
Article

Landscape of genomic imprinting and its functions
in the mouse mammary gland
Haibo Xu1,2,†

, Lina Zhao1,2,†
, Xu Feng1

, Yujie Ma1
, Wei Chen1

, Li Zou1
, Qin Yang1

, Jihong Sun3
,

Hong Yu4,
*, and Baowei Jiao1,5,6,

*

1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
2 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
3 Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
4 Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
5 KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences,

Kunming 650223, China
6 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
† These authors contributed equally to this work.
* Correspondence to: Baowei Jiao, E-mail: jiaobaowei@mail.kiz.ac.cn; Hong Yu, E-mail: blueyu000@zju.edu.cn

Edited by Luonan Chen

Genomic imprinting is an epigenetic modification of DNA, whereby gene expression is restricted to either maternally or paternally
inherited alleles. Imprinted genes (IGs) in the placenta and embryo are essential for growth regulation and nutrient supply.
However, despite being an important nutrition delivery organ, studies on mammary gland genomic imprinting remain limited. In
this study, we found that both the number of IGs and their expression levels decreased during development of the mouse mam-
mary gland. IG expression was lineage-specific and related to mammary gland development and lactation. Meta-analysis of
single-cell RNA sequencing data revealed that mammary gland IGs were co-expressed in a network that regulated cell stemness
and differentiation, which was confirmed by our functional studies. Accordingly, our data indicated that IGs were essential for the
self-renewal of mammary gland stem cells and IG decline was correlated with mammary gland maturity. Taken together, our find-
ings revealed the importance of IGs in a poorly studied nutrition-related organ, i.e. the mammary gland, thus providing a refer-
ence for further studies on genomic imprinting.
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Introduction
Genomic imprinting is an epigenetic event that results in bi-

ased parental-specific allelic expression in therian mammals
(Stringer et al., 2014). Imprinted genes (IGs) appear to be wide-
spread in eutherian mammals and marsupials, though remain
unreported in monotremes (Renfree et al., 2013; Stringer et al.,
2014). To date, nearly 150 IGs have been identified in mice
(Plasschaert and Bartolomei, 2014). There are several evolu-
tionary explanations for the existence of genomic imprinting,
including the kinship theory, the sexual antagonism theory,
and maternal-offspring coadaptation theory (Brandvain et al.,

2011; Patten et al., 2014). The core of parental conflict theory
is related to offspring development and nutrition supply.
Hence, organs that provide nutrition for the promotion of fetal
growth, and thus fetal fitness, are crucial in parental conflict
and IG expression (Wilkins, 2014).

As an essential mammalian organ for nutrition delivery and
fetal growth, the placenta is a primary target for studying the
quantity and function of IGs (Wagschal and Feil, 2006; Frost
and Moore, 2010). At present, most identified IGs in mice have
been found in the placenta (Tunster et al., 2013). Functional
studies show that placental IGs are crucial for embryonic devel-
opment and metabolism; for example, the paternally expressed
Igf2 gene is associated with nutrient transfer in the placenta
and is a positive regulator of embryonic growth (Zwart et al.,
2001). Conversely, H19, a maternally expressed gene located
in the same cluster as Igf2, restricts placental and embryonic
growth by reducing Igf1r expression (Keniry et al., 2012).
In addition, the maternally expressed Cdkn1c gene is
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associated with spongiotrophoblast restriction in the placenta
and is a negative regulator of embryonic growth (Zhang et al.,
1998). These placental studies provide evidence supporting
the parental conflict theory.

The functions of IGs are diverse and include nutrient transport
(Slc22a2, Slc22a3, and Slc38a4) (Jonker et al., 2003; Constancia
et al., 2005), signaling (Ins2 and Igf2) (Neirijnck et al., 2019),
transcription (Zac1) (Varrault et al., 2006), and cell cycle
(Cdkn1c) (Zhang et al., 1998). However, the previously identified
molecules and associated mechanisms cannot explain the
unique single-allele expression pattern of IGs. Earlier studies
demonstrated that IGs are often co-expressed as an imprinted
gene network (IGN) and undertake functions as a whole, includ-
ing the regulation of growth and metabolic processes (Varrault
et al., 2006; Gabory et al., 2009; Sandhu, 2010; Al Adhami
et al., 2015; Keverne, 2015). Furthermore, several IGs have been
found to modify the expression of other IGs contained within the
same IGN. For example, Zac1 regulates the expression of other
co-expressed IGs in the same IGN, including Igf2, H19, Cdkn1c,
and Dlk1, thus resulting in intrauterine growth restriction
(Varrault et al., 2006). Furthermore, H19 acts as a regulator
within the IGN that controls growth in mice (Gabory et al., 2009).
IGs can also regulate networks formed by other cell signaling
components (Sandhu, 2010; Al Adhami et al., 2015). For in-
stance, IGs are known to participate in extracellular matrix (ECM)
remodeling and ECM-linked signaling, leading to the regulation
of cell cycle exit and differentiation (Varrault et al., 2006; Al
Adhami et al., 2015). It should be noted, however, that IGN com-
ponents exhibit substantial plasticity and are highly dependent
on tissue type and developmental stage. For example, the IGN
targeted by H19 is found in postnatal organs but not in the pla-
centa (Gabory et al., 2009); furthermore, IGNs targeted by Peg3

in the hypothalamus and placenta differ considerably (Keverne,
2015). As such, the underlying mechanism and formation of
IGNs remain elusive. Deciphering IGNs in more tissues and de-
velopmental stages should shed light on these questions.

