cartilage is associated with the
occurrence and development of OA, not only on the joint
surface but also at the interface between cartilage and bone
(Wen et al., 2012). Collagen type II (COLII) can suppress
chondrocyte hypertrophy and deterioration of OA by promoting
the interaction between β1 integrin and drosophila mothers
against decapentaplegic protein 1 (SMAD1) (Lian et al., 2019).
Because of the crosstalk between the cartilage and subchondral
bone, the subchondral bone of OA patients is also changed.
Compared to controls, subchondral osteocytes showed a series
of changes in cell morphology, such as rough cell surfaces,
unorganized dendrites, and so on (Jaiprakash et al., 2012).
Studies have also shown that culturing bone cells on the ECM
of OA specimens leads to reduced expression of integrin β1
and inactivation of the FAK cell signaling pathway (Prasadam
et al., 2013). The changes of αVβ3 integrin level can vary
with the degree of cartilage degeneration in patients with
OA (Wang et al., 2018). Dysfunction of integrin αvβ3 and
integrin-associated protein (CD47) signaling pathways have been
proved that can promote the occurrence and progression of OA

(Wang et al., 2019). We will discuss the role of integrins in OA in
detail in the following text.

INTEGRINS IN ARTICULAR CARTILAGE
AND CHONDROCYTE HOMEOSTASIS

Integrins in Chondrocytes Adhesion
Articular cartilage, composed mainly of water, collagen,
proteoglycans, and cells, provides a smooth surface for joints and
facilitates the transmission of loads (Ulrich-Vinther et al., 2003;
Carballo et al., 2017). The articular cartilage lining the surface
of the subchondral bone is multi-layered. The surface layer
consists of collagen fibrils and chondrocytes, which parallels
to the articular surface. In the deeper layer, the arrangement
of collagen fibrils is more random and collagen fibrils are
vertically inserted into the subchondral bone in the deepest layer
(Silver et al., 2001). Chondrocytes, constituting the main cell
group of adult articular cartilage cells, play important roles in
maintaining the balance between the anabolism and catabolism
of the ECM (Loeser, 2009; Kozhemyakina et al., 2015; Li et al.,
2017; Liang et al., 2018; Kadry and Calderwood, 2020). Under
normal physiological conditions, the ECM components are in
a slow renewal state, which maintains homeostasis between
chondrocyte catabolism and anabolism. Studies have confirmed
that integrins, such as α1β1, α2β1, αVβ3, αVβ5, and so on, are
expressed on chondrocytes (Loeser et al., 2000; Kurtis et al., 2003;
Lahiji et al., 2004; Shattil et al., 2010). The interactions between
chondrocytes and the ECM mediated by integrins are crucial for
chondrocyte activity. ECM, as an “informative” environment,
is made up of many molecules, including COLII, proteoglycans
(PGs), hyaluronic acid (HA), and chondroitin sulfate (CS), etc.,
And the various components in the ECM are important for the
structure and function of the ECM (Gao et al., 2014; Hansen,
2019). ECM changes in OA seem to be driven by the imbalance
between anabolic and catabolic activities of chondrocytes, which
are responsible for the occurrence and development of OA. The
increase of catabolism in ECM was observed in OA pathology
(Rahmati et al., 2017).

As a transmembrane molecule of chondrocytes, integrin plays
an important role in cartilage homeostasis. Integrins act as a
central regulator in multicellular biology, which can coordinate
with multiple cellular functions. The integrins can mediate
cell adhesion between chondrocytes and the ECM (Ginsberg,
2014; Dustin, 2019; Kadry and Calderwood, 2020). Integrins
and their connections to the cytoskeleton play important roles
in monitoring cell adhesion and the physical properties of the
ECM (Romero et al., 2020). Cell adhesion can be achieved
by binding the adhesion superstructures with integrins to the
periphery of the non-collagenous fibril (Woltersdorf et al.,
2017). Chondrocytes express several integrin protein families,
like fibronectin (α5β1), COLII and COLVI (α1β1, α2β1, α10β1),
laminin (α6β1), osteopontin (αVβ3), and so on (Loeser, 2000).
Chondrocytes can be attached to various cartilage and bone
proteins, which is mainly mediated by integrins, including
members of the β1 and β3 subunit family. The regulation of
chondrocyte adhesion is related to the activation or increase
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of integrin expression (Loeser, 1993). Adhesions between
cartilage oligomeric matrix protein (COMP) and chondrocytes
occurs through αVβ3 integrin (Chen et al., 2005). α10β1
integrin, expressed by normal adult chondrocytes, can bind
COLII, and α1β1 integrin can also bind COLII collagen but
preferentially binds COLVI collagen (Camper et al., 1998; Loeser
et al., 2000). Complex interactions between integrins and their
extracellular ligands show that integrins play important roles in
chondrocyte adhesion.

