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Abstract

Most normative models in computational neuroscience describe the task of learning as the

optimisation of a cost function with respect to a set of parameters. However, learning as opti-

misation fails to account for a time-varying environment during the learning process and the

resulting point estimate in parameter space does not account for uncertainty. Here, we

frame learning as filtering, i.e., a principled method for including time and parameter uncer-

tainty. We derive the filtering-based learning rule for a spiking neuronal network—the Syn-

aptic Filter—and show its computational and biological relevance. For the computational

relevance, we show that filtering improves the weight estimation performance compared to

a gradient learning rule with optimal learning rate. The dynamics of the mean of the Synaptic

Filter is consistent with spike-timing dependent plasticity (STDP) while the dynamics of the

variance makes novel predictions regarding spike-timing dependent changes of EPSP vari-

ability. Moreover, the Synaptic Filter explains experimentally observed negative correlations

between homo- and heterosynaptic plasticity.

Author summary

The task of learning is commonly framed as parameter optimisation. Here, we adopt the

framework of learning as filtering where the task is to continuously estimate the uncer-

tainty about the parameters to be learned. We apply this framework to synaptic plasticity

in a spiking neuronal network. Filtering includes a time-varying environment and param-

eter uncertainty on the level of the learning task. We show that learning as filtering can

qualitatively explain two biological experiments on synaptic plasticity that cannot be

explained by learning as optimisation. Moreover, we make a new prediction and improve

performance with respect to a gradient learning rule. Thus, learning as filtering is a prom-

ising candidate for learning models.

1 Introduction

In computational neuroscience, most normative models frame learning as optimisation of a

static cost function with respect to a set of parameters, such as synaptic efficacies [1–9] or a
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neuron’s excitability [10, 11]. Different cost functions have been used to reproduce or predict

experimental findings, such as a measure of sparseness and information preservation [12],

mutual information [1], the probability of timed postsynaptic spiking [13, 14], the mutual

information of input and output spike trains [15, 16], the network sensitivity [17] and free

energy [18].

However, learning as optimisation has the drawback of not taking parameter uncertainty

into account [19]. When few training data are available compared to the number of model

parameters, the parameter space is not sufficiently constrained, i.e., multiple parameter instan-

tiations yield comparable model performance. Optimisation selects the best performing

parameter, thereby ignoring the inherent parameter uncertainty present in a (probabilistic)

model. This contributes to the problem of overfitting, i.e., the resulting performance on the

training data does not generalise to the testing data [20, 21] Moreover, many decision-making

models require as input not only the most likely prediction but also prediction uncertainty

[22]. To obtain accurate prediction uncertainty, the contribution of parameter uncertainty

must be taken into account (e.g. [23]). Thus parameter uncertainty is computationally relevant

for avoiding overfitting and the estimation of prediction uncertainty.

Learning as static optimisation is further limited because it lacks a principled way of

accounting for a dynamic environment during learning. Often the data distribution is assumed

to be static, i.e., independent of time. However, in many settings the environment and, thus,

the data distribution, are dynamic. For example, the association between a location and the

availability of food is not static when the source of food depletes or moves over time. For the

learner, dynamic environments pose the additional challenge of determining the speed of

learning. A slow learner fails to adapt to quickly changing environmental statistics while an

overly fast learner might disregard past data prematurely. The question of how to account for a

dynamic environment during learning is closely related to continual learning, i.e., the task of

sequentially learning from multiple data sets while maintaining (testing) performance on all

previously observed ones [24, 25]. Here, the dynamics of the environment translate into the

sequential availability of data sets.

The relation between time and uncertainty has been addressed in neuroscience under sev-

eral conditions [26, 27]. For instance, flies learn odour association and adapt their forgetting

rate of old associations [28, 29]. Similar experiments have been conducted with rodents [30,

31]. Uncertainty of rewards has been studied in the prefrontal and cingulate cortex based on

reinforcement learning models [32]; and several neuro-modulators have been identified that

influence choices under uncertainty [33, 34]. The uncertainty related to a whisker stimulus is

directly related to neuronal activity in the rat barrel cortex [35]. Uncertainty has also been

linked to neuronal codes [35, 36] and many aspects of perception and decision making [37]. In

the context of plasticity, uncertainty of synaptic weights has been linked to spine turnover

[38].

Normative models of learning can benefit from going beyond the framework of static opti-

misation by including parameter uncertainty and time in the learning task. However, it

remains unclear which framework could prove to be a fruitful alternative. Here, we propose to

address the problem of learning by using the filtering framework. Filtering is the preferential

way to include time and uncertainty since it continuously computes the posterior distribution

(also called the filtering distribution) of a latent variable from all the observations up to time t.
Filtering theory was first developed for linear problems [39–42] and then generalised to a

proper nonlinear filtering by mathematicians in the 60’s [43, 44]. For a review on nonlinear fil-

tering, see [45, 46]). See also [39] for practical applications of linearised filters. We apply learn-

ing as filtering to synaptic plasticity, a field in which the need for new learning paradigms has

become apparent [47].
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In a continuous-time spiking neuronal network, we derive the update rule for the synaptic

weight distribution and call it the Synaptic Filter. The Synaptic Filter is computationally rele-

vant because it outperforms a gradient rule with optimised learning rate parameter in a

dynamic weight estimation task, confirming a previous result obtained in a discrete-time set-

ting and without including weight correlations [48]. Leveraging the continuous-time setting

and weight correlation, the Synaptic Filter makes three experimental predictions. First, the

mean synaptic weight change depends on the precise timing of pre- and postsynaptic spikes

and is therefore reminiscent of spike-timing dependent plasticity (STDP), which yields long

term potentiation (LTP) of the synaptic strength if the postsynaptic spike follows the presynap-

tic spike (within a certain time window) and long term depression (LTD) otherwise [49, 50].

Normative models of STDP have provided a consistent view of the pre-post LTP lobe [4–7, 9,

13]. Pre-before-post pairs induce LTP and thereby reinforce causality. Therefore the time con-

stant of LTP reflects the EPSP time constant. However, normative models do not provide a

unifying view on the LTD window [13]. Here, we provide a novel computational rationale for

the LTD lobe, namely to compensate for a change in bias. Secondly, based on the hypothesis

that EPSP variability encodes synaptic weight uncertainty [48] we formulate the novel predic-

tion that EPSP variability also changes as a function of the precise timing of the spikes. Finally,

weight changes induced by joint pre- and postsynaptic activity at one synapse can induce

weight changes at synapses that did not receive presynaptic input, reminiscent of the phenom-

enon of heterosynaptic plasticity. Indeed, our learning rule can explain the negative correlation

between homo- and heterosynaptic plasticity observed in experiments [51].

2 Results

2.1 The Synaptic Filter

The goal of learning is to find predictive functions from training data D which map inputs x
to outputs y, typically based on a parametrised generative model. The generative model speci-

fies how the output y of the predictive function is computed from the parameters w and the

input x. Accounting for a dynamic environment on the level of the generative model makes

the data and the parameter w time dependent. Accounting for the fact that many parameter

instantiations are compatible with the training data, learning corresponds to computing pre-

dictions based on parameter uncertainty. Thus, a given static generative model for learning

can be generalised by including the assumption of a dynamic environment or parameter

uncertainty.