To date, genomic imprinting is well recognized in the pla-
centa, embryo, and several adult tissues (Tunster et al., 2013;
Babak et al., 2015; Perez et al., 2015; Andergassen et al.,
2017). However, studies on genomic imprinting patterns dur-
ing development, particularly in postnatal organs, remain lim-
ited. Similar to the placenta, the mammary gland is a unique
mammalian organ and a primary source of nutrition for all
newborns (Stringer et al., 2012). Although it is an obvious tar-
get for imprinting under maternal-offspring nutrition delivery,
systematic study of imprinting in the mammary gland is poor.
Here, we investigated the dynamic imprinting status and ex-
pression level of mouse IGs in breast tissue. Our results
revealed that the core functions of the IGs were metabolism
and development via a mammary gland-specific IGN.
Functional assay also indicated that the IGs in the mammary
gland were required for self-renewal of mammary gland stem
cells (MaSCs) and inhibited the differentiation of mammary
gland cells. Our study provides new evidence for the signifi-
cance of genomic imprinting in postnatal development.

Results
Imprinting status of IGs in mouse mammary gland

To investigate the status of IGs in the mouse mammary
gland, we performed genome-wide screening using reciprocal
crosses, as is reported previously (Perez et al., 2015). Two
mouse strains (i.e. PWK/PhJ and C57BL/6J) were selected due
to their divergent single-nucleotide polymorphism (SNP) sites
(Babak et al., 2015). We dissected breast tissue from nine F1

hybrid individuals for RNA-sequencing with relatively deep cov-
erage (Supplementary Table S1). Lactation day 15 (LD-15) was
chosen for sampling due to the maximum ratio of epithelium in
breast tissue at this stage. As a mouse reference genome is
only available for the C57BL/6J strain, we aligned the se-
quenced reads to the parental pseudogenomes as is reported
previously (Crowley et al., 2015) to improve alignment quality
and minimize bias caused by differences in genetic distance
between the parental genomes and reference sequence. Reads
that overlapped with parental SNPs with maximum consistency
(alleles reported from specific parent) were assigned to the cor-
responding parent (Huang et al., 2014). After relative log ex-
pression normalization of sequence libraries, we calculated the
parental expression bias of each gene across each individual
as well as parental expression significance using the
Integrative Statistics of alleLe Dependent Expression (ISoLDE)
method (Reynes et al., 2020). In total, we detected 23 and 26

IGs in LD-15 mice using the ‘threshold’ and ‘default’ methods
in ISoLDE, respectively (Figure 1A and B). Another four genes
(Impact, Kcnq1, Gnas, and Snhg14), previously reported as IGs,
did not pass low gene expression filtering (filterT step), al-
though they showed significant allele-specific expression.
Among the above 30 IGs (26 plus 4), 15 were significantly ma-
ternally expressed and 15 were significantly paternally
expressed. Most of these IGs showed strong allele-specific ex-
pression (parental bias >0.75), except for H13/Srgap1/
Slc22a1 (maternally expressed) and Impact (paternally
expressed) (Figure 1A, B, and E). Numerous IGs reported previ-
ously in other tissues (Plasschaert and Bartolomei, 2014) were
identified as non-imprinted due to bi-allelic expression (20),
strain bias expression (18), or undetectable expression (90) in
the LD-15 mammary glands using ISoLDE (Supplementary
Figures S2 and S3). At the peak lactation stage, a relatively
higher percentage of genes demonstrated strain effect bias
(n¼2614, Supplementary Figure S1F), whereas few genes
showed parental expression bias (n¼32, Supplementary
Figure S1E). Similar results were also observed at the virgin
and LD-3 stages (Supplementary Figure S1A–D). This variance
may be due to the existing large numbers of SNPs and INDELs
in hybrid mice, as strain bias expression is mainly controlled
by cis-regulatory elements (Crowley et al., 2015; Wang et al.,
2019).

To study the status of IGs during mammary gland develop-
ment, we analyzed IG expression at the virgin, early, and peak
lactation stages in the mammary gland based on our and other
published datasets (Andergassen et al., 2017). In total, 67

