
ll
OPEN ACCESS
iScience

Article
Bayesian optimization for goal-oriented multi-
objective inverse material design
Target B

Run experiment

Goal achieved!

Collect data

Learn model

Suggest 
next

Set goals

Optimization loop

Target A

Kyohei Hanaoka

hanaoka.kyohei.xicmq@

showadenko.com

Highlights
Multi-objective (MO)

problems with predefined

goals for all objectives

were studied

Fully probabilistic

Bayesian optimization

(BO) for goal achievement

was proposed

The proposed method

clearly outperformed a

baseline in goal

achievement efficiency

Goal-oriented BO

simplifies MO problems

and works with small

number of experiments
Hanaoka, iScience 24, 102781
July 23, 2021 ª 2021 The
Author(s).

https://doi.org/10.1016/

j.isci.2021.102781

mailto:hanaoka.kyohei.xicmq@showadenko.com
mailto:hanaoka.kyohei.xicmq@showadenko.com
https://doi.org/10.1016/j.isci.2021.102781
https://doi.org/10.1016/j.isci.2021.102781
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102781&domain=pdf


iScience

Article

Bayesian optimization for goal-oriented
multi-objective inverse material design

Kyohei Hanaoka1,2,*

SUMMARY

Bayesian optimization (BO) can accelerate material design requiring time-
consuming experiments. However, although most material designs require tun-
ing of multiple properties, the efficiency of multi-objective (MO) BO in time-
consuming experimental material design remains unclear, due to the complexity
of handling multiple objectives. This study introduces MO BO method that effi-
ciently achieves predefined goals and shows that by focusing on achieving the
goals, BO can efficiently accelerate realistic MO design problems with small ef-
forts. Benchmarks showed that the proposed BO method dramatically reduced
the number of experiments needed to achieve goals relative to a baseline
method. Virtual MO inverse design experiments with realistic material design
problemswere also performed, duringwhich the proposedmethod could achieve
goals within only around ten experiments in average and showed over 1000-fold
acceleration relative to the random sampling for themost difficult case. The intro-
duction of goal-oriented BO will precede real-world application of BO.

INTRODUCTION

Bayesian optimization (BO) (Greenhill et al., 2020; Shahriari et al., 2015) is one of the major approaches to

inverse material design and involves gradually optimizing material-design parameters through repeated

experiments (Balachandran et al., 2016; Doan et al., 2020; Lookman et al., 2017, 2019). Although the process

resembles human-based trial-and-error, design parameters in BO are determined based on a machine-

learning model, which is updated after each experiment and gets smarter through repeated updates

(Shahriari et al., 2015). Accordingly, BO can effectively accelerate difficult optimization problems and is use-

ful, particularly for material-design problems involving time-consuming experiments. Currently, there are

many computational material design studies that utilize BO (Bassman et al., 2018; Fukazawa et al., 2019;

Hashimoto et al., 2020; Herbol et al., 2018; Okamoto, 2017; Sakurai et al., 2019; Seko et al., 2015), and

several recent real-world experimental studies have actually realized inverse material design using BO (Ba-

lachandran et al., 2018; Homma et al., 2020; Langner et al., 2020; Rouet-Leduc et al., 2016; Wakabayashi

et al., 2019; Xue et al., 2016; Yuan et al., 2018). However, the targets for most such real-world inverse design

studies were single properties, despite most material-design problems requiring the optimization of mul-

tiple target properties. This type of optimization problem is known as multi-objective (MO) optimization.

Nowadays, the most popular class of method for MO optimization is genetic algorithm-based (Deb

et al., 2002; Jung et al., 2017; Lee et al., 2017; Menou et al., 2018; Niu et al., 2018; Shrivastava et al.,

2018), while the real-world implementation of more efficient BO basedMO inverse material design remains

in its nascent stages.

The challenge with MO optimization relative to single-objective optimization comes from the number of

possible solutions arising. In single-objective optimization a single optimal solution is usually obtained af-

ter running the optimization, while MO optimization elicits many optimal solutions, as in the following.

Consider MO optimization, where two objective properties, A and B were minimized by tuning design pa-

rameters, X. Figure 1 shows a schematic mapping of properties A and B corresponding to the optimal

design parameters obtained by this optimization task (blue circle). Optimal design parameters achieving

minimum values for both properties A and B may be preferable. However, usually the best design param-

eters for properties A and B (X1 and X2 in Figure 1, respectively) are not the same. For that reason, in MO

optimization, optimal solutions are defined as design parameters where it is impossible to improve any

properties without negatively affecting others. Such design parameters are called Pareto optimal solutions.

For example, the design parameter X3, which corresponds to the red circle in Figure 1, is not Pareto
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optimal, because there are blue circles with lower values of both properties A and B (blue box in Figure 1).

Conversely, parameter X1 and X2, which corresponds to blue circles, are Pareto optimal solutions, because

reducing properties A and B is impossible without causing the other to increase. According to this defini-

tion, design parameters corresponding to all blue circles, which balance dual objectives in differing ways,

also constitute Pareto optimal solutions. Because no general criteria exist to compare the quality of the Par-

eto optimal solutions, various balances of Pareto optimal solutions should be sought, but many experi-

ments have to be performed to find them.

