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Abstract
Tumor mutational burden (TMB) and mutational signatures reflect the process of mu-
tation accumulation in cancer. However, the significance of these emerging charac-
teristics remains unclear. In the present study, we used whole-exome sequencing to 
analyze the TMB and mutational signature in solid tumors of 4046 Japanese patients. 
Eight predominant signatures—microsatellite instability, smoking, POLE, APOBEC, 
UV, mismatch repair, double-strand break repair, and Signature 16—were observed 
in tumors with TMB higher than 1.0 mutation/Mb, whereas POLE and UV signatures 
only showed moderate correlation with TMB, suggesting the extensive accumula-
tion of mutations due to defective POLE and UV exposure. The contribution ratio 
of Signature 16, which is associated with hepatocellular carcinoma in drinkers, was 
increased in hypopharynx cancer. Tumors with predominant microsatellite instability 
signature were potential candidates for treatment with immune checkpoint inhibi-
tors such as pembrolizumab and were found in 2.8% of cases. Furthermore, based 
on microarray analysis, tumors with predominant signatures were classified into 2 
subgroups depending on the expression of immune-related genes reflecting differ-
ences in the immune context of the tumor microenvironment. Tumor subpopulations 
differing in the content of infiltrating immune cells might respond differently to im-
munotherapeutics. An understanding of cancer characteristics based on TMB and 
mutational signatures could provide new insights into mutation-driven tumorigenesis.
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1  | INTRODUC TION

Tumor mutational burden, an emerging characteristic in cancer, was 
first highlighted by next-generation sequencing analysis.1 A TMB in-
crease in the human cancer genome has been attributed to both en-
dogenous factors and environmental damage.2 A number of clinical 
trials have revealed that TMB is correlated with the rate of response 
to programmed cell death-1 and programmed cell death ligand-1 
(also known as PDCD1/PD-1 and CD274/PD-L1, respectively) im-
mune checkpoint blockade.3 The measurement of TMB is valuable 
not only to surmise cancer characteristics but also to predict the 
clinical response to immunotherapy.

Although TMB only represents the accumulation of somatic 
mutations, mutational signatures consisting of 96 nucleotide sub-
stitution patterns specifically reflect multiple cancer processes.1,4 
Pan-cancer large-scale analyses have revealed particular mutational 
signatures attributed to several endo/exogenous factors, and 30 
signature patterns are currently registered in the COSMIC database 
(https://cancer.sanger.ac.uk/cosmic/).5 Defective DNA replication/
repair or exogenous stimuli, including UV radiation, tobacco smok-
ing, alcohol, and chemicals, cause biased accumulation of somatic 
mutations, which result in corresponding signatures in specific tu-
mors.1,6,7 Mutational signatures thus represent informative tumor 
characteristics together with TMB variation. Although mutational 
signatures are considered to be predictors of tumorigenesis with 
equal importance to TMB, the mechanism leading to mutation accu-
mulation in signatures remains unclear.

To predict and guide the response to immunotherapies, an in-
depth understanding of the complexity and dynamics of the immune 
context in the tumor microenvironment is necessary.8 A component 
of the tumor microenvironment, ie, intratumoral immune cells, can 
be explored by analyzing the expression of multiple immune-re-
lated genes.9 Recently, bioinformatics analysis using The Cancer 
Genome Atlas dataset revealed that the tumor microenvironment 
is influenced by the TMB.10,11 However, the relationship between 
mutational signatures and the immune context of the tumor micro-
environment is less understood.

In the current study, to investigate the characteristics of TMB 
and mutational signatures, we carried out WES in over 4000 
Japanese patients with cancer, revealing that mutation frequency 
and signature patterns were similar to those reported by previous 
studies focusing on Caucasian patients. Eight main mutational sig-
natures, ie, MSI, smoking, POLE, APOBEC, UV, MMR, DSBR, and 
Signature 16, were found. Although Signature 16 is known to be 
associated with hepatocellular carcinoma in drinkers, it showed a 
higher contribution ratio in hypopharynx cancer. Tumors with a 
predominant MSI signature are potential candidates for treatment 
with immune checkpoint inhibitors such as pembrolizumab and 
were found in 2.8% of Japanese patients. According to the eval-
uation of the tumor microenvironment using multiple immune-re-
lated genes, tumors with predominant signatures were classified 
into 2 subgroups. The identified subpopulations also differed in in-
tratumor genetic heterogeneity, possibly associated with distinct 

responses to immunotherapeutics. Tumor mutation burden and 
mutational signature analysis including the tumor microenviron-
ment not only identify mutation-driven tumors but could also help 
immunotherapy.