genes were identified as imprinted in at least one
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Figure 1 IGs identified by ISoLDE in mouse mammary gland. (A and B) IGs identified by ISoLDE at LD-15 stage using threshold (A) and de-
fault methods (B). (C and D) IGs identified by ISoLDE at virgin (C) and LD-3 (D) stages using threshold method. (E) Combination of statistical
results of IGs from virgin, LD-3, and LD-15 stages. Statistical significance of parental and strain bias was calculated by ISoLDE. In A–D, red
and blue indicate significant maternal and paternal bias expression, respectively. In E, symbols represent different sources/stages of mam-
mary gland tissues and colors indicate status of each gene (red, blue, and orange represent significant maternal, paternal, and strain bias
expression; green: significant parental bias expression, but not passing filter module; gray: bias direction agreement between replicates;
black: bi-allelic expression).
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developmental stage (Figure 1A–E), including 37 IGs not
reported previously. In general, the number of detected IGs
showed a decreasing tendency during development of the
mammary gland, with 48, 42, and 30 IGs at the virgin, early lac-
tation (LD-3), and peak milk secretion stages (LD-15). These
results are consistent with trends reported in the placenta,
brain, liver, and heart (Lui et al., 2008; Babak et al., 2015;
Andergassen et al., 2017). The 67 IGs could be roughly divided
into two sub-groups, i.e. stable IGs (parental expression bias
>0.7) and unstable IGs (parental expression bias <0.7). Stable
IGs tended to maintain their imprinting status or lose expres-
sion during development, whereas unstable IGs tended to alter
their imprinting status to bi-allelic expression or strain bias ex-
pression (Figure 1E; Supplementary Figure S2), which may be
responsible for the observed decrease in IG number in our
study. Notably, the number of overall detectably expressed
genes also decreased. Relative to the virgin stage, the propor-
tions of expressed genes (FPKM > 1) in LD-3 and LD-15 were
94.7% and 72.5%, respectively. In addition, the proportions of
expressed IGs in LD-3 and LD-15 were 87.5% and 62.5%, re-
spectively. Detectably expressed IGs showed a relatively higher
downtrend.

The status of IGs is generally controlled by the imprinting
control region (ICR) within the imprinted cluster, with IGs regu-
lated in such clusters (Edwards and Ferguson-Smith, 2007;
Bartolomei and Ferguson-Smith, 2011). Among the 37 newly
identified IGs (Supplementary Figure S3), 11 were located in or
in close proximity to known imprinted clusters (Supplementary
Figure S3), including the H13–Nnat cluster (Myh7b), Gnas–
Nespas cluster (Gm30189), Ube3a–Ndn cluster (Gm38393),
Grb10–Cobl cluster (LOC102631979), Dlk1–Dio3 cluster
(Gm26945 and Gm37899), and Slc22a3–Igf2r cluster (Slc22a1,
Gm16574, Gm23833, Gm7162, and Mas1), as well as two new
IGs (Srgap1 and Slc4a8) located near the ICR.

Cell lineage-specific expression of IGs in mammary gland
After identifying the status of IGs, we explored their expres-

sion patterns at single-cell resolution during differentiation and
development of the mammary gland using published 10�
Genomics data (Bach et al., 2017). Mammary gland epithelium
exhibits a well-established hierarchy consisting of MaSCs at
the apex and a series of progenitors and mature mammary
ducts and alveolar cells (Fu et al., 2020). Based on single-cell
RNA sequencing (scRNA-seq) data and the expression distribu-
tion of well-recognized lineage markers and dimension
reduction clustering, we identified eight cell lineages, similar
to that reported originally (Bach et al., 2017), including
MaSCs, basal cells, myoepithelial cells (Myo), luminal progeni-
tor cells (LumPro), luminal hormone sensing progenitor
cells (LumHorPro), luminal hormone sensing mature cells
(LumHorMat), luminal alveolar progenitor cells (LumAlvPro),
and luminal alveolar mature cells (LumAlvMat) (Supplementary
Figure S4A). The IGs demonstrated dynamic expression in the
mammary gland and their expression profiles in the MaSCs

were highly distinct from those in other lineages (Figure 2A and
module 1 of Figure 2B). Each cell lineage contained specific
IGs. Of note, 25 of the 71 mouse IGs, including Peg3, Ndn, and
Sgce, were exclusively and highly expressed in MaSCs
(Figure 2A), implying crucial roles of IGs for stemness mainte-
nance in MaSCs. The IGs were mainly grouped into four co-
expression modules based on Monocle-3 (Cao et al., 2019;
Figure 2B), with similar modules generated using WGCNA
(Langfelder and Horvath, 2008; Supplementary Figure S7A), fur-
ther confirming the lineage-specific expression of IGs. Using
the scRNA-seq data, our results showed that IGs were
expressed in a lower proportion of mammary gland epithelial
cells (Supplementary Figure S5A), although most IGs showed
high expression in epithelial cells (Supplementary Figure S5B),
which may account for the fewer IGs expressed or detected in
adult tissues in previous research (Babak et al., 2015). The
lineage-specific expression profiles suggested crucial roles of
IGs in stemness maintenance, cell differentiation, and lineage
determination in mammary glands.