Including both, time and parameter uncertainty, yields the framework of learning as filter-

ing. Fig 1A illustrates how filtering generalises the static optimisation approach, which is the

dominant learning framework. The learning task of static optimisation is to find a point esti-

mate w? in parameter space given the generative model and the data D. By including parame-

ter uncertainty, the learning task generalises to inferring the posterior distribution over

parameters pðwjDÞ. In the limit of infinite data and for a convex parameter landscape, the

parameter distribution collapses around a point, yielding similar results for parameter optimi-

sation and inference, i.e., pðwjDÞ � dðw � w?Þ. However, in many problems equivalent min-

ima exist and the amount of data is limited such that the posterior distribution is not well

approximated by a point estimate. Another extension of static optimisation considers dynami-

cally changing environmental statistics, i.e., a time-dependent data distribution. In this case,

the learning task is to track the optimal parameter as a function of time w?
t . In a filtering frame-

work, which includes both parameter uncertainty and time, the task is to compute the so-

called filtering distribution over the weights as a function of time pðwtjDtÞ given all previous

observations up to time t.
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A generative model to study spike-based plasticity. To study learning as filtering in the

context of spike-based plasticity, we consider a generative model with time-dependent param-

eters wt 2 R
d
, the weights. In contrast to learning as static optimisation, we do not assume that

the weights are fixed. Changes in the weights reflect changes in the statistics of the environ-

ment. Here, we assume that the weights follow an Ornstein-Uhlenbeck (OU) process with

mean μou = 0, diagonal equilibrium covariance matrix Sou ¼ s
2
ou1 with (non-zero elements)

s2
ou ¼ 1 and time scale τou:

dwt ¼ t
� 1
ou ðmou � wtÞdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

out
� 1
ou

p
1dVt; ð1Þ

where Vt is a d-dimensional Wiener process. The process in Eq (1) can be represented as

Gaussian transition probability: pðwtjwt� dtÞ ¼ N ðwt� dt þ t
� 1
ou ðmou � wt� dtÞdt; 2s2

out
� 1
ou 1dtÞ. The

limit of a large OU time constant represents a static environment while the limit τou! 0 rep-

resents an environment that changes too fast for meaningful learning. The choice of parame-

ters can also be motivated from the perspective of the resulting learning rule. Zero mean yields

a weight decay on the time scale τou. Weight decay has been observed experimentally [52]. A

diagonal covariance matrix reflects the assumption that weights are not correlated in the

Fig 1. (A) Learning tasks can be static or dynamic, and deterministic or stochastic. (B) The generative model represents the

assumption that the observed spike train yt was generated from a tutor network with the same input xt and hidden weights wt. (C)

Graphical model representation of the generative model (top), the Synaptic Filter (bottom) with deterministic dependencies shown

in gray and probabilistic ones in red. (D) Time series of a ground truth weight (black) in the tutor network and weight distribution

(red, shaded area = 2-SD) learned by the student network along with the weight learned by a gradient learning rule (gray) with

learning rate η = 0.08. Between t = 100 s and t = 200 s, both learning rules fail to closely follow the sharp drop in the hidden weights.

In this interval, the estimated uncertainty from the Synaptic Filter is higher which leads to larger update steps and faster learning.

https://doi.org/10.1371/journal.pcbi.1009721.g001
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absence of inputs. As we show in section 2.5, one way to study the effect of non-diagonal

covariances on learning is by preconditioning with a spiking protocol of highly correlated

inputs.

At each moment in time, the weights relate the input spike trains to the output spike of a

single neuron via the observation probability p(yt|x0:t, wt). For the observations, we assume a

Spike-Response Model [53]. The output spikes yt are generated stochastically from a mem-

brane potential ut with time constant τm = 25 ms via an inhomogeneous Poisson point process.

To connect the membrane potential to the firing rate of the Poisson process, we choose an

exponential gain function. Exponential gain functions have been established as a phenomeno-

logical model of neocortical pyramidal neurons. They represent a neuron close to the onset of

firing but exclude saturation effects of the firing rate at high values of the membrane potential

[54]:

yt � PoissonProcessðgðutÞÞ ð2Þ

gðutÞ ¼ g0 expðbutÞ; ð3Þ

where g0 is the baseline firing rate. The determinism parameter β controls how strongly

changes in the membrane affect the firing rate. For β!1, the neuron´s firing rate is deter-

ministic. If the membrane potential is below 0, the neuron does not fire; whereas if the mem-

brane potential is above 0, it fires with probability 1. Note that the choice of the exponential

gain function is also motivated by the analytical tractability of the filter. For non-exponential

gain functions, approximate filters can be obtained by Taylor expansion as discussed in [55].

For the generative model, we assume that the membrane dynamics is much faster than the

dynamics of the ground truth weights, i.e., τm� τou. In this regime, the leaky integration of

the weighted sum of input spike trains xt can be approximated by the weighted sum of the pre-

synaptic activation x�t ≔ ðx � �Þt. The presynaptic activation is the convolution of the presynap-

tic spike train with the exponential kernel �t ¼ e� t=tmYðtÞ and Θ(�) denotes the Heavyside

function. With this we can approximate the membrane potential of the leaky integrator neu-

ron:

uLIF
t ¼ ðw

>x � �Þt � w>t ðx � �Þt ¼ ut: ð4Þ

Optionally, a bias parameter wt,0 can be included by setting the first input to unity. The bias

controls the excitability of the neuron and will be used in Section 2.3, 2.4 and 2.5. While the

leaky integrator uLIF
t more faithfully represents biological neurons, the approximated mem-

brane potential ut simplifies the generative model substantially by casting it as a Markov pro-

cess. Otherwise, the current observation yt would depend on the entire history of hidden

weights through the low-pass filtered membrane potential. The current observation does, how-

ever, depend on the history of input spikes via the convolutions x�t . This type of history depen-

dency does not complicate the analysis because it can be straightforwardly taken into account

in the spiking probability: p(yt|x0:t, wt) can be replaced by pðytjx�t ;wtÞ. Moreover, it has the bio-

logical interpretation of a presynaptic trace. The generative model is represented as graphical

model in Fig 1C.

An Assumed Density Filter solution: The Synaptic Filter. The generative model can be

conceptualised as a tutor network with ground truth weights wt, illustrated in Fig 1B, generat-

ing the observed output spikes from given inputs. Learning as filtering corresponds to a stu-

dent network that continuously computes the distribution over the ground truth weights

pðwtjDtÞ given the history of inputs and outputs Dt ¼ fðx; yÞtg
t
t¼0

.
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Generally, the filtering distribution pðwtjDtÞ is intractable. Here, we obtain an approxi-

mated solution with an Assumed Density Filter (see Section C in S1 Text for the derivation),

i.e., the exact filtering distribution pðwtjDtÞ is approximated with the parametric distribution

qytðwtÞ ¼ N ðwt; mt;StÞ where the distribution parameters θt≔ (μt, St) denote the mean μt

and covariance matrix St of the Gaussian. For the proposed generative model, we call the

Gaussian Assumed Density Filter the Synaptic Filter. An Assumed Density Filter reduces the

problem to updating the distribution parameters θt based on observations:

_mt ¼ bStx
�

tðyt � gtÞ þ t
� 1

ou ðmou � mtÞ; ð5Þ

_St ¼ � b
2
gtðStx

�

tÞðStx
�

tÞ
>
þ 2t� 1

ou ðSou � StÞ; ð6Þ

where γt is the expected firing rate, i.e., the expected firing rate g(ut) computed based on the

approximated filtering distribution qytðwtÞ. It is computed as:

gt ≔
Z

Rd
qytðwtÞgðutÞdwt ¼ g0 expðbm

>

t x
�

t þ
1

2
b

2
ðx�tÞ

>
Stx

�

tÞ: ð7Þ

The expected firing rate depends not only on the mean of the filtering distribution but also on

the covariance. As expected from a convex gain function, the covariance increases the expected

firing rate compared to a scenario where only the mean is taken into account.