Most popular MO inverse design approaches comprise finding the whole Pareto optimal solution, from

which the best-balanced solution is then chosen (Figure 2A). In this paper, this inverse design approach

is called ‘‘many-solution-inverse-design’’. Some recent computational material design studies used MO

BO in many-solution-inverse-design to accelerate the finding of the Pareto optimal solutions (Janet

et al., 2020; Karasuyama et al., 2020; Solomou et al., 2018; Talapatra et al., 2018; Wang et al.,

2020b). However, as schematically shown in Figure 2A, finding many Pareto optimal solutions requires

an excessive number of experiments, which is difficult to execute with time-consuming real-world exper-

iments. Accordingly, this makes applying many-solution-inverse-design to real-world material design

infeasible.

There are alternative MO inverse design approaches, whereby only a few Pareto optimal solutions are

searched without the time-consuming need to search the entire space of Pareto optimal solutions (Fig-

ure 2B). In this paper, this inverse design approach is called ‘‘few-solution-inverse-design’’. Most few-so-

lution-inverse-design solutions use scalarization functions (SFs), which convert multiple objective proper-

ties to a single score, which, in turn, can be optimized using any single-objective optimization methods

(Cummins and Bell, 2016; Wang et al., 2020a; Wheatle et al., 2020; Yamawaki et al., 2018). Among them,

weight summation of multiple objective properties is most popular one. In the weight-summation SF,

predefined weights for weight summation determine the balance of objective properties in the Pareto

optimal solution. Using this weight-summation SF, several studies have successfully performed inverse

material designs using machine-learning-based optimization (Cummins and Bell, 2016; Wang et al.,

2020a; Wheatle et al., 2020). However, because, the predefined weight is not directly reflected in the

optimized solution, it is difficult to balance objective properties using weight-summation SF exactly as

required. Conversely, there are studies using ad hoc SFs where the preference of the experimenter in

terms of the balance of Pareto optimal solutions can be directly reflected (Häse et al., 2018; Walker

et al., 2017). This class of methods for few-solution-inverse-design is promising, but comparing the per-

formance of optimization methods for few-solution-inverse-design remains difficult because different

optimization methods elicit different Pareto optimal solutions, and there is no quantitative measure avail-

able to fairly compare the quality of these different Pareto solutions. Therefore, an SF-method suitable

for each application is unclear.

Figure 1. Schematic mapping of Pareto optimal

solutions

Blue circles represent Pareto optimal solutions. The red

circle represents a non-Pareto optimal design. Blue

circles in the blue box have better values in both

properties A and B than that with the design parameter

X3.
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Furthermore, it is often difficult to find even one Pareto optimal solution with time-consuming real-world

experiments. Although finding Pareto optimal solutions represents a common goal of MO optimization

studies (Gopakumar et al., 2018; Harada et al., 2020; Mannodi-Kanakkithodi et al., 2016; Del Rosario

et al., 2020), for real-world material designs with limited budget and available time, it is often difficult to

find a true Pareto optimal solution and efforts to optimize the material property will be stopped after

finding materials having properties acceptable for each application but not Pareto optimal solutions. How-

ever, although optimization methods studied in both many- and few-solution-inverse-design would also

work with such a realistic design problem, the performance of BO in such realistic design problem has

not been studied well and efficiency of MO BO in real-world material design requiring time-consuming ex-

periments remains unclear.

In this study, we show that by focusing on finding a design parameter of materials achieving predefined

goal values rather than the best design parameters, MO BO can efficiently accelerate realistic MO inverse

design problem with small number of experiments. We considered a realistic process of MO inverse ma-

terial design named goal-achievement-inverse-design. The first step of goal-achievement-inverse-design

is to define quantitative goals for all target properties, then conduct goal-oriented MO BO. Finally, opti-

mization is completed when the objective values have reached these goals rather than Pareto optimal so-

lutions having been found (Figure 2C). Note that a similar design process is often seen in human-based

real-world material design, especially when experimenters do not want to pay much experimental cost af-

ter finding a material that achieves the goals and already has properties acceptable for each application.

First of all the following section, a fully probabilistic MO BO method for goal-achievement-inverse-design

is provided by extending a well-studied BO method, lower confidence bound (LCB) (Srinivas et al., 2010).

Next, a rigid benchmark method capable of evaluating the performance of BO methods in the goal-

achievement-inverse-design is also provided. With this benchmark method and toy problems, the

Figure 2. Schematics of multi-objective inverse design approaches

Blue and gray circles represent Pareto optimal solutions, while the red circle represents a non-Pareto optimal design. In

the region colored pastel green, all the predefined goals are achieved.
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performance of the proposedMO BOmethod was compared with a classical SF-based baseline. Finally, to

demonstrate the application of goal-oriented-inverse-design using the proposed method, virtual experi-

ments of MO inverse material design were conducted.