IGNs and their functional implications in mammary glands
IGs are frequently co-regulated with each other and form co-

regulated networks with positive connections. Previous studies
have indicated that diverse IGs showed common functions pre-
dominately via IGNs (Varrault et al., 2006; Lui et al., 2008;
Gabory et al., 2009; Al Adhami et al., 2015). Our analysis of
scRNA-seq data showed that the IGs were co-expressed in two
super modules by Monocle-3 and WGCNA (Figure 2B;
Supplementary Figure S7), implying that separate co-
expression networks may exist,which differs from that found in
other tissues (Varrault et al., 2006; Lui et al., 2008; Gabory
et al., 2009; Al Adhami et al., 2015). To determine whether IGs
were more co-regulated/expressed than random gene pairs, we
first calculated the distribution of Pearson correlation coeffi-
cients (PCCs) between gene pairs in several gene sets (i.e. IG
set, same gene ontology (GO) term gene set, random gene set).
Results indicated that IG pairs showed higher correlation than
random gene pairs, and comparison between the gene ontol-
ogy biological process (GOBP) gene sets (pairs from the same
GOBP) and random gene sets was shown as a positive control
(Figure 2C). Moreover, the correlations between IG pairs within
a co-regulated gene module were higher than those IGs pairs
within the whole IG sets, indicating that IGs in the same mod-
ule had higher connectivity. Remarkably, the correlations be-
tween gene pairs within super module 1 (S1: module
1þmodule 4) were greater than those within super module 2

(S2: module 2þmodule 3) (Figure 2C). We then demonstrated
the connectivity between IGs by Cytoscape. Clearly, the IGN
was formed by two main sub-networks, which were negatively
correlated with each other (Figure 2D; Supplementary Figure
S7B and C). Furthermore, these sub-networks were divided by
lineage-specific expression pattern, but not by imprinting sta-
tus; for example, IGs highly expressed in MaSCs (e.g. Peg3,
Dcn, Ndn, Gnas, and Grb10) were more likely to group into sub-
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Figure 2 Expression profiles and co-expression network of IGs. Expression profiles were based on scRNA-seq data released from Walid T. Khaled’s
lab (Bach et al., 2017). Mammary gland IGs identified in our study and Priori mice IGs were combined for figure demonstration. (A) Dynamic expres-
sion patterns of IGs in each cell type in mammary gland. Genes were grouped based on expression modules calculated using Monocle-3.
(B) Heatmap showing co-regulated gene module of IGs across different cell lineages, plotted using plot_cells function in Monocle-3. (C) Correlation
distribution among IG, GOBP, and randomly selected gene sets, respectively. Based on expression patterns in B, IGs were spilt into two super
modules (S1: module 1 þ module 4, S2: module 2 þ module 3). Differences in positive PCCs between each gene set were determined by one-
tailed Wilcox test. (D) Co-expression network of IGs based on value of PCCs (jPCCsj > 0.4 and P < 0.01). Node color representing co-expres-
sion module and edge color being proportional to correlation (red: gene pairs with positive PCC values; blue: gene pairs with negative PCC val-
ues). (E) Heatmap showing functional relevance of IGs based on GSEA using IG co-expressed genes. Color in red and blue indicated that IG
was positively and negatively correlated with relevant GO term, respectively. Yellow represents no correlation. (F and G) GO enrichment analy-
sis of bi-allelically expressed genes (those genes connected with >5% of total expressed IGs) co-expressed within sub-network 1 (F) and sub-
network 2 (G). Top 20 significant GOBP and KEGG terms enriched in each sub-network are shown.
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network 1 and IGs in the differentiated populations were more
likely to group into sub-network 2, further implying the crucial
functions of IGs in MaSCs. Taken together, these results
suggest that the IGN in the mouse mammary glands was
composed of two sub-networks.

To interpret the common biological functions of IGs, we per-
formed gene set enrichment analysis (GSEA) based on the expres-
sion correlation between IGs and non-IGs, as per previous study
(Iyer et al., 2015; Green et al., 2017; Wang et al., 2017b). We esti-
mated PCCs from expression levels between each IG and all other
genes and conducted GSEA with ranked PCCs. An association ma-
trix was built between those IGs and significant GO gene sets
(P<0.05). The GO gene sets could be roughly clustered into
groups based on functional similarity, including transcription/
translation, signaling, cell cycle, membrane, adhesion, develop-
ment, cell fate, chromatin modification, immunity, metabolism,
and nutrition storage (Supplementary Table S2). Of note, the IGs
in the same co-regulated modules were enriched in similar biolog-
ical functions (Figure 2E), indicating that IGs in the same co-
regulated module may function similarly. The highly expressed
IGs in MaSCs (super module 1) were predominantly enriched in
functions related to development and cell signaling, whereas
those highly expressed in differentiated cells (super module 2)
were especially enriched in metabolism and nutrition storage.

The existence of IGNs has been proven in several studies
and are considered to function as a whole by targeting a pre-
existing machinery to perform regulatory functions and stabi-
lize organ systems (Lui et al., 2008; Gabory et al., 2009; Al
Adhami et al., 2015). To investigate the enriched biological
functions of each sub-network, we treated the sub-network as
an integral and used co-expressed non-IGs in each sub-
network to perform DAVID enrichment analysis (i.e. GO terms
and KEGG pathways). The first sub-network was enriched in
genes associated with ECM, similar to earlier results (Al
Adhami et al., 2015), and associated with development, cell
proliferation, cell differentiation, and the Wnt and PI3K–AKT
signaling pathways (Figure 2F; Supplementary Table S3). The
second sub-network was significantly enriched in genes in-
volved in transport, metabolic processes, and mammary epi-
thelial cell differentiation associated pathways (e.g. Notch,
Hippo, Prolactin, and Erbb signaling pathways) (Figure 2G;
Supplementary Table S3). This method generated similar bio-
logical functions as that observed from GSEA for each IG.