The first term in Eqs (5) and (6) originates from observations, therefore, it scales with β.

The update of the mean has the structure of the 3-factor learning rule [56] with classical Heb-

bian factors, i.e., the pre-synaptic activation x�t and the difference between observed and

expected output yt − γt, and the covariance St as a third factor with a modulatory function,

which has been linked to the computation of surprise [57]. The second term in Eqs (5) and (6)

comes from the hidden dynamics of the weights, which is why it is proportional to the inverse

time constant t� 1
ou . For β = 0 the updates become independent of observations of the environ-

ment, i.e., the hidden weights. In general, the covariance update in Assumed Density Filtering

depends on the observations yt. However, the combination of a Gaussian filtering distribution

and an exponential gain function yields an update (Eq (6)) independent of the observations;

an interesting similarity with the Kalman filter.

Fig 1D illustrates that the Synaptic Filter (red) successfully tracks the weights of the tutor

network (black). A gradient rule (grey) with a well-chosen but fixed learning rate is shown for

comparison. Unlike the Synaptic Filter, it cannot adjust its updates based on the remaining

uncertainty around the hidden weight. In Section B1. in S1 Text, we show that the Synaptic Fil-

ter is a good approximation of the true filtering distribution.

The derivation of the Synaptic Filter is valid for any Gaussian proposal with a block diago-

nal covariance matrix (S1 Text in Section C.5). In our analysis, we focus on three variants of

the Synaptic Filter. The Full Synaptic Filter, as introduced above, follows from a proposal dis-

tribution with a single block covariance of size d × d. The other extreme is the Diagonal Synap-

tic Filter, with d blocks of size 1 × 1. The Block Synaptic Filter lays between these extremes with

m blocks of size b = d/m. Different block sizes correspond to different trade-offs between

model flexibility and computational demands. We took b = 8.

2.2 MSE performance of the Synaptic Filter

The natural performance metric in filtering is the normalised Mean Square Error (MSE).

Other performance metrics, such as the central moments of the filtering distributions are stud-

ied in the S1 Text B.1 and displayed in S2 Fig. It quantifies how closely the mean of the filtering
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distribution follows the weights of the tutor, compare Fig 1B. The MSE is defined by MSE ≔
d−1h(wt − μt)

>(wt − μt)it where wt denotes the teacher’s weight and μt is the best estimate of the

Synaptic Filter. In the case of the gradient rule, μt is replaced with ŵt , the best estimate of the

weight.

In the following, the MSE performance of the Synaptic Filters is evaluated for a range of val-

ues of the determinism parameter β, the input firing rate ρ and the number of input synapses,

i.e. dimension d. Additionally, we compare the MSE of a gradient rule with an optimised learn-

ing rate against the Synaptic Filters.

As a benchmark for the Synaptic Filter, we use a gradient rule with a scalar learning rate

(see Section 4.1.2 in Materials and methods). This implicitly defines a Euclidean metric in

weight space. A more general learning choice corresponds to a matrix-valued learning rate. As

shown in Fig 2A, the MSE of the gradient rule (grey) is higher than the MSE (red) of the Syn-

aptic Filter for a large range of learning rates. The MSE as a function of the learning rate η
exhibits a minimum when the combined effect of delayed learning and overshooting is mini-

mal (see S1 Text in Section B.1 as well as S3 Fig for the computation of the optimal learning

rate). Delayed learning occurs at low learning rates because the gradient does not converge

before the ground truth weights change. At high learning rates, the update steps of the gradient

rule are too large which leads to overshooting. In contrast, the Synaptic Filter optimally tunes

the learning rate for each weight individually and at each moment based on the amount of

information available in the data.

The MSE of all filtering models decreases as a function of β, as shown in Fig 2B. The Synap-

tic Filter (red line) performs slightly better than its diagonalised (black line) or blockwise (blue

line) counterparts. As β increases, the observations convey more information about the ground

truth weights wt, hence allowing for a more accurate estimation. At β = 0, the MSE of all mod-

els is equal to 1, a value that corresponds to the MSE of the prior.

When the dimensionality of the input increases, the Diagonal Synaptic Filter, the Block

Synaptic Filter and the Full Synaptic Filter have an increasing number of parameters due to

the increasing number of non-zero elements in the covariance matrix. Whether or not the

additional parametric complexity yields gains in performance depends on the sparsity of the

input. In Fig 2C, the MSE is measured as a function of the input firing rate ρ, which is one of

the model parameters that controls the sparsity. In the sparse regime, only one input is active

in the time window τm, i.e. ρτm d! 0. Correlations of weights represent the uncertainty intro-

duced by the co-occurrence of inputs. Thus, representing weight correlations does not

improve the performance of Block and the Full Synaptic Filters compared to the Diagonal Syn-

aptic Filter, which cannot represent weight correlations. As shown in Fig 2C, all learning rules

have the same MSE in the sparse regime, i.e., if ρ is small. However, as ρ increases, the inputs

become non-sparse and input correlations become more frequent. Consequently, the capacity

to represent weight correlations matters more. The ranking of learning rules according to their

performance follows their ability to represent weight correlations. The Full Synaptic Filter per-

forms best, followed by the Block Synaptic Filter, and the Diagonal Synaptic Filter performs

worst. Here, the level of sparsity is controlled by ρ. Alternatively, the inputs can be less sparse

by increasing the time constant τm such that presynaptic kernels overlap more.

Biological neurons receive thousands of inputs. Therefore, it is important to study how the

performance of the learning rules scales as this dimension increases. To make performance

simulations comparable across dimensions, the expected firing rate of the output neuron and

its variance are kept constant. This is achieved by making the determinism parameter inversely

proportional to the square root of the dimension: β/ d−1/2. As depicted in Fig 2D, the MSE of

all four learning rules increases as a function of the dimension until it saturates at the MSE of

the prior, i.e. s2
ou ¼ 1. Learning becomes harder because the information about an increasing
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number of hidden weights is contained in the same number of observed output spikes. The

Synaptic Filters outperform the gradient rule by a large margin. The performance differences

between the Synaptic Filters are small but consistent for d< 128. They resemble the ordering

found before: the Full Synaptic Filter outperforms the Block Synaptic Filter and the Diagonal

Synaptic Filter is worst. The performance of all learning rules improves when increasing the

amount of available information about the hidden weights, e.g., by increasing g0 the firing rate

of the output neuron directly or indirectly via a higher input firing rate ρ.