Integrins in Chondrocyte
Mechanotransduction
Studies have shown that the mechanical stress environment of
joints is an essential factor affecting or regulating chondrocyte
activity in vivo (Loeser et al., 2000). Mechanical load plays
an important role in the formation, differentiation, shaping,
maturation and matrix synthesis of cartilage. Chondrocytes
are exceedingly sensitive to mechanical changes in their
surroundings. The stabilizing maintenance of articular cartilage
can be regulated by stimulations, such as mechanical load, small
soluble molecules in ECM and matrix components. Mechanical
stimulation can be divided into dynamic compression, fluid
shear, tissue shear, and hydrostatic stimulation (Sharifi
and Gharravi, 2019). Integrins, as an important mechanical
receptor, can affect the physiological function of chondrocytes
by activating the mechanical signal pathway, a process
known as mechanotransduction (Roca-Cusachs et al., 2012;
Geoghegan et al., 2019).

The integrin-mediated biochemical signals of extracellular
mechanical stimuli are dependent on integrin-matrix interactions
(Zhao Z. et al., 2020). Studies have shown that integrin
α1β1 is a crucial molecule for transducing mechanical load
(Jablonski et al., 2014). The periodic mechanical load can
significantly facilitate the fibronectin-integrin α5β1 bond (Kong
et al., 2013). Periodic mechanical load activates downstream
protein kinase C (PKC) signals by stimulating chondrocytes
α5β1 integrin, which can cause hyperpolarization of chondrocyte
membrane (Wright et al., 1997). Mechanical signal pathways
mediated by integrins are involved in the proliferation and
matrix synthesis of chondrocytes, such as integrin β1-Src- GIT
ArfGAP 1 (GIT1)- focal adhesion kinase (FAK) (Tyr576/577)-
extracellular regulated protein kinase 1/2 (ERK1/2), integrin
β1-FAK(Tyr397)-ERK1/2, and integrin β1- Ca2+/calmodulin
dependent protein kinase II (CaMKII)- Proline-rich tyrosine
kinase 2 (Pyk2)-ERK1/2 signal pathway (Liang et al., 2017;
Ren et al., 2018). Studies suggested that the death signaling
pathway mediated by integrins also participated in the process
that excessive mechanical load acting on cartilage explants
(Jang et al., 2014).

Integrins in Chondrocyte
Transmembrane Signaling
In addition to being involved in mechanical signal transduction,
integrin involvement in transmitting signals has attracted
attention (Loeser, 2014; Prein and Beier, 2019). The cytoplasmic
signaling within chondrocytes, called “inside-out signaling,”

can regulate the affinity of integrins for their ligands. The
combination of the α subunit and β subunit cytoplasmic
tails can maintain integrins in an inactive state. Signals from
G-protein-coupled receptors can activate integrins, causing
phosphorylation of the cytoplasmic domain of the β subunit,
which can disrupt the combination of the α subunit and β

subunit (Takada et al., 2007). Through “inside-out signaling,”
the adhesion intensity and strength between integrins and the
ECM can be regulated. Binding to specialized extracellular
ligands, integrins can be activated by “outside-in signaling.”
In this situation, integrins cluster on the surface of the cell
and undergo conformational changes that activate cytoplasmic
kinase and cytoskeletal signaling cascades. The cross-talking of
signaling mechanism components in integrin-mediated “outside
in” and “inside out” signaling pathways play a role in maintaining
cartilage homeostasis (Attur et al., 2000). As a vital mediator
of between chondrocytes and ECM in cartilage, integrins
can regulate the response to signals emitted from the ECM,
which play an important role in cell proliferation, survival,
differentiation and matrix remodeling.