2  | MATERIAL S AND METHODS

2.1 | Patients and specimens

Informed consent was obtained from all patients and the Institutional 
Review Board of the Shizuoka Cancer Center (Nagaizumi, Japan) ap-
proved all aspects of this study (authorization no. 25-33). All experi-
ments using clinical samples were carried out in accordance with the 
approved guidelines. Tumors and surrounding normal tissue (≥0.1 g) 
were dissected from surgical specimens immediately after resection 
of the lesion. The tumor samples were visually assessed by a clinical 
pathologist in our hospital when tumor content was 50% or more. In 
addition, peripheral blood was collected as a control for WES.

2.2 | DNA and RNA isolation

For DNA analysis, tumor and normal tissues were immediately fro-
zen in liquid nitrogen prior to DNA extraction. DNA was extracted 
from tissues and peripheral blood samples using a QIAamp DNA 
Blood Mini Kit (Qiagen, Venlo, The Netherlands). Purified DNA was 
quantified using a NanoDrop and Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific, Waltham, MA, USA). For RNA analysis, samples 
were immersed in RNAlater solution (Thermo Fisher Scientific) and 
then stored overnight at 4°C prior to RNA extraction. Total RNA was 
extracted from approximately 10 mg of hashed tissue sample using 
the miRNeasy Mini Kit (Qiagen) according to the manufacturer's in-
structions. QIAzol reagent was initially applied to the tissue sample 
and then shaken with a 5-mm zirconia bead using a TissueLyser II 
(Qiagen) for 10 minutes at room temperature. The extracted RNA 
sample was quantified using a NanoDrop spectrophotometer and 
its quality checked using an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). Samples with a RIN12 less than 
6.0 were discarded.

2.3 | Next‐generation sequencing

The exome library for WES was constructed using an Ion Torrent 
AmpliSeq RDY Exome Kit (Thermo Fisher Scientific) in accordance 
with the manufacturer's recommended protocol.13,14 For the library 
construction, 100 ng DNA was used for target amplification under 
the following conditions: 99°C for 2 minutes, followed by 10 cycles 
at 95°C for 15 seconds and 60°C for 16 minutes, and a final hold 
step at 10°C. The amplicons were ligated with Ion Torrent Proton 
adapters (Thermo Fisher Scientific) at 22°C for 30 minutes, followed 
by 72°C for 10 minutes, and the library was purified using Agencourt 
AMPure XT beads (Beckman Coulter, Brea, CA, USA). This exome 
library supplied 292 903 amplicons covering 57.7 Mb of the human 
genome, comprising 34.8 Mb of exonic sequences from 18 835 
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genes registered in RefSeq (https ://www.ncbi.nlm.nih.gov/refse q/). 
The constructed library was quantified using quantitative PCR, and 
DNA was sequenced using a semiconductor DNA sequencer (Ion 
Torrent Proton Sequencer, Thermo Fisher Scientific) according to 
the manufacturer's instructions.

2.4 | Sequencing workflow for identification of 
somatic mutations

The binary raw data derived from the semiconductor DNA sequencer 
were converted using Torrent Suite software (version 4.4, Thermo 
Fisher Scientific) into BAM files that were mapped to the reference 
human genome (UCSC hg19). BAM files of tumor and blood sam-
ples were analyzed based on the AmpliSeq exome tumor-normal 
pair workflow (version 4.4, Thermo Fisher Scientific) with a Custom 
Hotspot file that specifies somatic and pathogenic mutations regis-
tered in COSMIC5 and ClinVar,15 respectively. The list of identified 
mutations was processed by in-house scripts to remove false-posi-
tive calls, including sequencer-derived errors.16 Our WES analysis 
focused on single/multiple nucleotide variations located in exons 
and splice sites, and the mutation frequency in the genome was 
evaluated using an effective sequence length (20× or higher cover-
age in each sample) for TMB calculation.17 To avoid sequencer- and 
amplicon-derived errors, arbitrary somatic mutations were manually 
inspected using the Integrative Genomics Viewer,18 and somatic mu-
tation candidates containing multiple nucleotide variations (~1000 
sites) were validated by Sanger sequencing. The effects of mutations 
were predicted using SnpEff.19 RefSeq was adopted as the source of 
curated and annotated sequences. Somatic mutations in the exome 
were annotated using the following databases: COSMIC,5 ClinVar,15 
dbSNP,20 UniProt,21 DrugBank,22 DoCM (http://docm.info/), 
OncoKB (https ://oncokb.org/), CGI (http://www.cance rgene tics.
com/), IARC (https ://www.iarc.fr/), HGMD (http://www.hgmd.cf.ac.
uk/), and Vogelstein's list.23 Tumor cellularity was calculated as the 
average between the values obtained with PurBayes,24 Sequenza,25 
and FACETS.26 Mutational signature analysis was carried out based 
on deconstructSigs using 30 COSMIC signatures.27 The signatures 
of deamination, DSBR, smoking, MSI, UV, and POLE corresponded 
to signature numbers 1, 3, 4, 6, 7, and 10 in COSMIC, respectively. 
To calculate the contribution ratio, APOBEC was combined with 
Signatures 2 and 13. Likewise, MMR was combined with Signatures 
15, 20, and 26. In these signatures, a contribution ratio greater than 
0.5 defined “predominant”. The known fusion genes were checked 
by next-generation sequencing according to a previous report.13