Fig 2. The Full Synaptic Filter has the best overall MSE across a range of parameters. (A) The MSE of the Full

Synaptic Filter (red) is lower than the MSE of a gradient learning rule (grey) for a range of learning rates η. The

symbols indicate three combinations of determinism β and dimension d. Consistent with (B, D), the lowest MSE

(black) is obtained at the lowest dimension and highest determinism. (B) The MSE of Full Synaptic Filter (red line)

and the Diagonal Synaptic Filter (black line) decrease as the determinism β increases. At β = 0, the MSE corresponds to

the equilibrium variance of the prior, s2
ou ¼ 1. The Diagonal Synaptic Filter performs slightly worse. (C) Increasing the

input firing rate ρ decreases the MSE and increases the difference between the variants of the SF. The reason for the

lower MSE is that the output neuron fires more frequently, thus more information is available for learning at the

synapses. The MSE differences between the SF variants are caused by an increase in correlations between the inputs,

and hence correlations in the weights. The full SF is best able to captures correlations while the diagonal SF does worst.

The block SF falls in between these two. (D) The MSE of all learning rules increases monotonically with the number of

dimensions until it saturates at s2
ou ¼ 1. The variants of the SF perform better than the optimal gradient rule,

particularly in high dimensions. The MSE difference between the SF variants are qualitatively similar to (C),

particularly visible in the interval 16� d� 128. For comparability, the expected output firing rate is kept constant by

scaling the slope/determinism parameter β/ d−1/2. (E) With sparse inputs, the performance of all learning rules drops.

The optimised gradient rule fails to learn for d> 32. The performance of the block and the full SF is identical because

the sparsity of the inputs induces correlations only in the blocks of the covariance matrix that both learning rules share.

The diagonal SF performs worst because it cannot capture the correlations. For d> 256, the performance of SF

variants is indistinguishable again.

https://doi.org/10.1371/journal.pcbi.1009721.g002
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To study the performance in high dimensions, we have made two assumptions: first, that

the input firing rates are homogeneous and constant, and, secondly, that the average output

firing rate of the neuron is kept constant via the scaling of determinism parameter β.

Another way to get a consistent scaling with respect to the input dimensionality is to have a

block-sparse structure in the input, referred to as sparse for short, i.e., at any time there are

only b neurons active. More precisely, the input neurons are divided into blocks of size b = 8

and activated one block at a time for the duration of τblock = 1 s. This block-sparse input

structure is a simple implementation of the fact that inputs that target the same dendritic

branch are highly correlated [58]. With one block active at any point in time, the expected

output firing rate does not depend on the total number of blocks, i.e., the total dimensional-

ity. Thus, in contrast to the previous simulations, there is no need to scale β to keep the out-

put neuron’s statistics invariant. Fig 2E shows that the performance of all learning rules

drops with increasing dimensions. The loss in performance is more pronounced than in the

case of non-sparse inputs. The gradient rule with optimal learning rate performs much

worse than in the non-sparse case. The Block and the Full Synaptic Filter have the same per-

formance because both capture correlations within blocks equally well. In contrast, the Diag-

onal Synaptic Filter cannot capture them and performs substantially worse at intermediate

dimensions.

In summary, the performance simulations show that the Synaptic Filters substantially out-

perform a gradient rule with an optimal learning rate. The performance gains are largest for 30

to 1000 dimensions. The variants of the Synaptic Filter perform equally well when input corre-

lations are rare. However, in the presence of input correlations, the Block and the Full Synaptic

Filter outperform the Diagonal Synaptic Filter. This provides a computational rationale for

including the off-diagonal elements of the covariance matrix. However, the computational

benefit comes at the cost of additional parameters. In the case of the Full Synaptic Filter, the

number of parameters scales as Oðd2), which is prohibitive. In addition, it is unclear how

information between spatially distant synapses could be exchanged to learn the corresponding

elements of the covariance matrix. The Block Synaptic Filter does not suffer from this problem

because the number of parameters scales linearly with the dimension and the (constant) block

size b: Oðb � dÞ. The biological implementation of the off-diagonal elements is plausible as

long as the correlated inputs target synapses that are spatially close, e.g., on the same dendritic

branch. Indeed, there is evidence that activity at neighbouring synapses is more likely to be

correlated [58].

2.3 The Synaptic Filter is consistent with STDP

Spike-time dependent plasticity (STDP) refers to the property of a synapse to exhibit long-

term potentiation (LTP) if the presynaptic spike comes before the postsynaptic spike and oth-

erwise to exhibit long-term depression (LTD) [49, 50]. The results are usually depicted as

STDP curve, i.e., the normalised change in synaptic weight as a function of the time interval

between the pre- and postsynaptic spike.

Normative models of STDP have explained the LTP lobe, i.e., the weight change for pre-

before postsynaptic spiking, in terms of causality reinforcement [4–7, 9, 13]. The delay of the

postsynaptic relative to the presynaptic spike represents the degree to which the occurrence of

the postsynaptic spike can be attributed to the presynaptic activity trace and its decay resem-

bles the shape of the LTP lobe. In contrast, a post-before-pre spike pair has no causal relation-

ship. Indeed, the computational rationale for the LTD lobe has remained a matter of debate

with proposals including the regulation of the postsynaptic firing rate and temporal locality

[13].
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We wondered whether the Synaptic Filter could reproduce the STDP curve, in particular

the LTD part, without invoking the rare mechanism of self-induced bursting [13]. Specifically,

we studied the effect of a time varying bias wt,0 to the membrane potential in the generative

model. Technically, the bias wt,0 is a weight with constant, unit input, i.e., x�t;0 � 1. We use the

first index i = 0 to represent the bias. From the perspective of a time varying bias, STDP is a

secondary (differential) effect, i.e., changes in the synaptic weight account for the prediction

error left unexplained by the adjustment of the bias. Immediately after a postsynaptic spike,

the expected firing rate is increased, leading to more LTD (Eq (5)). Thus, the time scale of the

LTD lobe corresponds to the time scale of the transition probability of the prior τou,bias. Fig 3A

shows that the empirical LTD time scale, i.e., the point of 1/e decay of the negative lobe, is the

time scale of the bias. In the STDP simulations, we assumed τou,bias = τm but set all other transi-

tion time scales to values much larger than the duration of the experiment (see Section 4.4

Materials and methods). One rationale for assuming τou,bias� τm is that the bias represents the

contribution from a set of randomly firing inputs. In the limit of a large number of inputs the

bias can be approximated by an Ornstein-Uhlenbeck process. The autocorrelation time of the

process is characterised by the presynaptic kernels, i.e., τm, and fluctuations of the input rates,

which are typically on the order of 100 ms.

To study the effect of the bias on the STDP curve, we applied an STDP protocol with one

spike pair to three versions of the Synaptic Filter: a single synapse without bias, the Diagonal

Synaptic Filter with bias and Full Synaptic Filter with bias. Assuming that all inputs considered

Fig 3. (A) The empirical time scale of the LTD lobe t̂LTD depends monotonically on the time scale of the bias τou,b.