Studies have shown that integrin-mediated signaling pathways
are involved in the gene expression of micro-molecules, like
inflammatory mediators, chemokines, matrix metalloproteinases
(MMPs), such as MMP-1, MMP-3, MMP-10, MMP-13, etc.,
(Werb et al., 1989). The α5β1 integrin, an important cellular
membrane receptor of chondrocytes, can be activated by
proteins with RGD peptide, antibodies against α5β1 integrin
or fibronectin fragments (Fn-fs) in ECM. One reason for the
imbalance between anabolism and catabolism of chondrocytes is
that the combination of α5β1 integrin with soluble Fn-fs. Fn-fs,
generated by MMPs degrading fibronectin (Fn), have catabolic
properties. The pro-catabolic response to matrix fragments may
be particularly associated with the destruction of ECM. RGD-
containing Fn-fs, when binds to α5β1 integrin, was found to be
the most active (Homandberg et al., 1993). PKCδ is the rate-
limiting factor at the convergent points of signaling input from
Fn-fs. PKCδ activation can cause the activation of nuclear factor
kappa B (NF-κB) in addition to MAP kinase (MAPK) (Lee
et al., 2013). MAPK activation can lead to inhibition of anabolic
signaling, suppression of PG production, and upregulation of
catabolic proteases, like MMP-3, MMP-13, and so on. Many
signaling pathways are interconnected, which can enhance
cartilage destruction in OA. For example, MAP3-kinase TGF-
β-activated kinase 1 (TAK1) can link MAPK signals to the
activation of NF-κB, which may play a role in OA pathogenesis
(Cheng et al., 2016). The NF-κB pathway, considered a typical
proinflammatory signaling pathway, plays an important role in
many inflammatory diseases (Lawrence, 2009). Both pathways
work together to inhibit anabolic signaling and stimulate ECM
degeneration (Figure 1). All these can stimulate chondrocytes
to produce proinflammatory mediators, such as prostaglandin
E2 (PGE2), reactive oxygen species (ROS), a disintegrin and
metalloproteinase with thrombospondin motif (ADAMTS)-5,
nitric oxide (NO), and MMPs (Arner and Tortorella, 1995;
Homandberg, 1999; Forsyth et al., 2002; Gemba et al., 2002).
The roles of integrins in pathological processes of OA will be
discussed in detail in the following text.
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FIGURE 1 | Integrins undergo many changes in OA, suggesting integrins participate in pathological processes of OA. Recent studies have identified the important
role of integrins in OA cartilage, as well as subchondral bone and synovium.

CHANGES IN INTEGRIN EXPRESSION
AND FUNCTIONAL BEHAVIOR IN
OSTEOARTHRITIS

Cartilage surface defects are common changes in OA.
Chondrocytes can be fixed to special positions by adhesion,
which in turn can trigger the secretion of molecules that repair
the defect and tissue. Eventually, chondrocytes adhere to the
host tissue and become part of the cartilage. There are many
important molecules involved in chondrocyte adhesion to the
ECM, such as Annexins (mainly A5), CD44, and integrins.
Studies found that there was an increased level of α1β1, α3β1,
α2β1, α4β1, and α6β1 in cartilage tissue of OA (Loeser et al., 1995;
Lapadula et al., 1997; Ostergaard et al., 1998). These changes
in integrins may be the result of feedback regulation from
changes in the ECM. Growth factors and cytokines can stimulate
integrin expression, which accounts for the change in integrins
in OA (Loeser, 1997). Dysfunction of integrin αVβ3 and CD47
signaling in chondrocytes has been confirmed to contribute to
inflammation and joint destruction in OA (Wang et al., 2019).

Integrin α5 is inferred to be a protective factor that inhibits
hypertrophy, OA occurrence, and chondrocyte development.
Evidence has shown that the expression of integrin α5 in
chondrocytes was lower in an OA model of rats induced by
surgery than in a normal group, suggesting that changes of
ECM may lead to the imbalance of cartilage homeostasis and
affects the repair ability of chondrocytes, finally deteriorating the
pathological changes of OA (Castaño Betancourt et al., 2012;
Bernhard et al., 2017). Lack of α1 integrin subunit was associated
with early degradation of cartilage homeostasis and accelerated
aging-dependent lesions. Compared with wild-type (WT) mice,

more severe degradation, glycosaminoglycan depletion, and
higher expression of MMP-2 and MMP-3 in the cartilage of
α1-KO mice (Zemmyo et al., 2003). In addition, the increase
of α2 and α3 subunits expression in cartilage tissue is related
to the degree of fibrosis and a high expression of αV integrin
was detected in hypertrophic chondrocytes of rats with OA.
All these changes suggest that integrins play important roles in
OA (Figure 2).