Overall, our results showed that IGs in the mammary gland
constituted an IGN composed of two less-connected sub-net-
works. Genes in different sub-networks targeted diverse regula-
tory genes and functioned differently.

Effects of IG expression changes on self-renewal and differentia-
tion of mammary gland cells

Based on the above evidence related to stem cells (Figure 2),
we examined those IGs associated with the regulation of cell
stemness in mouse mammary gland primary cultured epithelial
cells. Using a well-recognized mammosphere forming assay for

self-renewal in vitro, our results indicated that knockdown of
Peg3, Sgce, and Ndn significantly reduced the self-renewal
ability of MaSCs (Figure 3A–C), consistent with the higher ex-
pression levels of those IGs in the MaSC lineage
(Supplementary Figure S4B–D). Moreover, we performed an
in vivo assay to demonstrate the functional roles of IGs in
MaSCs. When expression levels of Sgce were reduced in the
mammary gland epithelial cells, MaSC activity was significantly
inhibited, as reflected by decreased reconstitution and ductal
outgrowth after transplantation into cleared fat pads
(Figure 3D). These results were consistent with our PCC-based
GSEA analyses (Figure 2E; Supplementary Table S2), in which
the expression levels of Peg3, Ndn, and Sgce were positively
associated with the Wnt signaling pathway (Peg3: P¼0.002,
NES ¼ 1.82; Ndn: P¼0.03, NES ¼ 1.57; Sgce: P¼0.05, NES ¼
1.52), PI3K–AKT (Peg3: P¼0.003, NES ¼ 1.48; Ndn:
P¼0.0002, NES ¼ 1.70; Sgce: P¼0.003, NES ¼ 1.46), and
negatively associated with epithelial cell maturation (Peg3:
P¼0.03, NES ¼ �1.65; Ndn: P¼0.056, NES ¼ �1.54; Sgce:
P¼0.02, NES ¼ �1.71). Taken together, these results con-
firmed the essential roles of IGs in MaSCs.

To study the function of IGs in lactation differentiation of
mammary epithelial cells, we selected two IGs (Sgce and
Ube3a) and detected their expression by immunofluorescence
assay. Results showed that their expression levels were mark-
edly lower during lactation (Figure 4A), as further confirmed by
quantitative reverse-transcription polymerase chain reaction
(qRT-PCR) results (Supplementary Figure S6A). We then used
the HC11 cell line, a prolactin-responsive cell line and suitable
model, to study mammary epithelial cell differentiation in vitro
(Perotti et al., 2009). Results indicated that knockdown of Sgce
and Ube3a promoted the formation of dome-like structures
(Figure 4B and C), suggesting that low IG expression promoted
differentiation of the HC11 mammary epithelial-like cells.
Moreover, the expression levels of lactation-related genes were
up-regulated in the Sgce knockdown HC11 cell line (Figure 4D).
We also found that the HC11 cells enhanced the expression of
HC11 differentiation markers after Sgce knockdown before DIP
medium treatment for RNA-seq (Figure 4E), further confirming
the above cell differentiation results.

In short, our results demonstrated that interference with IG
expression impacted self-renewal and induced differentiation
of mouse mammary gland epithelial cells.

Discussion
Previous studies have shown that IGs form co-regulated net-

works in the placenta, hypothalamus, and various cell lines
(Varrault et al., 2006; Lui et al., 2008; Gabory et al., 2009;
Al Adhami et al., 2015; Keverne, 2015). Our constructed IGN in
the mammary gland further confirmed the existence of such
networks in postnatal organs. In the mammary gland epithelial
cells, this IGN showed some differences as it primarily con-
sisted of two negatively correlated sub-networks. We also ob-
served that sub-network 1 had similar components as the H19-
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Figure 3 Involvement of IGs in MaSCs. (A–C)The number of colonies formed in mammosphere assay when Peg3, Ndn, and Sgce were
knocked down in primary mammary cells (n ¼ 8 replicates for A; n ¼ 6 replicates for B and C; data represent mean 6 SD). (D) Results
of transplantation assay. In pie graph below representative images, each circle represents one mammary gland, with black area
representing degree of gland filling with outgrowth. Statistical significance was calculated by Student’s t-test compared to sh-Control
group. **P < 0.01.
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Figure 4 Involvement of IGs in differentiation of mammary cells. (A) Immunofluorescence of Ube3a and Sgce in different mammary gland
development stages. (B and C) Dome formation assay in Ube3a and Sgce knockdown HC11 cells (n ¼ 10 replicates; data represent mean
6 SD). (D) Expression of milk-related genes in Sgce knockdown HC11 cells in dome formation assay. (E) Heatmap showing expression
alteration of HC11 cell differentiation markers, adopted from previous study (Perotti et al., 2009), after Sgce knockdown before DIP
medium treatment. In B–D, statistical significance was calculated by Student’s t-test compared to sh-Control group. In E, statistical
significance was calculated using edgeR with glmQLFTest. *P < 0.05; **P < 0.01; ***P < 0.001.
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or Zac1-regulated IGNs reported previously (Varrault et al.,
2006; Gabory et al., 2009). As Zac1 (also named Plagl1) and
H19 were both highly co-expressed in sub-network 1 (Figure 2A
and D; Supplementary Figure S7C), these two genes may be
core regulators for the co-regulation of sub-network 1.
Previously, Dr Zhu’s lab (Liu et al., 2017) predicted that H19