The empirical time scale is defined as post-pre delay that yields 1/e of the amplitude of the negative lobe. With Δμ(−1)

as zero, it is implicitly defined by the condition eDmðt̂LTDÞ ¼ Dmð0� Þ, where Δμ(0−) denotes the amplitude of the

negative lobe. (B) Illustration of the STDP protocol. The weight change Δμ is recorded as a function of the timing

difference between the pre- and postsynaptic spike. (C) The change of the mean of the filtering distribution as a

function of the temporal difference between a pre-post spike pair. For a single weight (excluding the bias, gray line),

the Synaptic Filter produces only the LTP lobe (tpre < tpost) while the LTD lobe (tpost < tpre) is independent of spike-

timing. Inclusion of the bias, either with off-diagonal covariance elements (red line) or without (black line) yields the

LTD lobe; and the magnitude of LTP decreases. (D) For the same protocol and learning rules, the variance σ2 of the

weight exhibits a spike-timing dependent decrease. When the bias (black and red lines) is included, the the change in

variance resembles a symmetrised LTD lobe, i.e., it scales as the inverse of |tpre − tpost|. Without the bias, the amplitude

of change is reduced and the dependence on spike-timing disappears for tpost < tpre. See Section 4.4 in Materials and

methods for simulations details.

https://doi.org/10.1371/journal.pcbi.1009721.g003
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below are part of the same block, the Full Synaptic Filter and the Block Synaptic Filter are iden-

tical, therefore the Block Synaptic Filter is not included explicitly. To avoid effects from tran-

sients, the protocol was applied after the bias had reached its steady state. In contrast to

biological experiments with up to 60 spike pairs, we simulated a single spike pair to avoid com-

plications from saturation effects and induction times.

In all three experiments, the resulting STDP curve shows an exponentially-shaped LTP lobe

but the LTD lobe occurs only when the bias is included, as shown in Fig 3C). The LTP lobe

mirrors the exponential shape of the presynaptic activation because when the postsynaptic

spike occurs, the dominant part of the weight update is proportional to the EPSP amplitude �

(see the first term on the RHS of Eq (5). The LTD lobe is present when the bias is included

(black and red lines). Without the bias (grey line), the LTD part of the STDP curve is indepen-

dent of the spike timing. Moreover, the bias lowers the amplitude of the LTP. Both observa-

tions, the LTD lobe and the lower LTP are caused by the modulation of the expected firing rate

γt due to the bias wt,0. The expected bias acts as a low-pass filter of the postsynaptic spike train.

Its value is maximal immediately after the occurrence of a postsynaptic spike at tpost and

relaxes back to its equilibrium afterwards. The faster the pre follows the postsynaptic spike, the

larger the value of the expected firing rate gtpre when the presynaptic spike occurs. Since LTD is

proportional to γt, shorter intervals between pre- and postsynaptic spikes lead to more LTD, in

correspondence with biological STDP experiments. The dynamics of the variables of the Syn-

aptic Filter are shown in detail in S4 Fig in Section E of S1 Text.

The Full Synaptic Filter and Diagonal Synaptic Filter are consistent with STDP. The appear-

ance of the LTD lobe is contingent on the inclusion of the bias. Indeed, since the underlying

mechanism does not require the inclusion of uncertainty, a similar result could be obtained in

a learning as optimisation framework as well, e.g., as the post-only term in the expansion of a

generic update function [53]. The fact that only a single synapse with bias was modelled does

not impair generality because additional unstimulated synapses do not affect the result.

2.4 The Synaptic Filter predicts spike-timing dependent changes of the

variance

So far, we have assumed that the posterior mean μt can be measured experimentally as average

EPSP amplitude, but we haven’t made any assumption on the representation of the posterior

variance. The synaptic sampling hypothesis assumes that the posterior variance s2
t corresponds

to the EPSP variance [59]. This hypothesis has two consequences. First, it affects the mem-

brane potential with this additional source of stochasticity (the sampled weight) and therefore

impacts the form of the Synaptic Filter. In S1 Text in Section A, we show that the performance

of this Sampling Synaptic Filter is similar to the performance of the Synaptic Filter (see S1 Fig).

Secondly, the synaptic sampling hypothesis affects the biological predictions. So we wondered

whether the Synaptic Filter predicts spike-timing dependent changes in the EPSP variance.

Studying the same three conditions as in the previous section, we found that the variance

decreases for all conditions and all pre-post timings, as shown in Fig 3D. In a Bayesian frame-

work, this is expected because input spikes, which represent informative data, decrease uncer-

tainty. Interestingly, the reduction depends on the spike-timing. For a single synapse without

bias (gray line), the effect is weak and confined to the causal pairings, i.e., tpre < tpost. Including

the bias (black and red lines) increases the amplitude of the variance change. Moreover, it adds

a qualitatively new feature: a negative lobe in the regime tpre < tpost. The underlying mecha-

nism is the same as in the case of the LTD lobe of the mean (Fig 3A). Changes in the synaptic

weight and the bias modulate the expected firing rate γt. In the models with bias, a postsynaptic

spike increases the expected firing rate temporarily and, hence, the potential for variance
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reduction when a presynaptic spiking occurs close in time. When both spikes coincide

tpre = tpost the reduction is maximal because the temporary increased bias and the presynaptic

activation increase the expected firing rate superlinearly. Thus, with the sampling hypothesis,

the Synaptic Filter makes the novel prediction of spike-timing dependent changes of the EPSP

variance.

2.5 The Synaptic Filter explains heterosynaptic plasticity

From a Hebbian perspective on plasticity, it is required that the presynaptic neuron’s activa-

tion takes part in the postsynaptic neuron’s activation. Heterosynaptic plasticity contradicts a

purely Hebbian view on learning because plasticity occurs without presynaptic activation [51,

60]. For example, LTP induction at hippocampal synapses leads to LTD at synapses that did

not receive stimulation [61]. It has been argued that the role of heterosynaptic plasticity is

complementary to homosynaptic Hebbian plasticity, which can destabilize neuronal dynamics

through run-away weights [62, 63].

We wondered whether the Synaptic Filter is consistent with heterosynaptic plasticity. Our

starting point was that heterosynaptic plasticity could be linked to the explaining-away effect

in Bayesian reasoning. Explaining-away occurs when one computes the posterior over multiple

causes for a single observation. When additional observations provide evidence for only one

cause, the competing causes are “explained away”. For example, hearing a triggered alarm (an

observation) is best explained by a burglar. However, upon learning that an earthquake

occurred when the alarm was set off, the posterior probability for the burglar decreases.

In the spirit of explaining-away, we designed a preconditioning protocol to set up two syn-

apses as competing causes for observations, i.e., the postsynaptic activity. The preconditioning

protocol consists of synchronous spike trains at both inputs without postsynaptic spiking. In a

second step, an STDP protocol was applied to the first synapse but plasticity was reported

from both. The weight change at the first and second synapse is our prediction for homo- and

heterosynaptic plasticity respectively. Both protocols are shown in Fig 4A. We obtained the

homo- and heterosynaptic STDP curves with and without preconditioning. The effect of pre-

conditioning is illustrated in Fig 4B: the equilibrium weight distribution, which is the initial

condition of the STDP-step, becomes negatively correlated. We simulate a 3-dimensional Full

Synaptic Filter with two synapses and bias. To test whether correlations between weights are

important for heterosynaptic plasticity, we also include the Diagonal Synaptic Filter. The same

time constants and initial conditions are assumed as in the STDP experiment (Section 4.4

Materials and methods).