THE ROLES OF INTEGRINS IN
OSTEOARTHRITIS

Integrins in Osteoarthritis Cartilage
Changed ECM Components and Integrins
Changed ECM components in OA are a result of an imbalance
of synthesis and catabolism, which can serve as initiating or
progressive factors of OA (Guilak et al., 2018). Developmental
and mature chondrocytes are constantly interacting with ECM
and remodeling ECM. Various ECM components promote OA
by stimulating receptors on chondrocytes membranes, such
as endothelin-1 (ET-1), which induces chondrocyte senescence
and cartilage damage by endothelin receptor B, so as integrins
(Au et al., 2020). Integrin-mediated signaling pathways are key
sources of the catabolic reactions critical for joint destruction
in OA. Developmental chondrocytes can express a special
molecule called integrin-β-like 1 (Itgbl1) at specific stages, which
can inhibit integrin-mediated signal pathways and promote
cartilage generation. However, the expression of Itgbl1 was
decreased significantly in the chondrocytes of OA (Song et al.,
2018). A rat model experiment suggested that Indian hedgehog
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FIGURE 2 | The RGD-containing fibronectin fragments (Fn-fs) can induce cartilage damage and proteoglycan loss. PKCδ is the rate-limiting factor at the convergent
point of signaling input from Fn-fs. PKCδ activation can lead to nuclear factor kappaB (NF-κB) activation in addition to MAP kinase (MAPK) activation. MAPKs
(ERK1/2, JNK1/2, and p38) activation can lead to inhibition of anabolic signaling, including IGF-1 and BMP7 signaling pathways, increased levels of inflammatory
cytokines and upregulation of catabolic proteases like MMP-3 and MMP-13.

(Ihh) expression during the late stages of OA can inhibit
the endochondral ossification induced by bone morphogenetic
protein 7 (BMP-7) and αV integrin (Garciadiego-Cázares
et al., 2015). During the procession of OA, ECM-degrading
enzymes, such as urokinase-type plasminogen activator (uPA),
ADAMTSs, and MMPs, can degrade components of the
ECM (Pérez-García et al., 2019). Angiopoietin-like protein 2
(ANGPTL2) secreted by chondrocytes can induce the production
of inflammatory factors through the integrin α5β1/MAPKs,
Akt, and NF-κB signaling pathways (Takano et al., 2019).
Another study found that the stimulation of the αVβ3 and
αVβ5 integrins of chondrocytes can upregulate the gene
expression of Interleukin-1β (IL-1β), tumor necrosis factor-α
(TNF-α), MMP-3, and MMP-13 (Hirose et al., 2020). Animal
experiments have shown that ofloxacin can interfere with the β1
integrin/ERK/MAPK signal pathway and thus induces apoptosis
in young rabbit articular chondrocytes (Sheng et al., 2008).
CD147, also called ECM metalloproteinase inducer (EMMPRIN),
is a highly glycosylated transmembrane glycoprotein, which
can interact with β1 integrin (α3β1 and α6β1) in the

membrane of chondrocytes (Orazizadeh and Salter, 2008).
Previous studies suggested that collagen type X (COLX) can
interact with chondrocytes directly through major integrin α2β1
(Leitinger and Kwan, 2006).

Excessive Mechanical Load and Integrins
The mechanical load can affect the cartilage matrix.
Chondrocytes are constantly subjected to external mechanical
load, thereby regulating remodeling. The optimal level of
mechanical load is essential to maintain the dynamic balance of
chondrocyte homeostasis (Vazquez et al., 2019). The mechanical
load acting on joints can directly affect the production of
matrix degradation enzymes and further affect cartilage
homeostasis (Aigner et al., 2006; Goldring and Goldring, 2007).
The moderate mechanical load can lead to hypertrophy. The
excessive mechanical load can lead to collagen network damage,
resulting in irreversible cartilage destruction (Jørgensen et al.,
2017). Moreover, excessive mechanical load of cartilage also
can cause cartilage tissue damage through necrosis (Arokoski
et al., 2000). MAPKs, as central regulators of cell signaling
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pathways, play important roles in cell physiological functions,
which are considered potential targets for the treatment of
OA (Loeser et al., 2008). MAPKs can mediate cell signaling
pathways induced by the mechanical stimulation of integrins and
then regulate chondrocyte gene expression and proliferation in
response to the mechanical load acting on joints (Roca-Cusachs
et al., 2012). After the stimulation of integrins by mechanical
load, a signaling cascade is activated (Lee et al., 2000).