RESULTS AND DISCUSSION

Goal-oriented MO BO

Underpinning BO are the machine-learning model and the acquisition function, and the role of the former

is straightforward. Learning from past experimental results allows the BO method to recommend better

design parameters for the next experiment. You may anticipate recommendations with design parameters

featuring the best of such predicted objective properties. However, what is an excessively conservative

strategy spawns locally optimal design parameters because even if better design parameters exist far

from the current design parameters learned, the machine-learning model itself remains unaware of such

design parameters. Conversely, an excessively challenging strategy, which always selects design parame-

ters far from those existing, is also inefficient. Accordingly, mastering the balance of conservative and chal-

lenging experiments is crucial. Note that in the field of BO, conservative, and challenging experiments are

referred to as exploitative and explorative experiments, respectively. To attack this problem in BO, the

scoring function of next-design parameters, known as the acquisition function, is constructed using the ma-

chine-learning model mentioned previously, and the next-design parameters are obtained by optimizing

the acquisition function. The role of the acquisition functions involves balancing the exploitative and

explorative regions of design parameters based on the machine-learning model.

Among them, LCB is one of themost well-studied and used acquisition functions (Srinivas et al., 2010). Note

that, this acquisition function is called the LCB for minimization problems, and also called upper confidence

bound for maximization problems. As its name indicates, LCB is a function that maps design parameter X

into an (100-a)% LCB for the objective property value with design parameter X, where a is a predefined

parameter controlling the balance of exploitative and explorative experiments. By considering the LCB,

BO can be aware of not only exploitative design parameters with better expected properties but also

explorative design parameters that show considerable potential for improving the objective property.

Formally, (100-a)% LCB for objective values Y, under the design parameter X is written as follows:

LCBðXÞ = ICDFXða =100Þ (Equation 1)

where ICFFX is the inverse cumulative distribution function of Y under the design parameter X. For

simplicity purpose, a one-dimensional normal distribution defined by a mean m and standard deviation

s obtained by a regression model is assumed.

Y � NðmðXÞ; sðXÞÞ (Equation 2)

where Y and X are the single objective value and design parameter, respectively. In this case, using the in-

verse cumulative distribution function of the standard normal distribution F�1, Equation 1 can also be writ-

ten as:

LCBðXÞ = mðXÞ+F�1ða = 100ÞsðXÞ (Equation 3)

LCBðXÞ = mðXÞ � asðXÞ; (Equation 4)

where a = � F�1ða =100Þ. Equation 4 is well used definition of LCB acquisition function, while in the

following Equations 1 and 3 is assumed in order to discuss the probability a.

In the following, the LCB is first extended to the goal-achievement-inverse-design, then further still to the

MO setting. The a in Equations 1 and 3 is the only tunable parameter of the LCB and tuning a according to

the probability of goal achievement (PA) is a natural way of extending LCB to goal-achievement-inverse-

design. Note that with smaller a, optimization strategy will be more explorative (Figure 3A, LCB minimum

is different from the model prediction minimum.), whereas larger a will be more exploitative (Figure 3B,

LCB minimum is same to the model prediction minimum.). Accordingly, it is possible to extend the LCB

to the goal-achievement-inverse-design by controlling the parameter a depending on the distance from

the goal as follows: If the predefined goal is far away from current designs explored i.e. the PA is small

and exploitative experiments spawning small improvements are not promising, a should be set smaller.

This makes optimization policy more explorative. In contrast, if the goal is proximal to current designs

explored i.e. the PA is high and explorative experiments are wasteful, a should be set larger. This makes

ll
OPEN ACCESS

4 iScience 24, 102781, July 23, 2021

iScience
Article



optimization policy more exploitative. Indeed, such tuning of a can be easily realized by replacing the LCB

acquisition function with the PA. Although LCB and PA are distinct functions, the design parameters ob-

tained by minimizing LCB and maximizing PA are the same. This can be easily confirmed as follows: As-

sume, X* is the optimal design parameter obtained by maximizing the PA and the goal achievement prob-

ability with X* is a*% (Figure 3C) (See, Equivalence between maximization of PA and minimization of LCB in

STAR Methods for the formal description).

Note that the (100-a*)% LCB under the design parameter X* is the value where the probability of the

observed property Y falling above this point under the design parameter X* is (100-a*)%, whereas the prob-

ability of the observed objective property Y falling above the goal value under the design parameter X* is

also (100-a*)%.

Accordingly, the (100-a*)% LCB under the design parameter X* is equal to the goal value. Figure 4 shows

the relation between the goal value and LCB. The goal is achieved and not achieved below and above the

red line indicating the goal value in Figure 4, respectively. As mentioned above, under design parameter

X*, the red line in Figure 4 also indicates the (100-a*)% LCB. If there is a design parameter X** that results in

a lower value than X* in the (100-a*)% LCB, as shown in Figure 4, the (100-a*)% LCB of X** is also lower than

the red line indicating the goal, and the PA with design parameter X** exceeds a*% by a probability ε%,

which contradicts the assumption that the maximum value of the goal achievement probability is a*%.

Accordingly, the (100-a*)% LCB contacts the line of the goal value with design parameter X* (Figure 3D),

and the true solution of minimizing LCB and maximizing PA are the same. Namely, using PA as an acqui-

sition function corresponds to LCB with an automatically controlled a. And using the PA, as targeted, a will

be smaller and the optimization strategy more explorative if the predefined goal is far from current designs

Figure 3. Schematic illustration of the optimization of acquisition functions

Green lines indicate optimal solutions for acquisition functions. An orange line indicates both the optimal solution and

goal value.

(A) Minimization of the LCB with smaller a. LCB minimum is different from the model prediction minimum.

(B) Minimization of the LCB with larger a. LCB minimum is same to the model prediction minimum.