The homosynaptic STDP curve (black lines) appear robustly in all experiments, as shown

in Fig 4C and 4D, i.e. with and without preconditioning (dashed vs solid lines) and in both

models, the Full Synaptic Filter and Diagonal Synaptic Filter. Preconditioning lowers the over-

all amplitude of the STDP curve, which was to be expected because presynaptic activity

reduces the variance which acts as learning rate. Only a single experiment yields the heterosy-

naptic STDP curve: the Full Synaptic Filter with preconditioning (solid red line), shown in Fig

4D (for an illustration of the dynamic variables involved in this heterosynaptic plasticity exper-

iment, see S5 Fig). The heterosynaptic curve has the same shape as the homosynaptic STDP

curve but with an opposite sign. In contrast, the Diagonal Synaptic Filter exhibits no heterosy-

naptic STDP, i.e., the red curves in Fig 4C are flat; and the Full Synaptic Filter without precon-

ditioning has a flat heterosynaptic STDP curve (dashed red line, Fig 4D) as well. These results

demonstrate that the mechanism of heterosynaptic plasticity in the Full Synaptic Filter

requires weight correlations. The Diagonal Synaptic Filter cannot represent weight correla-

tions, which is why it never exhibits heterosynaptic plasticity. The Full Synaptic Filter, in
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Fig 4. The Full Synaptic Filter explains experimentally observed anticorrelation of homo- and heterosynaptic plasticity. (A) Two inputs drive a

neuron. During (optional) preconditioning (PC), two synchronous input spikes are delivered. Changes in the weights in the first and second weight in

response to an STDP protocol are reported as homosynaptic (black) and heterosynaptic (red) plasticity respectively. See Section 4.4 in Materials and

methods for more details. (B) The effect of PC on the equilibrium weight distribution, visualised by contours, of the Full Synaptic Filter (light grey).

After PC, the weight distribution (dark grey) has lower mean and weights become anticorrelated. (C) The Diagonal Full Synaptic Filter exhibits

homosynaptic STDP (black lines) but no heterosynaptic plasticity (red lines). PC reduces plasticity (solid black line). (D) The Full Synaptic Filter

exhibits homo- and heterosynaptic plasticity (solid black and red lines) after PC. Without PC (dashed lines), the Full Synaptic Filter behaves like its

diagonal counterpart shown in C. (E) The Full Synaptic Filter predicts that homo- and heterosynaptic plasticity are anticorrelated. The x- and y-

locations of the black points correspond to the solid black and red lines in (C). (F) Anticorrelated homo- and heterosynaptic plasticity was found in

synaptic projections from BLA to ITC neurons, Figure redrawn from [51].

https://doi.org/10.1371/journal.pcbi.1009721.g004
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contrast, can represent weight correlations but they have to be induced by the preconditioning

protocol (because we made the idealised assumption that the equilibrium distribution has

strictly uncorrelated weights). The correlations are encoded in the covariance matrix St as off-

diagonal elements. The covariance matrix acts as an inverse metric of the parameter space. It

scales the update of the mean weight via Stx�t [64]. Thus, activity at one of the weights can lead

to plasticity at correlated weights. Therefore the Full Synaptic Filter exhibits heterosynaptic

plasticity only in combination with the preconditioning protocol.

The observation that homo- and heterosynaptic STDP curves have opposite signs is

explained by the negativity of the off-diagonal entries in the covariance matrix. From a mathe-

matical perspective, the sign of the updates of the off-diagonal elements is negative when cor-

relations are present. This follows from using non-negative inputs (see Section 4.2 Materials

and methods). Intuitively, the negative correlation between two weights (with same-sign

inputs) encodes how much they can explain-away each other.

Next, we wondered whether the negative correlation between homo- and heterosynaptic

plasticity was consistent with experimental data. We quantified their relation by first plotting

the values of the homo- and heterosynaptic STDP curves against each other and subsequently

fitting a line, shown in Fig 4E. The negative slope means that homosynaptic LTP is correlated

with heterosynaptic LTD. The amplitude of heterosynaptic plasticity is around three-quarters

of the amplitude of homosynaptic plasticity. While the value of the slope depends on the num-

ber of spikes in the preconditioning protocol and other model parameters, the negativity of the

slope is a robust feature of the Full Synaptic Filter caused by the negativity of the weight corre-

lations. A similar relation between homo- and heterosynaptic plasticity was reported in projec-

tions from the basolateral amygdala (BLA) to intercalated cells (ITC) of the amygdala [51].

The authors used extracellular low- and high-frequency stimulation to induce LTD and LTP

respectively. They associated the induced weight change in the stimulated connection with

homosynaptic plasticity and weight changes at other connections with heterosynaptic plastic-

ity. Their main result aggregates plasticity results from multiple recorded ITC cells in a single

figure, replotted in Fig 4F. The data confirms a robust negative correlation between homo-

and heterosynaptic plasticity, consistent with the prediction of the Full Synaptic Filter. Fig 4E

and 4F are comparable since in both cases the spread of points originate from the variability in

the induction mechanism. In the case of the Full Synaptic Filter (Fig 4E, only one parameter,

the spike-timing differed between points. In the biological plasticity experiment (Fig 4F), the

number of sources of variability is much higher, including somatic properties, initial condi-

tions of synapses, speed of signal transmission and effectiveness of extracellular stimulation.

On the premise that the aggregated outcome of this variability modulates the effectiveness of

biological plasticity similarly as spike-timing in the simulated experiment, Fig 4E and 4F pro-

vides evidence for the Full Synaptic Filter (or the Block Synaptic Filter). Moreover, the Full

Synaptic Filter explains the inverse correlation between homo- and heterosynaptic plasticity in

terms of the explaining-away effect. The inverse correlation has also been found in the Hippo-

campus [61] and more generally, see [65] for a review on heterosynaptic plasticity.

3 Discussion

In this study, we showcased the framework of learning as filtering through the Synaptic Filter,

an Assumed Density Filter for the weights in a spiking network. The main advantage of learn-

ing as filtering is that it accounts for the dynamics of the environment and weight uncertainty

in a mathematically principled way. In a dynamic learning task, the Synaptic Filter outper-

forms a gradient rule with an optimised learning rate in weight space. The relevance of the

Synaptic Filter to biological plasticity is threefold. It exhibits the STDP of the mean weight,
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including the negative lobe; it predicts the STDP of the weight variance; and based on weight

correlations, it predicts heterosynaptic LTD and homosynaptic LTP consistently with experi-

mental evidence. Thus, the Synaptic Filter combines computational benefits with biological

insights into plasticity.

The framework “learning as filtering” can be used to derive additional learning rules. Here,

we considered the simple case of a Gaussian weight distribution, an OU-process as prior and

an exponential gain function in combination with spike-based observations. Alternatives yield

new learning rules. Parameterising the weight distribution through the binomial model of sto-

chastic release represents an exciting possibility to study dynamics of EPSP variability and

quantal parameter plasticity. The case of log-normally distributed weights has been studied in

discrete time [59]. From a biological perspective, log-normal or binomial models have the

advantage of obeying Dale’s law. However, this advantage comes at the cost of intractability,

the requirement of additional approximation or more complicated update rules. To avoid

these complications, we chose Gaussian synapses in this work. Another option is to study

gated plasticity through a hierarchical weight distribution in which an additional hidden vari-

able infers whether a synapse should be plastic or not. Moreover, the framework can encom-

pass different types of observations, for example, continuous rates instead of spikes. Closely

related to the observed variable is the choice of the gain function. While an exponential func-

tion offers simplicity, the sigmoidal and soft-max functions yield analytically tractable learning

rules under additional approximations. Thus, learning as filtering offers a rich set of options to

study learning and synaptic learning in particular.