The homeostasis of articular cartilage depends partly on the
mechanical load generated in daily activities. Appropriate joint
load stimulates chondrocytes to maintain healthy cartilage by
producing specific protein components. Conversely, excessive
mechanical load alters cartilage composition and causes focal
degeneration of cartilage, leading to disease (Smith et al., 2004;
Monfort et al., 2006). Excessive mechanical load acting as signals
from the ECM can activate integrins, which further promotes
the progressive destruction of the cartilage matrix in OA (Fang
et al., 2021). Under excessive mechanical load, integrins can
regulate the responses of chondrocytes to mechanical stimulation
through multiple pathways. Studies have shown that integrins can
interact with the MAPK-ERK pathway. Articular chondrocytes
respond to α5β1 integrin, acting as a mechanoreceptor. Animal
experiments showed that mechanical load led to an increase
in the number of α5 subunit in both immature cartilage and
mature cartilage, but the number of β1 subunit was not increased
(Lucchinetti et al., 2004). Integrin-associated protein (CD47/IAP)
can interact with α5β1 integrin to modulate chondrocyte
responses to mechanical signals (Orazizadeh et al., 2008). The
downstream signaling cascades and cell responses are different
in OA chondrocytes. Excessive mechanical signals can regulate
key molecules in MAPK signal cascades to maintain their efficacy
in proinflammatory environments. For example, mechanical
signals can affect gene expression and chondrocyte proliferation
during proinflammatory environments through integrin-linked
kinase and signal pathways (Perera et al., 2010). All these
factors can progressively destroy the cartilage matrix in OA.
Cellular communication network factor 2 (CCN2), a cysteine-
rich secreted matricellular protein, is highly expressed and
secreted into the ECM under mechanical load, regulating cell
physiological functions. Integrins, the first receptor to perceive
mechanical load on the cell membrane of chondrocytes, can
enhance the gene expression of CCN2. CCN2 expression is
increased when exposed to excessive mechanical stress, that
further triggers cartilage fibrosis through the activation of
integrin-mediated signal pathways (Huang et al., 2021). There
were significant differences in signal events and cell responses
when mechanical load acts on normal and OA chondrocytes
(Millward-Sadler and Salter, 2004). Under excessive mechanical
stress, integrins can respond to inflammatory activation in
chondrocytes. High levels of α1β1 and α3β1 were observed
in the cartilage tissues of OA patients, which may potentially
contribute to ECM deformation and chondrocyte hypertrophy
(Zhao Y. et al., 2020).

Cytokine Signals and Integrins
As the most common disease in the elderly, OA can damage
the ECM of cartilage, leading to pain and dysfunction of

joints. There are many factors that can cause OA, including
mechanical injury, cytokines, superoxide release, adipokines, etc.,
(Sofat, 2009; Zhang et al., 2018). The role of cytokines in OA has
gradually drawn people’s attention (Sofat, 2009). Integrins as key
receptors on the cell surface can interact with cytokines secreted
into the ECM, that may participate in the pathogenesis of OA.
The gene expression of integrins can be regulated by cytokines
like insulin-like growth factors-1(IGF-1) and transforming
growth factor-beta (TGF-β) (Loeser, 2000). Integrins can change
their expression patterns under pathological conditions and
promote the deterioration of OA by releasing active TGF-
β and regulating various signals downstream of the integrins
(Zhang et al., 2020). A high level of TGF-β can disrupt cartilage
homeostasis and impair the metabolic activity of chondrocytes.
Animal studies have shown that knockdown of αV integrin
gene in mouse chondrocytes can reverse TGF-β activation and
subsequent abnormalities in articular cartilage metabolism (Zhen
et al., 2021). Cytokines in ECM are considered to have a
variety of effects on cartilage. We listed some of the cytokines
associated with integrins in this section. The chemokine
CX3CL1 can induce chemotaxis of monocytes, neutrophils,
and fibroblasts. CX3CL1 acts through its receptor CX3CR1. By
stimulating CX3CR1, CX3CL1 can activate integrin-dependent
migration of chondrocytes, which is evident in many articular
cartilage diseases (Poniatowski et al., 2017). Angiopoietin-like 2
(ANGPTL2) secreted by chondrocytes can stimulate the integrin
α5β1/MAPKs, Akt, and NF-κB signaling pathways leading to
ECM degradation and inflammatory response, which plays a
negative role in the pathogenesis of OA (Shan et al., 2019).
In addition, both growth differentiation factor 5 (GDF-5) and
BMP-7 in chondrocyte could regulate the expression of integrins,
that may participate in normal physiological function and OA
progression (Garciadiego-Cázares et al., 2015).