(C) Maximization of the PA. X* is the optimal design parameter

(D) Minimization of the LCB with a*.
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explored. Conversely, awill be larger and the optimization strategymore exploitative if the goal is proximal

to current designs explored.

Extending the PA to a MO problem is simple, by leveraging the joint probability of all objective properties

achieving the predefined goals. Assuming observed values of M objective properties with design param-

eter X are independent, the MO PA can be written as the product of the goal achievement probability for

m-th property, PAm:

PAðXÞ =
YM
m= 1

PAmðXÞ (Equation 5)

This acquisition function can automatically balance the objectives according to the joint probability of each

objective property achieving the predefined goal and no ad hoc rules or parameters are used to balance

multiple objective properties. Accordingly, the LCB was extended to the MO goal-achievement-inverse-

design, in a fully probabilistic manner using the PA acquisition function.

Benchmark method for goal-achievement-inverse-design

To examine the PA performance in the goal-achievement-inverse-design, a rigid benchmark method for

goal-achievement-inverse-design was also developed. As things stand, the performance of optimization

algorithms often depends on setting of problems. For example, an algorithm that is suitable for achieving

a goal A may be unsuitable for achieving another goal B. Accordingly, evaluating the performance of algo-

rithms for a single setting of goals is insufficient. To overcome this problem, the performance of algorithms

was evaluated using optimization results obtained from 1,000 random samples of setting of balance of

goals, where goals were sampled from uniform distribution with minimum and maximum values of each

objective property in Pareto optimal solutions obtained by a genetic algorithm-based-MO optimization.

To evaluate the performances of optimization algorithms, a quantitative measure of quality of optimization

results is also required. In goal-achievement-inverse-design, this can be simply defined as the number of

experiments performed before achieving the predefined goals. Accordingly, in the following benchmarks,

the performances of optimization algorithms were compared by the average number of experiments per-

formed before achieving the predefined goals or rate of optimization trajectories that achieved goals

within the same time.

Benchmarks with toy problems

In benchmarks, for comparison, the performances of an SF-based approach that employs the achievement

function which is capable of treating predefined goals (Hakanen and Knowles, 2017; Wierzbicki, 2007) were

Figure 4. Relation between the lower confidence bound and the goal achievement probability

X* is the optimal design parameter in the probability of achievement and the goal achievement probability with X* is a*%.

The probabilities that the Y falls in the blue and green regions are 100-a* and a*%, respectively. A design parameter X**

that has a lower value of the (100-a*) LCB than X* does not exist, and optimal design parameter in the (100-a*)% LCB is

also X*.
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also evaluated as a baseline. The achievement function have been used in the field of the operations

research. By scalarizing multiple objective properties using the achievement function, the single-objective

BO can be applied for the value of the achievement function. LCB acquisition was used for this single-

objective BO of the achievement function. See Calculation of the achievement function in STAR Methods

for details about how the achievement function weights and merges multiple objectives, and how the LCB

acquisition was calculated.

The performances of the proposed BO method with the PA and the achievement baseline were evaluated

for six mathematical MO toy functions (Figure 5) with 1,000 randomly sampled predefined goals. These

functions have been used to evaluate the performances of MO optimization methods (Huband et al.,

2006). The toy functions included relatively simple low dimensional problems, Fonseca, Kursawe, and Vien-

net and also include complex high-dimensional problems, ZDT1, ZDT2, and ZDT3. Although, the goal-

achievement-inverse-design will be finished after achieving the goal, 200 steps of BOs were performed

for all optimization runs for comparison purposes.

Figure 6 shows the rate of optimization runs having achieved goals for each step in 200 steps of optimiza-

tions, which is referred to as the goal achievement rate (GAR) in this study. See Performance metrics in

STAR Methods for formal definition of the GAR. As expected for all six benchmarks, the PA dramatically

reduced the optimization steps required to achieve the goals relative to the achievement baseline. For

easier problems, Fonseca and Kursawe, the BO with the PA achieved most of the goals in the early stage

of optimization, far outpacing the achievement baseline. For more difficult problems, Viennet, ZDT1, ZDT2,

and ZDT3, even with the PA, the GAR did not reach 1, indicating that some of the randomly sampled goals

remained unachieved within 200 steps of BO. However, the GAR after 200 steps of BO using the PA far ex-

ceeds that using the achievement baseline, particularly for high-dimensional problems ZDT1, ZDT2, and

ZDT3, where the number of design parameters is 30 and the achievement baseline cannot be achieved

most of goals randomly sampled for these high-dimensional problems.

There are two possible reasons explaining these significant performance gaps. The first possible reason is

that BO did not work well with LCB and the achievement function and the second is the difficulty in properly

balancing the objective properties with the achievement function, particularly with complex and high-

dimensional design parameters. To investigate the first possible reason, convergences of optimization

trajectories to the Pareto optimal solutions are monitored alongside optimization steps. Note that this

analysis corresponds to evaluating the performances of optimization methods from the point of view of

few-solution-inverse-design.

Figure 7 shows the time evolutions of the averageminimumdistances (AMDs) between the objective values

of Pareto optimal solutions and current designs explored in log scale. See Performance metrics in STAR

Methods for the formal definition of the AMD.