can bind to the genomic region of several IGs to form a RNA–
DNA–DNA triplex structure. We confirmed the existence of
this triplex structure at the genomic region of Kcnq1ot1 and
Cdkn1c by ChIRP assay (Supplementary Figure S7D and E),
thus providing evidence of how partial IG connected with
each other. The segmentation of sub-networks with negative
correlation differs from that reported by Al Adhami et al.
(2015), who did not observe the existence of sub-networks
and found all IGN components to be positively connected.
This suggests that different regulatory mechanisms or differ-
ent biological functions of sub-networks may be present in
mammary gland epithelial cells.

Based on the co-expression connectivity between IGs and
non-IGs, as well as the GSEA results, our data revealed that the
IGs were connected to non-IGs in both sub-networks, which
were related to different biological functions. For example, in
sub-network 1, many genes were enriched in cell signaling path-
ways (e.g. WNT, PI3K–AKT, VEGF), cell differentiation, cell prolif-
eration, development processes, and ECM organization. These
processes, including ECM remodeling, are known to control
stem cell behavior (Al Adhami et al., 2015). These enrichment
results are consistent with previous reports that Zac1- and H19-
regulated IGNs are critically involved in embryonic and postna-
tal growth and stemness (Varrault et al., 2006; Lui et al., 2008;
Gabory et al., 2009; Berg et al., 2011). Interestingly, genes in
sub-network 2 were enriched in transport and metabolic pro-
cesses, which has not been described in previous IGNs. Earlier
studies focusing on single IGs have demonstrated that various
IGs are associated with metabolism, including Nnat (Millership
et al., 2018) and Rasgrf1 (Font de Mora et al., 2003). Notably,
these IGs were also found in sub-network 2. Considering that
the mammary gland is a nutrition delivery organ and highly cor-
related with lipid and protein metabolism (Bequette et al.,
1998; Rudolph et al., 2007; Osorio et al., 2016), these results
suggest that sub-network 2 may be associated with lactation
function. Taken together, in the mammary gland, IGs were co-
expressed or co-regulated within two sub-networks by targeting
different pre-existing machinery to execute corresponding bio-
logical processes in gland development and lactation.

Previous studies have indicated that IGs are dynamic in terms
of temporal and spatial regulation during embryogenesis and
brain development (Babak et al., 2015; Perez et al., 2015;
Andergassen et al., 2017). In this study, based on bulk-seq data
from the mammary gland, we demonstrated a decreasing ten-
dency in imprinting number and expression levels in mouse IGs
during mammary gland development. Earlier research reported
that IGs exhibit lower expression and loss of imprinting status
in human breast cancer, and that the loss of imprinting is often
regulated by the down-regulation of the previously activated

allele, leading to higher relative expression of the (imperfectly)
silenced allele (Goovaerts et al., 2018). In this study, however,
although IGs in the mouse mammary gland showed low expres-
sion and loss of imprinting status during development, this loss
was mainly due to inconsistent parental allele bias across repli-
cates rather than a reduction in allele bias. These results imply
different mechanisms in regulating the imprinting status of IGs
between normal tissue development and disease. It should be
noted, however, that mammary gland tissue is heterogeneous
and IGs show cell lineage-specific expression. Thus, further in-
vestigation on IG status at the single-cell level may offer insight
into the links between imprinting status regulation and the bio-
logical function of IGs.

IGs play regulatory roles in fetal growth and early embryogen-
esis (Plasschaert and Bartolomei, 2014). Various studies have
demonstrated the importance of normal IG expression in dis-
ease and adult stem cells. For example, H19 is involved in the
maintenance of adult hematopoietic stem cell populations in
mice (Venkatraman et al., 2013; Plasschaert and Bartolomei,
2014) and loss of Dlk1, a paternally expressed gene, in neural
stem cells is important for postnatal neurogenesis (Ferron
et al., 2011). The mammary gland is a special organ, which
experiences rapid development after birth. In this study, we
detected the expression profiles of IGs in general and found
that they were lowly expressed during lactation and in differen-
tiated mammary epithelial cells (Figure 2A; Supplementary
Figure S6). These results imply that lower expression of partial
IGs is required for differentiation of mammary epithelial cells
and IGs are important for stemness maintenance. The overex-
pression of Peg1, a paternal gene showing low expression dur-
ing lactation, has been shown to inhibit b-casein induction
during HC11 lactogenic differentiation, and thus decrease dif-
ferentiation capacity (Yonekura et al., 2019). Our data further
confirmed that lower expression of Sgce and Ube3a increased
differentiation ability, as observed in the dome formation assay
and by marker gene levels (Figure 3). Thus, these results dem-
onstrate that IGs play important roles in MaSC maintenance
and mammary gland cell differentiation.