The generalisation of the single neuron analysis to the case of a recurrent neuronal network

is straightforward as long as all neurons in the recurrent population are visible (i.e. their activ-

ity is prescribed). Indeed, when all neurons are visible, then the likelihood nicely factorises

along the temporal dimension because of the chain rule and along the spatial dimension

because of the conditional independence between the neurons (i.e the current spiking of neu-

ron i at time t is only affected by the spiking history of all neurons up—but not including—

time t). In the presence of hidden neurons, this factorisation is not possible anymore for the

marginal likelihood. Thus, the Synaptic Filter can be used to gain insights into learning

dynamic weight distributions not only in a single neuron but also in the more complex setting

of a recurrent neuronal network model, given that all neurons are visible.

For the derivation of the learning rules, we assume that the output neuron receives an exter-

nal and neuron-specific supervision signal. Recent studies have addressed the question of how

such a signal could be computed in biological networks [66] and in continuous time [67]. In

our model, the supervision signal takes the form of spikes of the output neuron. This assump-

tion does not exclude the possibility that biological neurons receive one type of spike as a

supervision signal to guide plasticity, and generate another type of spike to make predictions

[7, 68]. Experimental findings in the cerebellum and the cortex are compatible with this idea.

Indeed, complex and simple spikes in Purkinjee cells, and bursts and normal firing in cortical

pyramidal neurons play distinct roles for plasticity [69, 70]. Therefore, the assumption of a

continuously provided, event-based supervision signal does not impair the biological relevance

of the Synaptic Filter.

The Synaptic Filter (except for the diagonal version) represents correlations between

weights. From a biological perspective, this suggests two directions for future research. First, is

the SF biological plausible? It should be recalled that the Synaptic Filter (and all its variations)

is a normative learning rule derived from some computational principle and does not predict

in itself how the implementation should be. Indeed, in Marr’s 3 level perspective, a computa-

tional principle can be achieved by many algorithm and every algorithm can be implemented

in different ways, so the bottom-line is that the implementation is not unique. If the
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implementation of the learning rule follows exactly the Eqs (5) and (6) it is hard to see how

this is biologically plausible. Indeed, taken as such every synapse i depends on the activities of

all other inputs in a non-trivial way which seems to violate any sense of locality—which would

be desirable for a biologically plausible learning rule. It is however possible to have other

implementations that are consistent with Eqs (5) and (6) (or at least closely approximate those

equations) and yet have a higher degree of biological plausibility. This would be for example

the case for the constant Synaptic Filter which assumes that the inputs are roughly constant,

i.e. x� ’ �x (see S1 Text, Section F). In this case, we can define a surrogate variable z ¼ S�x such

that synapse i depends only on zi whose dynamics depends only on itself as well as a global fac-

tor zT�x which is available at all synapses. Further research is therefore required to determine

which implementation best matches biophysical constraints while keeping the end-effects as

predicted by Eqs (5) and (6). Secondly, the Synaptic Filter was derived under the assumption

of positive presynaptic inputs while the sign of the weights could either be positive or negative.

As a consequence, weight correlations are never positive. Based on the negative weight correla-

tions the Synaptic Filter could explain the negative correlations between homo- and heterosy-

naptic plasticity (shown in Fig 4). As an extension of this result, it would be interesting to

generalise the Synaptic Filter to the case of positive and negative inputs, representing excit-

atory or inhibitory neurons. We hypothesise that a generalised Synaptic Filter would predict

positively correlated homo- and heterosynaptic plasticity between synapses from inhibitory

and excitatory neurons.

Because uncertainty controls the speed of learning, the Synaptic Filter in combination with

the sampling-hypothesis can link synaptic variability to synapse-specific metaplasticity, which

has been observed experimentally [65]. The Synaptic Filter predicts that synaptic variability

and learning speed are reduced upon presynaptic stimulation but relax back to maximal value

on the time scale of the OU-prior. Indeed, consistent with an OU time scale of hours, plasticity

experiments have shown that LTP saturates temporally but recovers within hours [71].

The presented work is closely related to the Know-Thy-Neighbour (KTN) theory [72]. It

assumes that synapses estimate the presynaptic membrane potential from the arriving spike

train within the filtering framework. Consequently, it links the dynamics of short-term synap-

tic depression to the mean and variance updates of the filtering distribution. The Synaptic Fil-

ter and the KTN theory formalise plasticity via Assumed Density Filtering with an Ornstein-

Uhlenbeck prior. At any point in time, the synapses encode a posterior distribution over the

hidden variable given past observations, i.e., membrane potential and presynaptic spikes in the

KTN model and ground truth weight with pre- and postsynaptic spikes in our model. In both

models the classically defined synaptic efficacies, the averaged postsynaptic responses, corre-

spond to the mean of the posterior; and the variance plays the role of a learning rate in the

update equations. Our novel contributions are the extension of the KTN framework to multi-

ple and potentially correlated hidden variables and a more complex emission process, i.e., the

emissions are generated by the sum of the hidden variables weighted by the presynaptic trace.

The KTN model is formally equivalent to the one-dimensional Synaptic Filter when the bias is

the only hidden variable. On the level of the biological interpretation, KTN focuses on short-

term plasticity while our work makes a connection to experiments concerning long-term

plasticity.

A previous study has addressed the computational role of synaptic uncertainty [38]. The

authors propose that spine turnover implements samples from the posterior distribution over

synaptic weights via Langevin sampling. Their work differs from ours because they use a static

inference task (bottom right in Fig 1A), not filtering. One consequence of the static nature of

their task is that the online version of their learning rule only allows for a fixed data set size as

external parameter. Compared to previous learning rules in the context of filtering [59], we
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make four contributions. First, we connect the learning task to the rich literature of filtering.

In particular, this facilitates a simple, rigorous and continuous-time treatment. Secondly, we

go beyond the assumption of a diagonal Gaussian Assumed Density Filtering by including

weight correlations and show that their importance for the filtering performance. Finally,

based on the spiking, continuous-time analysis, the Synaptic Filter recovers the phenomenon

of spike-timing dependent plasticity, i.e., the mean synaptic weight increases if the postsynap-

tic spike follows the presynaptic spikes closely, and decreases if the spike order is reversed.

Moreover, the Synaptic Filter predicts spike-timing dependent changes of the EPSP variability.

Finally, it explains the negative correlation between homo- and heterosynaptic plasticity in

terms of the Bayesian explaining-away effect.

Overall this article provides evidence that learning as filtering is a promising candidate for a

computational principle underlying plasticity and provides testable predictions.

4 Materials and methods

4.1 The generative model and learning rules

In this section, we define the filtering problem in terms of a generative model for plasticity. In

addition, the update equations of the learning models are introduced, i.e., the Synaptic Filter

and the gradient learning rule.

4.1.1 The Synaptic Filter: Update equations and prediction. The goal of learning as fil-

tering is to compute the distribution over the hidden weights pðwtjDtÞ given all previously

observed input and output spikes Dt ≔ fxt; ytg
t
t¼0

. On a formal level, the Markovian structure

of the generative model (under the assumption of Eq (4)), enables a recursive solution of the

filtering problem:

pðwtjDtÞ / pðytjx�t ;wtÞ

Z

Rd
pðwtjwt� dtÞpðwt� dtjD0:t� dtÞdwt� dt: ð8Þ

The Kushner-Stratonovich Equation [44] gives a formal solution for all moments of the filter-

ing distribution. However, for most generative models the solution is intractable because of

the closure problem, i.e., the evolution of lower moments depends on higher moments of the

filtering distribution. One way to address the closure problem is Assumed Density Filtering.