Unlike performance evaluation according to the goal-achievement-inverse-design shown in Figure 6, the

performances of both methods in the few-solution-inverse-design compete. Although, for the Viennet,

ZDT1, and ZDT3, the PA converged to the Pareto optimal solutions faster relative to the achievement base-

line, for Fonseca, Kursawe, and ZDT2, the achievement baseline showed better convergence relative to the

PA. It is notable that from the point of view of few-solution-inverse-design, the achievement baseline per-

formed far better relative to the PA for the high-dimensional ZDT2 problem, while from the point of view of

goal-achievement-inverse-design, the achievement baseline showed much worse performance relative to

the PA for this problem (Figure 6). Accordingly, at least, for Fonseca, Kursawe, and ZDT2, the main reason

for improved GAR on the part of PA relative to the achievement baseline is attributable to the exquisite

balancing between multiple objective properties made possible by the fully probabilistic approach. And

the benchmarks clearly showed that by focusing on finding a design parameter of materials achieving pre-

defined goal values rather than the Pareto optimal solutions, BO with the PA can efficiently accelerate MO

optimization problems.

Virtual MO inverse material design

Next, to demonstrate an application of goal-achievement-inverse-design by using the BO with the PA for

realistic material design problem, virtual material-design experiments were conducted using regression

models constructed from experimental data as a substitute for time-consuming real-world experiments.
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The regression models were obtained from a recent MO material-design study conducted by Wang et al.

(Wang et al., 2020a), where a high-performance oil sorbent material was developed by a method resem-

bling BOwith the weight-summation SF. The use of oil sorbent materials helps remove oil spilled on bodies

of water, such as at sea, to mitigate ecological damage, for which materials with high contact angles, high

oil absorption capacity, and high mechanical strength are known to be preferable. Wang et al. (Wang et al.,

2020a) used these three parameters as objective properties in the optimization and seven design

Figure 5. Mathematical toy problems used in the benchmarks

Objective values, f1 and f2, for Pareto optimal solutions obtained byNSGA are also shown. All the Pareto optimal solutions

used in this study are also provided as Data S1.
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parameters shown in Table S2 were tuned. The design parameters include three parameters related to

compositions of materials, polystyrene/polyacrylonitrile ratio, mass fraction of solute, and mass fraction

of SiO2 nanoparticles in solute and also include four parameters related to fabrication process, feed

rate, receiving distance, applied voltage, and inner diameter of needle. In the following virtual material-

design, the same objectives and design parameters are used. The regression models used here and further

details of design parameters can be obtained from the work of Wang et al. (Wang et al., 2020a)

The goal-achievement-inverse-design started from defining the goal values of objective properties. In our

virtual oil sorbent material design, five sets of goals, 1, 2, 3, 4, and 5, with different design objectives were

defined using the oil sorbent material designed by Wang et al. in the previous study (Wang et al., 2020a) as

a reference. Figure 8 shows values of the five sets of the goals scaled by the values of each property in the

reference, and Table 1 shows the unscaled values of sets of properties for the five goals with short descrip-

tions on their design objectives. The design objective of the goal 1 is to achieve same level of values relative

to the reference in all the three properties. On the other hand, the design objective of the goal 2, 3, and 4

are to achieve higher values than the reference in the contact angle, oil-absorption capacity and mechan-

ical strength, respectively. Finally, the design objective of the goal 5 is to achieve higher values in all the

three properties relative to the reference. Table 1 also includes the number of random experiments

Figure 6. Time evolution of the goal achievement rate

The blue and orange lines represent the goal achievement rate, the rates of optimization runs having achieved goals for

each step in 200 steps of optimization runs. And the shaded areas represent 95% confidence intervals of goal achievement

rates obtained by bootstrap resampling. Note that only optimization runs with achievable predefined goals are included

in this analysis, which is judged using approximated true Pareto optimal solutions obtained by a tried and tested genetic

multi-objective optimization method, NSGA-II(Deb et al., 2002), with sufficient optimization steps. And the total of

randomly sampled goals used to evaluate the goal achievement rate exceeds 300 for all toy problems (See also Table S1).
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required to achieve each goal, which indicates the difficulty of each goal, and even for the easiest goal, 1,

over 100 experiments are needed to achieve the goals in average. Furthermore, for the most difficult goal,

5, over 10,000 experiments are needed to achieve the goals, which is inaccessible for real world

experiments.

Next, virtual experiments for ten randomly chosen design parameters were conducted, which is needed to

initialize the machine-learning model. And MO BO steps were repeated pending achievement of the pre-

defined goals. For statistical purposes, these processes were repeated 100 times by randomly changing the

initial ten design parameters. Note that, randomly chosen design parameters that achieve the goals were

not used as initial design parameters for BO. The performance of BO with the PA in the goal-achievement-

inverse-design was evaluated by calculating average number of BO steps required to achieve goals, and

comparison between the obtained results and the performance of random sampling, which is also shown

in Table 1, are summarized in Figure 9A in log scale. The bar graphs clearly showed that the BO with the PA

can efficiently achieve the goals within small numbers of experiments (5–12). Even for the easiest goal, 1,

BO with the PA achieved it over 30 times faster than random experiments, while for the most difficult

goal, 5, BO with the PA achieved the goal over 1,000 times faster than random experiments. Accordingly,

using the PA in goal-achievement-inverse-design can pave the way for efficiently solving MO inverse ma-

terial design problems that are difficult for the random experiment.