Integrins in Healthy and Osteoarthritic
Subchondral Bone
Like the bones in other parts of our bodies, subchondral
bone osteocytes are the main mechanical sensitive cells in
bone. Increasing evidence showed that integrin-based adhesion
could promote mechanical transduction and play an important
role in forming subchondral bone (Geoghegan et al., 2019).
During the formation of subchondral bone, Osteoblasts and
osteocytes express β1 subunit, that can combine with α1,
α2, α3, α4, and α5 subunits. β3 subunit connects with αv
subunit in osteoblasts and osteocytes (Horton et al., 1991;
Engleman et al., 1997; Geoghegan et al., 2019). All these
integrin molecules are involved in cell-matrix adhesion and
facilitate mechanical conduction. Integrin-mediated signaling
pathways and their cross-talking with Wnt/β-catenin signaling
pathways are involved in osteoblast mechanical transduction
(Marie et al., 2014). Mechanical load acting on joints can regulate
the metabolism of healthy subchondral bone osteoclasts and
cause gene expression of interleukin-6 (IL-6), interleukin-8 (IL-
8), MMP-3, MMP-9, MMP-13, etc., (Sanchez et al., 2012). The
structure of subchondral bone can determine the mode of
mechanical load acting on cartilage and the mode of TGF-β
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activation, which can regulate the metabolism of chondrocyte
and cartilage homeostasis. Mechanical stress can trigger TGF-
β activation through αV integrin-mediated signaling pathways.
A high level of TGF-β activation has been detected in areas with
high mechanical load in cartilage (Zhen et al., 2021).

In addition to degenerative changes in articular cartilage,
OA also causes the destruction of subchondral bone. The role
of subchondral bone in OA has been gradually recognized
(Goldring and Goldring, 2010). The causes of the subchondral
bone of OA, specially in non-load-bearing areas, include synovial
fluid inflow, mechanical contusion, vascular lesion, etc., (Chan
et al., 2017). Abnormal subchondral bone remodeling plays an
important role in the pathological changes of OA. Osteocyte
morphology was found to be altered in the subchondral bone
of OA patients, the cell body became round and roughened
by the degeneration of typical dendrites and the appearance of
unorganized dendrites (Jaiprakash et al., 2012). OA can cause
the destruction of subchondral bone, osteoblast dysfunction of
subchondral bone at the cell level; and cystic lesions, sclerosis,
and osteophytes at the tissue level (Weber et al., 2019). Risk
factors for OA include aging, obesity, abnormal joint mechanical
load, and joint sprain, which interact in a complex way (Palazzo
et al., 2016). In particular, the excessive mechanical load of joints
triggered a series of cell changes, including cartilage damage and
subchondral bone adaptation changes (Adebayo et al., 2017).
The imbalance between cartilage and subchondral bone destroys
the normal physiological relationship between both tissues and
further leads to the deterioration of OA. This section of this
article focuses on integrins in the subchondral bone of OA.

Pathological changes of subchondral bone were found in
OA, including microstructural damage, bone marrow edema-
like injury, and bone-cyst formation (Li et al., 2013). Excessive
mechanical load applied upon articulation may be critical for
these changes. The sclerosis of the subchondral bone is widely
regarded as one of the features of OA. Osteoblasts isolated from
sclerotic areas of subchondral bone were found to express levels
of α5, αv, β1, and β3 integrins and CD44, which is similar to
the levels in non-sclerotic osteoblasts under basal conditions
(Sanchez et al., 2012). Subchondral bone is hypo-mineralized
due to abnormal bone remodeling. Osteopontin (OPN), a
multifunctional phosphoprotein, was found that highly expressed
in OA tissues. Stimulation of osteoblasts with OPN can activate
the αvβ3 integrin-mediated signaling pathway (Su et al., 2015).
Culture of osteocytes on defective ECM tissue produced by OA
subchondral bone osteoblasts caused a decreased gene expression
of integrin β1 and deactivation of the FAK signaling pathway.
Many proteins containing the three amino acid sequence RGD
in the ECM can be recognized by corresponding integrin
β1 receptors (Schaffner and Dard, 2003; Marini et al., 2017).
The combination of integrins with these macromolecules can
activate a series of downstream signals and initiate a cascade
of phosphorylation events, which are essential for the function
of subchondral bone cells, such as cell adhesion and proper
cytoskeletal organization (Legate et al., 2009; Michael and
Parsons, 2020). Lower expression of integrin β1-FAK signaling
in the subchondral bone can induce cell detachment from ECM,
leading to subtle structural changes, cellular dysfunction even cell
necrosis (Prasadam et al., 2013).