Materials and methods
Mice

The F1 hybrids were generated by reciprocally crossing
C57Bl/6J and PWK/PhJ mouse strains. Mouse mammary gland
tissues from F1 mice were collected at LD-15 and dissected. In
total, five C57BL/6�PWK/PhJ F1 hybrids and four PWK/PhJ �
C57BL/6 F1 hybrids were sampled. All experimental and animal
care and handling procedures were performed per the proto-
cols approved by the Ethics Committee of the Kunming Institute
of Zoology, CAS.

RNA extraction and sequencing
Total RNA was extracted using TRIzol reagent (Life

Technologies). The RNA concentrations and A260 nm/A280 nm
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ratios were quantified with a NanoDrop ND-1000 spectropho-
tometer (Thermo Scientific). The RNA samples were sequenced
on an Illumina X-Ten platform following the specified protocols
for mRNA sequencing sample preparation.

Read alignment and assignment
Sequenced reads were quality controlled using Trimmomatic

(v0.36) (Bolger et al., 2014). To improve alignment quality and
minimize bias caused by differences in genetic distances be-
tween parental genomes and the reference sequence, we
adapted a previous analysis strategy (Crowley et al., 2015) by
aligning the sequenced reads to the parental ‘pseudoge-
nomes’. Later, we used pylapels and Suspenders to transfer
the coordinates each mapping result back to mm10 reference
genome and identify the reads parental origination (Huang
et al., 2014). The IGs were identified using the ISoLDE script fol-
lowing the recommended workflow with the threshold and/or
default methods (if more than 3� 2 replicates were available).
The assignment of parental reads and identification of IGs is
described in the Supplementary material.

The RNA-seq data from the HC11 cell line were directly
mapped to the mouse genome (mm10) using Hisat2 (Kim et al.,
2019) with the Ensembl gene annotation file (Release 96) after
read quality control. The featureCounts pipeline was used to
produce a table of read counts at the gene level (Liao et al.,
2014). Differential expression analysis was performed using
edgeR (Robinson et al., 2010).

Transcriptome annotation file
Gene annotation file for IGs identification was generated by

merging three annotation sources, i.e. the Ensembl (Wang
et al., 2011), RefSeq (Andergassen et al., 2017), and tran-
scripts newly assembled using RNA-seq data from the hybrid
individuals sequenced in this study and RNA-seq data
fromAndergassen et al. (2017). Details are described in the
Supplementary material.

The priori IGs were retrieved from www.geneimprint.com and
www.har.mrc.ac.uk/research/genomic_imprinting. Information
on protein coding gene-associated GOBP terms was retrieved
from the Ensembl BioMarts database for GSEA.

scRNA-seq data analysis
The scRNA-seq data were downloaded from the NCBI GEO

database released from Walid T. Khaled’s lab (Bach et al.,
2017). The input files were preprocessed using the Seurat
package (v3.1) (Stuart et al., 2019). Cells were quality con-
trolled by the total number of genes, unique molecular identi-
fiers, and percentage of molecules mapped to mitochondrial
genes. Cells underwent preliminary dimensionality reduction
(linear and non-linear dimensional reductions were performed
by RunPCA and RunUMAP, respectively) to remove non-
epithelial cells using corresponding cell markers (e.g. epithelial

cells: Epcam, Cd24a, Cd29, Krt14, and Krt18; immune cells:
Cd74, Cd72, and Cd54; endothelial cells: Eng, S1pr1, and
Emcn; and pericyte cells: Des and Cspg4). Clusters that showed
high expression of different epithelial lineage markers (e.g.
clusters that expressed basal and luminal markers concur-
rently) were classified as doublet clusters and were removed to
reduce potential impact on bioinformatics calculations (Bach
et al., 2017). Finally, the MaSC, basal, myoepithelium, and lu-
minal cells were included for downstream analysis. The scRNA-
seq data only sequenced a small fraction of transcripts present
in each cell, which can result in unreliable quantification of
genes with low or moderate expression and can thus hinder
downstream analysis (Huang et al., 2018), including PCC analy-
sis between gene pairs. Hence, we used SAVER to recover gene
expression. To reduce computational burden and time con-
sumption, we re-sampled 500 cells from each lineage if feasi-
ble. In total, 3843 cells were used for gene expression recovery
and downstream PCC calculation.

Functional annotation of IGs using GSEA
PCCs between each gene were calculated in R using the

Hmisc package. Genes significantly correlated (P�0.01) with
specific IGs were ranked by PCCs and were chosen for GO en-
richment assessment using the fgsea package (Sergushichev,
2016), which meant using the ranked PCCs instead of ranked
logFC for downstream analysis. We established an association
matrix between the IGs and significant GOBP gene sets
(P�0.01), with 1, �1, and 0 corresponding to positive, nega-
tive, and no significant correlation, respectively. The heatmap
of GO enrichment was plotted using pheatmap in R.