Figure 7. Time evolution of the average minimum distance from objective values in the Pareto optimal solutions

Objective values were scaled by the minimum and maximum values in the Pareto optimal solutions for each problem. The

blue and orange lines represent the average minimum distances from Pareto optimal solutions within the 1,000

optimization runs and shaded areas represent 95% confidence intervals of average minimum distances obtained by

bootstrap resampling.
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In order to reconfirm the superiority of the PA relative to the achievement baseline in realistic inverse

design problems, the performances of the BO using the PA and the achievement baseline were also

compared and summarized in Figure 9B. As with the benchmarks using the mathematical toy functions,

BO with the PA clearly outperformed the achievement baseline for all five settings of goals, and consis-

tently showed around 2 times acceleration relative to the achievement baseline.

Finally, in order to demonstrate the reason why the goal-achievement-inverse-design is suitable for real-

world material design problems, experimental costs for finding a Pareto optimal solution were compared

with that for achieving the goals, by extending the BO steps for all the virtual experiments, and evaluating

numbers of optimization steps required to find a first Pareto optimal solution. In this analysis, only the Par-

eto optimal solutions that achieve the predefined goals were regarded as the solutions, and therefore the

obtained Pareto optimal solutions have equivalent or better values in all the objective properties

compared to the goal values. See, Judgment of Pareto optimal solutions in STARMethods for details about

how to judge whether obtained objective properties reached Pareto optimal solutions. Because, the

achievement baseline showed better performances than the PA in finding the Pareto optimal solutions

for this virtual experiment system (Table S3), the results for the achievement baseline were used in the

following comparison.

Average numbers of experiments required to find a first Pareto optimal solution using the achieve-

ment baseline are shown in Figure 9C with that required to achieve the goals using the PA. As ex-

pected, even with the BO, finding of Pareto optimal solutions is much more difficult than achieving

the goals. Finding of Pareto optimal solutions required over two times more experiments than

achieving the goals in all the setting of goals. Furthermore, for easier goals (goals 1 and 2) gaps be-

tween the difficulty of achieving the goals and finding Pareto optimal solutions were especially large,

and finding Pareto optimal solutions required around four times more experiments than achieving the

goals. Such differences in the required numbers of experiments are critical when budget and time

available for the material development are limited and experimenters do not want to pay much exper-

imental cost after finding a material that achieves the goals and already has properties required for

Figure 8. Scaled values of the goals used in the

virtual material design

See also Table S2.

Table 1. Predefined goals for the virtual material design

Goal

Contact

angle (�)
Oil-absorption

capacity

Mechanical

strength

(Mpa) Design objective

Required number of

random experimentsa

Goal 1 140.1 83.7 4.1 Same level of the reference 158.6 (149.7-168.0)

Goal 2 160.0 83.7 4.1 Higher contact angle 256.1 (240.5-271.9)

Goal 3 140.1 100 4.1 Higher oil-absorption

capacity

333.6 (313.4-354.1)

Goal 4 140.1 83.7 8.0 Higher mechanical strength 5499.6 (5136.9-5876.7)

Goal 5 160.0 100.0 8.0 Improve all properties 13760.8 (12946.5-14632.8)

aAverage number of experiments required to achieve the each set of goals was evaluated by 1000 sequences of random ex-

periments. 95% confidence intervals estimated by bootstrap resampling are shown in parentheses.
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applications. And such situations often occur in materials design processes requiring time-consuming

real-world experiments, especially when experimenters are in competition with others and the speed

of material design is important. Therefore, the goal-achievement-inverse-design using the PA,

which efficiently accelerate solving the realistic design problem, goal achievement, is expected to

be attractive for such situations. Indeed, in this demonstration, around 10 experiments were required

to achieve the goals and design high-performance oil sorbent materials, and this experimental cost

should be acceptable for many actual material design problems with time-consuming real-world

experiments.

It is worth to mention that another merit of the goal-achievement-inverse-design compared with other

methods intending to find Pareto optimal solutions is its simplicity in the criterion for stopping the opti-

mization. In other words, experimenter conducting the goal-achievement-inverse-design can stop opti-

mization efforts immediately after the goal achievement. While, even if methods intending to find Par-

eto optimal solutions are employed, it is often difficult to use the Pareto optimality as a criterion for

stopping the optimization, because whether obtained solutions reached near the true Pareto optimal

solutions can only be confirmed when whole the Pareto optimal solutions have been found after

massive experiments. And there are no common reasonable criteria for stopping the optimization in

such a situation.

Figure 9. Average number of steps required to achieve the goals

(A) Comparison between the PA and random sampling in log scale. For random sampling, average number of experiments required to achieve the each set

of goals was evaluated by 1,000 sequences of random experiments.

(B) Comparison between the PA and achievement baseline.

(C) Average number of steps required to achieve the goals by using the PA is compared with that required to find a first Pareto optimal solution by using the

achievement baseline. Error bars indicate the 95% confidence interval of the average number of steps estimated by bootstrap resampling.