The central idea is to replace the exact filtering distribution with a proposal distribution q
parameterised by θt:

pðwtjDtÞ � qytðwtÞ: ð9Þ

When substituting the approximation Eq (9) into the right-hand side of Eq (8), the resulting

posterior will generally not lay in the family of the proposal distribution qθ. Therefore, one has

to decide how to best approximate the result with a member of the proposal family [73].

Here, we derive the Synaptic Filter, an approximate solution based on a Gaussian proposal

density with mean mt 2 R
d

and covariance matrix St 2 R
d�d

. The evolution of the distribution

parameters θt = (μt, St) can be computed from the Kushner-Stratonovich Equation. To remain

in the Gaussian family, higher moments are omitted (see S1 Text, Section C.2). For the genera-

tive model specified above, the resulting update equations for μt and St are Eqs (5) and (6).

4.1.2 Gradient learning rule. As a performance benchmark, we use the gradient learning

rule. Assuming updates are proportional to the gradient of the log output probability yields:

_wML
t ¼ Zbx

�

tbðyt � gML
t Þ; ð10Þ

where η is the learning rate parameter and gML
t ¼ g0 expðbðwML

t Þ
>x�tÞ. We did not absorb β in
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the learning rate η to make the values of η more comparable to values of the variance in the

Bayesian learning rule and to use the same scaling of β with the dimension as in the Synaptic

Filters (see Section 4.3 in Materials and methods).

4.2 The weight correlations of the Synaptic Filter are mostly negative

The weight correlations in the Synaptic Filter are represented by the off-diagonal elements

of the covariance matrix St. In the 2-dimensional case and for positive inputs (x�t � 0)

these elements St,i 6¼j are always negative. This follows from the following two observations.

First, the change of weight correlations is negative when the initial weight distribution is

diagonal, i.e., S0 ¼ s
2
0
1. Secondly, a negatively correlated weight distribution cannot evolve

into a positively correlated weight distribution without assuming a diagonal form in

between.

The change of the covariance is given by Eq (6). Omitting the temporal index for clarity

and assuming i 6¼ j, the update of an off-diagonal element is:

_Sij ¼ � gðSx�ÞiðSx
�Þj � 2t� 1

ouSij; ð11Þ

where we used that (Sou)ij = 0. For the initial condition given by a diagonal covariance matrix,

this expression simplifies to:

_S ij ¼ � gSiix�iSjjx�j : ð12Þ

Since all factors in this expression are positive but the overall sign is negative, an initially

diagonal weight distribution can only evolve towards a negatively correlated distribution.

Because in 2 dimensions a transition from a negatively correlated to a positively correlated

weight distribution is not possible without a diagonal state in between, positive correlations

cannot occur. Conditions under which this result holds for d> 2 are discussed in the Section

F in S1 Text.

4.3 Computational performance: Hyperparameters and simulation details

Here, we describe in detail the hyperparameters and simulations configuration for the results

in Section 2.2 except for the details of the results shown in Fig 2A, which are discussed in Sec-

tion B.3 in S1 Text because they were obtained from a different batch of simulations. The total

simulation time is reported in terms of multiples of τou, which we call epochs. The initial condi-

tions for all performance simulations were μ0 = μou and S0 = Sou. To remove any dependency

on the initial condition, 8 epochs were used as burn-in time. These epochs were not used to

compute the mean squared error (MSE).

To compute MSE as a function of the determinism parameter, we used τou = 200 s, d = 16

and the input firing rate was ρ = 40 Hz. The baseline firing rate for this and the subsequent

simulations was g0 = 20 Hz. For the Block Synaptic Filter, two blocks of size 8 were chosen.

The time step was dt = 10−3 s. After burn-in, the error was averaged over 256 epochs.

The MSE as a function of input firing rate was computed with τou = 400 s and d = 100. For

the Block Synaptic Filter, 10 blocks of size 10 were chosen. The determinism parameter was set

to β = 0.1, which required a time step of dt = 10−5 s. After burn-in, 32 epochs were simulated.

The MSE as a function dimension was computed with τou = 200 s, dt = 10−3 s and ρ = 40

Hz. The block size for the sparse input and for the Block Synaptic Filter was 8. The determin-

ism parameter was b ¼ 0:01n� 1=2

b , with nb the number of blocks. After burn-in, 32 epochs

were simulated.
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4.4 Biological predictions: Parameters and technical details

In this section, we specify the values of the hyperparameters, protocols, initial conditions and

simulation parameters used in the simulated STDP experiments in Sections 2.3 to 2.5.

4.4.1 Hyperparameters. For the simulated experiments, the membrane time constant and

baseline firing rate was set to g0 = 1 Hz and the determinism parameter to β = 1.

The time scale of the weights and weight correlations was τou = 104 s. Because the bias time

scale is much shorter, correlations between bias and other weights decay on the order of τm

(see S1 Text, Section C.4, Equation S29). To prevent run-away dynamics of the bias in the

absence of spikes, we chose μou,0 = 1. The prior variance s2
ou;0 determines how strongly the bias

changes in response to input and output spikes. For the STDP experiments in Fig 3, we chose

s2
ou ¼ 2 and for the heterosynaptic experiments in Fig 4, we chose s2

ou ¼ 1.

4.4.2 Protocols and initial conditions. The STDP protocol consisted of pre- and postsyn-

aptic spikes with 200 different values for the delay (shown on the x-axis of the STDP curve).

The preconditioning protocol consists of a presynaptic spike pair with 5 ms delay simulta-

neously applied to both presynaptic inputs. Prior to applying any protocol, the Synaptic Filter

was simulated without any input or output spikes for Twait ¼ 6tm such that the mean and vari-

ance values of the bias converge to their equilibria. The same waiting time was simulated after

the preconditioning protocol. The simulated STDP curve was computed based on the value of

the weight directly before the application of the STDP protocol and the value of the weight

after 2Twait. The initial conditions for the distribution parameters of the Synaptic Filter were

chosen μ0,i = 1 with i 2 (0, . . ., d − 1) for the weights and S0 ¼ s
2
0
1 with s2

0
¼ 1 for the

covariance.

4.4.3 Technical details: Simulations and fits. We solved the ODEs of the Synaptic Filters

with the Euler method. The time step was dt = 10−4 s for the STDP experiments presented in

Sections 2.3 and 2.4. Since the preconditioning protocol induces sharp decreases of the vari-

ance, a time step of dt = 10−5 s was used for the simulations in Section 2.5 to ensure that the

variance remained positive.

The slopes reported in Fig 4E and 4F correspond to a linear fit with a least-squares objec-

tive and two free parameters, slope and offset. The data shown in Fig 4F were extracted

manually.

Supporting information

S1 Text. Additional simulations and derivations. S1 Fig. The Sampling Synaptic Filters have

similar MSEs to their deterministic counterparts. S2 Fig. The first and second moments of

the Synaptic Filter match the corresponding moment of the exact filtering distribution. S3

Fig. Optimisation of the learning rate for the gradient rule. S4 Fig. The dynamics of the vari-

ables of the Synaptic Filter during the STDP protocol. S5 Fig. The dynamics of the variables of

the Synaptic Filter during the heterosynaptic protocol.
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