Integrins in Osteoarthritic Synovium
The synovium can secret synovial fluid to joint space, which
contributes to the functional properties of articular surfaces
and modulation of the state of chondrocytes. For example,
hyaluronic acid (HA) secreted by synovial lining cells contribute
to the integrity of the cartilage surface and reduce friction
at cartilage surface (Hui et al., 2012). Synovitis in OA is
characterized by increased angiogenesis and hypoxia (Liu et al.,
2019). Fibroblasts and macrophages in the synovial lining are
important sources of inflammatory mediators, such as IL-
1, IL-6, TNF, etc., The destruction of cartilage can induce
the inflammation of the synovium, causing the production
of cytokines. The concentrations of cartilage-protecting factors
in the synovial membrane decrease, and harmful factors are
constantly generated (Scanzello and Goldring, 2012; Hügle and
Geurts, 2017; Michael and Parsons, 2020). All these alterations
can deteriorate OA by the degradation of the ECM and apoptosis
of chondrocytes.

In synovium tissue, the gene expression of integrins depends
on the specific cell location and cell type. Most gene expressions
of integrins are similar in synovium tissue but differ in the
synovial lining, where the fibroblasts and macrophages degrade
ECM and invade the cartilage. α6β1 integrin is expressed only
by fibroblasts, while macrophages not. The expression levels
of α5, αν, and β1 integrin in the synovium lining increased
compared to the sub-lining areas (Pirilä et al., 2001; Lowin et al.,
2009; Lowin and Straub, 2011). Synovial cells are involved in
the protection and maintenance of the stability of joints. Studies
on rabbit synovial fibroblasts showed that cooperative signaling
mediated by α5β1 and α4β1 integrins plays a dominant role
in regulating MMP expression signaling in response to FN.
MMP expression can remove the damaged matrix, which is the
first step in repairing the damaged matrix. The cross-talking of
integrins makes it possible for synovial fibroblasts to identify
whether the matrix is intact or damaged. The volume of synovial
fluids is increased in the OA articular cavity. Synovial fluids
obtained from OA tissue showed increased expression of ligands
for integrin αvβ3 and CD47, including COMP, fibronectin, and
vitronectin. Increased ligand binding affinity of αvβ3 and CD47
was found in the synovium of the OA rat model. Signals mediated
by αVβ3 and CD47 can result in the expression of inflammatory
mediators and matrix degradation enzymes, leading to joint
destruction in OA (Wang et al., 2019). Integrin αvβ3 and
α5β1 are involved in synovial cell proliferation, differentiation,
and migration. Both are overexpressed in damaged synovial
cells, acting as inflammatory and angiogenic factors in the
progression of rheumatoid arthritis (RA). Their roles in the
OA synovial membrane need further study (Morshed et al.,
2019). There is evidence that the synovial lining cells in OA
strongly and uniformly express integrin subunit αv, whereas
synovial lining cells in RA show heterogeneous expression. Both
RA and OA cells fail to express the integrin subunit β3. These
results show different manifestations of the αV and β3 integrin
subunits in cytokine-stimulated fibroblast-like cells from the
synovium of OA and RA in vitro (Rinaldi et al., 1997). All
these results showed that integrins are not only play a significant
role in synovial joint development, but also involved in the
pathological changes of OA.
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TABLE 1 | Recent experiments on treating OA by interfering with integrin-mediated signaling pathways.

Interventions Interfered integrin-mediated signaling
pathway

Results References

Integrin-β-like 1 (Itgbl1) Interact with integrins to down-regulate
activity.

In patients with osteoarthritis (OA), the expression of
Itgbl1 is greatly reduced. The ectopic expression of
Itgbl1 can protect articular cartilage from the
development of OA.

Song et al. (2018)

locus-1 (Del1) Integrin αVβ3-ERK/AKT signaling pathway. DEL1 protected chondrocytes from apoptosis induced
by various activators through integrin αVβ3-mediated
signal pathways.

Wang et al. (2018)

Mechanical exposure and
diacerein treatment

Integrin-FAK/STAT3-MAPKs signaling
pathway.

In OA chondrocytes a significant reduction in the
expression of Piezo1 was detected following treatment
with diacerein, even in the presence of mechanical
stimulation.

Lohberger et al.
(2019)

Collagen type II (COL2A1) Promote the interactions between integrin
β1 and SMAD1.

COL2A1 can inhibit BMP-SMAD1-mediated
chondrocyte hypertrophy.

Lian et al. (2019)

Cilengitide Inhibit integrin αVβ3/αVβ5-FAK-MAPK
signaling pathway.