See also Tables S2 and S3.
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Conclusion

In this study, the goal-achievement-inverse-design for theMOmaterial design was introduced with the fully

probabilistic acquisition function, PA and the rigid benchmark method. In the benchmarks, using the six

mathematical functions, the performances of the PA and the achievement baseline were compared and

the benchmark results showed that by focusing on finding a design parameter achieving predefined

goal values rather than the Pareto optimal solution, BOwith the PA dramatically outperformed the achieve-

ment baseline for all the six mathematical functions in the rate of optimization runs that achieved the goals.

And performance improvement of the PA relative to the achievement baseline were much larger for com-

plex optimization problems with more objectives or more design parameters. In addition, the application

of goal-achievement-inverse-design with the PA was demonstrated using more realistic virtual material-

design problems to achieve the five goals with different design objectives, where the BO with the PA again

outperformed the achievement baseline, and the BOwith the PA achieved the goals over 1,000 times faster

than the random sampling for the most difficult case. Furthermore, in this virtual inverse material design,

number of experiments required to achieve the goals were around ten, which is over two times smaller

than that required to find Pareto optimal solutions and would be acceptable for most real-world material

design problems with time-consuming experiments. The proposed inverse design method that works with

small number of possible experiments will precede the real-world implementation of MO inverse material

design, where time-consuming experiments are often required.

Limitations of the study

The inverse design approach proposed in this study can only be applied for design problems, where a

quantitative and reasonable goal can be defined for each objective. And the proposed approach is not

suitable for design problems where it is difficult to set reasonable goals. Additionally, the goal-achieve-

ment-inverse-design is also not suitable for the design problems, where massive number of experiments

can be conducted and experimenter want to find as good solutions as possible. A typical example of

such a design problem is computational materials design using molecular simulation approaches with

low computational cost.
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Materials availability
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Data and code availability

The code required to reproduce the results of this study is available at Mendeley Data: https://data.

mendeley.com/datasets/fg5ngjsm79/1. This code can be freely used for scientific purposes.

METHOD DETAILS

Equivalence between maximization of PA and minimization of LCB

In the following, Y is assumed to be a random variable whose cumulative distribution function is strictly

monotonically increasing. Note that the cumulative distribution function of the well-used normal distribu-

tion is also strictly monotonically increasing. And X is a set of design parameters that determines the shape

of the cumulative distribution function of the random variable Y. For clarity, random variable Y under design

parameter X is written as YX.

Assume, X* is the optimal design parameter obtained by maximizing the PA and the goal achievement

probability with X* is a*%. That is, the probability that random variable YX* falls below the predefined

goal g is given by

PðYX� <gÞ = a�=100 (Equation 6)

From the definition of the LCB, the probability that random variable YX* falls below the (100-a*)% LCB under

design parameter X* is given by

PðYX� < LCBa� ðX�ÞÞ = a�=100=PðYX� <gÞ (Equation 7)

, where LCBa� represents (100-a*)% LCB. From Equation 7, because, cumulative distribution function of Y is

strictly monotonically increasing,

LCBa� ðX�Þ = g (Equation 8)
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Regression model for oil sorbent materials Wang et al., 2020a, 2020b, supplemental
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0c11667

Software and algorithms
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GpyOpt version 1.2 Sheffield Machine Learning Software https://github.com/SheffieldML/GPyOpt

Platypus version 1.0 Platypus - Multiobjective Optimization

in Python

https://platypus.readthedocs.io/en/latest/

SciPy version 1.5 Virtanen et al., 2020 https://www.scipy.org/

Python version 3.6 Python Software Foundation https://www.python.org

Code for multi-objective Bayesian optimization

using the PA and achievement baseline
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If there is a design parameter X** that results in a lower value than X* in the (100-a*)% LCB,

LCBa� ðX��Þ< LCBa� ðX�Þ=g (Equation 9)

because the cumulative distribution functions of Y is strictly monotonically increasing, from Equation 9,

PðYX�� < LCBa� ðX��ÞÞ<PðYX�� <gÞ (Equation 10)

Again, from the definition of the LCB,

PðYX�� < LCBa� ðX��ÞÞ = a�=100 (Equation 11)

Therefore,

a� =100< PðYX�� <gÞ (Equation 12)

This contradicts the assumption that themaximum value of the goal achievement probability is a*%. There-

fore, X** cannot exist, and the solution of minimizing (100-a*)% LCB is also X*.

Performance metrics

Goal achievement rate (GAR) in T-th optimization step (Figure 6) is defined as follows:

GARðTÞ = Number of BO runs achiving the goals within T steps

Total number of BO runs
(Equation 13)

The minimum distances from the Pareto optimal solutions (Figure 7) were calculated by evaluating the dis-

tances of all the current designs explored and all approximated true Pareto solutions obtained by NSGA-

II(Deb et al., 2002). Formally, the average minimum distance (AMD) from the Pareto optimal solutions in T-

th step for 1,000 randomly sampled optimization trajectory is defined as follows:

AMDðTÞ =
P1000

n= 1mindistnðTÞ
1000

(Equation 14)

mindistnðTÞ = min
t =1.T ; m=1.M

½D2 ðY n;t ; PmÞ� (Equation 15)

where D2 is a function mapping a pair of vectors to Euclidean distance, Pm is a vector comprising the objec-

tive values of m-th Pareto optimal solution and Yn,t is a vector comprising the objective values of n-th

Bayesian optimization run in t-th step. M is a total number of the Pareto optimal solutions and was set

to 1000. Before calculating AMD, objective values were scaled by dividing by the difference between

the maximum and minimum values of each objective in the Pareto optimal solutions.