IGN construction
The co-regulation or co-expression modules of IGs were ana-

lyzed using Monocle-3 and WGCNA, respectively. The gene ex-
pression matrix recovered by SAVER was used for this analysis.
For Monocle-3, find_gene_modules were used for module con-
struction with default parameters. For WGCNA, the co-
expression profile was calculated with appropriate parameters
(e.g. softPower¼12, type¼‘signed’, MEDissThres¼0.7) using
step-by-step network construction and module detection strate-
gies. The IGs distributed in each module were then retrieved.
The connectivity between each IG was calculated three ways:
(i) Directly using an appropriate cut-off value (e.g. jPCCsj > 0.4
and P<0.01); (ii) Constructing connectivity using WGCNA and
‘threshold ¼ 0.1’ to export the network to Cytoscape; (iii) Using
mutual rank (MR) cut-off (MR < 575). The calculation of MR and
construction of IGN is described in the Supplementary material.
The connections within the network were demonstrated by
Cytoscape. The biological functions of the sub-networks were
analyzed using DAVID with the corresponding linked non-IGs in
each sub-network, respectively. For each IG, the indicated bio-
logical functions were inferred by co-expressed non-IGs using
the enrichGO and enrichKEGG functions in clusterProfiler (Yu
et al., 2012).
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Dome formation assay
The HC11 cells were grown in RPMI-1640 medium supple-

mented with 10% fetal bovine serum (FBS), 5 lg/ml insulin, 5

lg/ml gentamicin sulfate, and 10 ng/ml epidermal growth fac-
tor (EGF). For lactogenic differentiation assay, confluence HC11

cells were starved for 24 h without EGF, followed by the addi-
tion of DIP medium (1 lM dexamethasone, 5 lg/ml insulin, and
5 lg/ml prolactin).

Immunofluorescence
Mammary glands at different developmental stages were fixed in

4% paraformaldehyde (PFA) and embedded in paraffin. For immu-
nofluorescence, sections were rehydrated in graded alcohol, with
antigen retrieval then carried out in 10 mM sodium citrate buffer for
20 min. The slides were blocked for 2 h in 10% goat serum, then in-
cubated with primary antibodies at 4

�C overnight. Slides were
washed with phosphate-buffered saline (PBS) three times (5 min
each time) and incubated with secondary antibodies for 1 h at
room temperature. The primary antibodies used were Sgce (1:100,
Abcam) and Ube3a (1:100, Proteintech) and the secondary anti-
body used was fluorescein-labeled anti-rabbit (1:200, KPL).

qRT-PCR
Total RNA was extracted using TRIzol reagent and then con-

verted to cDNA using a PrimeScriptTM RT reagent kit in accor-
dance with the provided instructions. After this, qRT-PCR was
performed on a QuantStudio 3 instrument using SYBR Green
PCR Master Mix. Primer sequences used for qRT-PCR analysis
are listed in Supplementary Table S4.

Mammosphere formation assay
MaSCs can be maintained and passaged in vitro as spheres

cultured in suspension and mammosphere counts can repre-
sent self-renewal ability (Guo et al., 2012). Mammary gland epi-
thelial cells were cultured as is reported previously
(Chakrabarti et al., 2012). The primary mammary gland epithe-
lial cells were transfected with vectors and then plated into 96-
well, ultra-low attachment plates at a density of 20000 cells/ml
and then incubated at 37

�C for 2 weeks. After this, the number
of mammospheres was counted.

Transplantation assay
The single-cell suspension of mammary epithelial cells with

Sgce knockdown was prepared for injection into cleared fat pads.
The transplantation assay was performed with different numbers
of Sgce knockdown mammary primary cells re-suspended in 50%
PBS and 50% Matrigel. The MaSC frequency was calculated using
extreme limiting dilution assay (ELDA) (Lim et al., 2010).

ChIRP assay
Triplex forming oligonucleotide (TFO) information was re-

trieved from the LongTarget website (http://lncrna.smu.edu.

cn/show/download) (Liu et al., 2017). The RNA sequences at
position 4–50 nt (TFO1) and 1870–1926 nt (TFO2) of H19 la-
beled with biotin were used. This assay was performed follow-
ing previously published protocols (Postepska-Igielska et al.,
2015) and our earlier research (Wang et al., 2018). In this as-
say, cell nuclei of HC11 cell line were sonicated (20 cycles, 30

sec ON and 45 sec OFF) and spun at 10000 rpm for 5 min at 4
�C.

Data access
The raw sequence data reported in this paper were deposited

in the Genome Sequence Archive (Wang et al., 2017a) in the
BIG Data Center, Beijing Institute of Genomics (BIG), Chinese
Academy of Sciences, under accession numbers CRA001791

and CRA002258, which are publicly accessible at http://bigd.
big.ac.cn/gsa. The accession numbers of other data adopted
from the NCBI GEO and SRA data repository are GSE106273

and SRP067322, respectively.

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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