Cilengitide can suppress inflammation in chondrocytes
under excessive mechanical stress by interfering
integrin-mediated signaling pathway

Hirose et al. (2020)

Cationic solid lipid
nanoparticles loaded by
integrin β1 plasmid DNA

Enforce the expression of integrin β1. SLNs-pDNA treatment can reduce the apoptosis of rat
chondrocytes and enhance tissue repair, which can be
used as a potential non-drug in the treatment of OA.

Zhao Z. et al.
(2020)

Exogenic TGF-β1 and
WISP1 protein

Interact with Integrin α5 or Integrin αv. TGF-β1 and WISP1 interact to induce CHs
dedifferentiation, which was mainly mediated by integrin
αV. However, Integrin αV showed a protective effect.

Zhang et al. (2020)

Vitronectin (VTN) fragment Interact with αVβ6 in human fibroblast-like
synoviocytes.

VTN could prevent TGF-β1 activation by interacting with
αVβ6 in human FLSs and increase the level of α-SMA.

Ciregia et al. (2021)

Angiopoietin-like proteins
(ANGPTLs)

Integrin α5β1- ERK/p38/JNK-NF-κB
signaling pathway.

ANGPTL2 enhanced the gene expression of
inflammatory mediators, while pretreatment with
anti-LILRB2 antibody for 12 h reduced the inflammatory
response.

Nishiyama et al.
(2021)

PROSPECTS FOR INTEGRIN RESEARCH
IN THE TREATMENT OF
OSTEOARTHRITIS

Osteoarthritis, with a high incidence in the elderly population,
brings tremendous economic burdens to individuals and society.
Pain and joint dysfunction are the main causes of decreased
quality of life in patients with OA. Current clinical trials
mainly include repairing defects of cartilage and bone, intra-
articular injections of drugs, physical exercise, etc. However,
all the therapies has been proven that don’t significantly have
improvement in disease progression and successfully prevent
arthroplasty surgery (Grässel and Muschter, 2020). People are
constantly looking for new ways of treating OA. Integrins, as
important receptors on the cell surface, play important roles in
OA, which may provide new targets for the therapies of OA.
In this section, we discuss the application prospects for integrin
research in the field of OA treatment.

Interfering with the integrin-mediated signaling pathway
provides a novel therapeutic approach for OA. For example,
osteopontin (OPN) can interact with the integrin αVβ3 receptor,
which participates in maintaining the homeostasis of articular
cartilage. High expression of OPN was detected in cartilage
and synovial fluid, which may be involved in the progression
of OA. Recently, researchers have attempted to use this protein
as a diagnostic marker of OA or a targeted drug against

OA (Cheng C. et al., 2014). Low-intensity pulsed ultrasound
(LIPUS) can interfere with integrin - FAK-phosphatidylinositide
3-kinases(PI3K)/protein kinase B (Akt) mechanochemical
transduction pathways and alter chondrocyte-induced ECM
production. The effect of LIPUST on articular cartilage can
be used as a new treatment for OA (Cheng K. et al., 2014).
Mesenchymal stem cells (MSCs) with high expression of
the α10 subunit have been proven to improve chondrogenic
potential. Research showed that intra-articular injections of
MSCs with high integrin α10 expression after joint damage may
protect against posttraumatic OA (Delco et al., 2020). Another
study showed that mechanical exposure at moderate intensity
combined with diacerein treatment could modulate integrin-
FAK-MAPK mechanotransduction in human osteoarthritis
chondrocytes (Lohberger et al., 2019). In addition to the
treatments mentioned above, we have summarized the results of
recent experiments on the treatment of OA based on interference
of integrin-mediated signaling pathways in the following
table (Table 1).

CONCLUSION

As transmembrane molecules on the cell surface, integrins
play important roles in cartilage homeostasis, including cell
survival, cell differentiation, matrix remodeling, and responses to
mechanical stimulation. Integrins undergo many changes in OA,
which may suggest that integrins are involved in the pathological
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procession of OA. Recent studies have proved that the important
roles of integrins in OA cartilage, subchondral bone, and
synovium. Integrin-mediated signaling pathways are key sources
of the catabolic reactions critical for ECM destruction. Excessive
mechanical loading can cause the destruction of the cartilage
matrix, and abnormal mechanical signals from the ECM
mediated by integrins work together to promote progressive
destruction of the cartilage matrix in OA. Interactions between
cytokines and integrins also contribute to the progression
of OA. Changes in integrins also contribute to pathological
changes in the subchondral bone and synovium. Integrin
shows good application prospects for the treatment of OA.
Interfering with integrin-mediated signaling pathways is a novel
therapeutic approach to OA.
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