BAYESIAN OPTIMIZATION

The initial design parameters for Bayesian optimization were randomly selected. For benchmarks using

mathematical toy functions, the number of the initial design parameters for each toy problem was set ac-

cording to the number of design parameter dimensions plus 1. All Bayesian optimizations were performed

using a GpyOpt library by implementing multi-objective functionalities, with default GpyOpt settings used

unless otherwise stated. Gaussian process regression with the Matern52 kernel implemented in GPy and

the normal distribution noise model were used for the machine learning model driving Bayesian optimiza-

tion. Since the noise model assumed in the Gaussian process regression is the normal distribution, the

probability distribution of the objective property with design parameter X, predicted by Gaussian process

regression, also follows the normal distribution and acquisition functions were calculated using mean and

standard deviation of this normal distribution.

CALCULATION OF THE PROBABILITY OF ACHIEVEMENT

Optimizations of the probability of achievement (PA) were performed following the logarithmic transforma-

tion. Given design parameter, X, the log of the PA for M objective properties can be obtained as follows:

LogPAðXÞ =
XM
m= 1

Log

�
1�F

�
mmðXÞ � gm

smðXÞ
��

(Equation 16)

where, gm, m m and s m are the predefined goal, predicted mean and predicted standard deviation for the

m-th objective property, respectively. F is the cumulative distribution function of the standard normal dis-

tribution. Note that a classical experiment navigation method for the robust product design with noisy

measurements called Nakazawa method also uses a similar scoring function based on the joint probability
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of goal achievement.(Inage, 2019) And Bayesian optimization with the PA can be regarded as a machine

learning-based sequential implementation of this classical design method.

Calculation of the achievement function

Given the predefined goal gm for each objective property ym, the achievement function for M objectives is

defined as follows:

AchieveðY Þ =
XM
m= 1

ymwmr+ max
m= 1.M

½ðym �gmÞwm� (Equation 17)

where wm and r are predefined parameters. Note that the need for wm arises from scale difference in objec-

tive properties. According to previous studies in the operational research field,(Hakanen and Knowles,

2017) r was set to 0.05 and wm was calculated as the reciprocal number of differences between maximum

and minimum values in Pareto optimal design within the design parameters explored.

Bayesian optimization with LCB acquisition, implemented in GpyOpt was used to optimize the achieve-

ment function. In GPyOpt, the LCB acquisition is implemented as Equation 4, and default value of the

parameter a (a=2) was used.

Optimization of the acquisition function

Acquisition function optimizations were performed using the default protocol implemented in GPyOpt. In

this protocol, the putative global minimum (maximum for the PA) of the acquisition functions is searched by

1000 initial random searches and subsequent optimization of the top-5 local minimum using quasi-Newton

method, L-BFGS-B, implemented in SciPy.(Virtanen et al., 2020) Finally, a design parameter with the min-

imum searched-for value is selected for the next experiment.

Calculation of pareto optimal solutions

The multi-objective optimization methods that efficiently and thoroughly find the Pareto optimal solutions

have been well studied in the field of the operations research. Among them, Non-dominated Sorting Ge-

netic Algorithms-II (NGSA-II)(Deb et al., 2002) is one of the standard methods for optimization problems

with a few objectives. In order to obtain the Pareto optimal solutions, NGSA-II implemented in Platypus

library was used with sufficient number of optimization steps. The number of the obtained Pareto optimal

solutions for the six mathematical benchmark problems was set to 1000, while that for the virtual inverse

material design problem was set to 10000 in order to accurately evaluate experimental costs of finding Par-

eto optimal solutions.

Regression models for virtual material design experiment

For the virtual material design experiment, regression models constructed from experimental data were

used as a substitute for time-consuming real-world experiments. The regression models can be obtained

from the work of Wang et al.(Wang et al., 2020a; https://pubs.acs.org/doi/abs/10.1021/acsami.0c11667)

Judgment of Pareto optimal solutions

For the virtual material design experiment, average numbers of experiments before finding a first Pareto

optimal solution were evaluated (Figure 9C). A set of objectives is judged as Pareto optimal when it is

not Pareto-dominated by any of 10000 Pareto optimal solutions obtained by NGSA-II. Because, finding

of exact Pareto optimal solutions is unnecessarily difficult, a small value dwas added to each objective value

obtained by the Bayesian optimization before Judgment of Pareto optimal solutions. The small value d for

each objective was calculated as difference between the maximum and minimum values of each objective

in the true Pareto optimal solutions multiplied by 0.005.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance evaluations of the Bayesian optimization methods for mathematical multi-objective toy func-

tions were repeated 1000 times using randomly sampled settings of goals, and averages and 95% confi-

dence intervals obtained by bootstrap resampling were reported.
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Performance evaluations of the Bayesian optimization methods for the virtual material-design experiment

were repeated 100 times using randomly sampled initial design parameters, and averages and 95% confi-

dence intervals obtained by bootstrap resampling were reported.

Performance evaluations of the random sampling for the virtual material-design experiment were

repeated 1000 times, and averages and 95% confidence intervals obtained by bootstrap resampling

were reported.
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