2.5 | Microarray analysis

Purified total RNA for gene expression profiling was amplified and 
fluorescently labeled using a One-Color Low Input Quick Amp 
Labeling Kit (Agilent Technologies) according to the manufacturer's 
instructions. Hybridization and scanning were carried out as in previ-
ous reports.28,29 Cy3-labeled cRNAs were hybridized to a SurePrint 
G3 Human Gene Expression 8 × 60K v2 Microarray (Agilent 

Technologies), which contained 50 599 probes representing 29 833 
genes registered in the Entrez Gene Database (https ://www.ncbi.
nlm.nih.gov/gene). After hybridization and washing, the fluorescence 
was scanned using a DNA Microarray Scanner (Agilent Technologies), 
and then assessed by Agilent Feature Extraction software.

2.6 | Expression analysis of immune‐related genes

To establish a correspondence between somatic mutations and gene 
expression, microarray probes were selected according to the refer-
ence human genome (UCSC hg19). Raw signal intensity derived from 
the scanned image was filtered by Agilent Flag Values to ensure the 
reliability of the microarray data, and then log-transformed and nor-
malized to the 75th percentile. To compare gene expression between 
samples, the z-score of target genes was calculated from fold change 
(tumor vs normal tissue in the same patient). In cases where dissection 
of the normal sample was problematic, the corresponding expression 
profile was excluded from the analysis. These data were prepared 
and outputted using GeneSpring GX software (Agilent Technologies) 
and a Subio Platform (Subio, Kagoshima, Japan). The immune-related 
gene set reflecting the tumor microenvironment was composed of 
MHC-, costimulation-, and inflammatory-related genes, as described 
in a previous report.9 Hierarchical cluster analysis was undertaken 
using Ward's method in R (pheatmap in R package produced by Raivo 
Kolde) to divide data into 2 groups. Microarray analysis was carried 
out in accordance with MIAME guidelines.30

2.7 | Statistical analysis

For the comparisons of mutational signature, age, TMB, tumor cel-
lularity, and VAF score, the assumption of normality and the equality 
of 2 variances were tested by the Jarque-Bera test and F test, re-
spectively. Student's or Welch's t test was applied depending on the 
assumption of the F test concerning normal distribution. For com-
parison of samples under the assumption of non-normal distribution, 
a Mann-Whitney-Wilcoxon or Brunner-Munzel test (also known as 
“generalized Wilcoxon test”) was carried out depending on the as-
sumption of the F test. Microarray-derived gene expression data 
were normalized, and the significance of expression differences was 
calculated by Welch's t test. The significance for association between 
the mutations of the 2 groups was analyzed using Fisher's exact test. 
To control the false discovery rate, the Benjamini-Hochberg proce-
dure (q < 0.01) was carried out, and results were considered signifi-
cant at P values < 0.01.

3  | RESULTS

3.1 | Tissue distribution and TMB classification

We undertook WES in 4297 solid tumor samples derived from 
4046 patients with cancer. Samples collected from our hospital 
comprised multiple tissues, among which colorectal, lung, stom-
ach, head and neck, breast, and liver cancers accounted for 75% 

https://www.ncbi.nlm.nih.gov/refseq/
http://docm.info/
https://oncokb.org/
http://www.cancergenetics.com/
http://www.cancergenetics.com/
https://www.iarc.fr/
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https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene
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of the whole content (Figure 1A and Table S1). To investigate the 
distribution of mutation frequency, we compared the TMB re-
sults of all tumor types. The median of TMB was 2.58 mutations/
Mb, and 5.2% of cases had 20 or more mutations/Mb (Figure 1B). 
Consistent with previous reports mainly focusing on Caucasian 
subjects,1,31 the most highly mutated tumors derived from the 
colon, stomach, lung, and uterus. This indicated that the muta-
tion frequency distribution in tumors was not really different 
between races.

Additionally, the TMB range was classified into high, interme-
diate, low, and ultralow (Figure 1B). To reduce the probability of 
estimation errors due to low-frequency mutations, TMB-ultralow 
tumors (less than 1 mutation/Mb, ≈25th percentile) were excluded 
from mutational signature analysis. These samples showed a low de-
tection rate of driver (pathogenic/likely pathogenic) mutations and 
known fusion genes in comparison with TMB-low tumors (Figure S1).

3.2 | Tumor mutational burden and 
mutational signature

Mutational signature analysis was undertaken in TMB-high, -inter-
mediate, and -low tumors (n = 3292). The profile of somatic mu-
tation is visualized in Figure 2. These signatures comprised more 
than 10 samples with a predominant contribution ratio higher than 
0.5, based on deconstructSigs.27 In this analysis, 1989 samples 
(60.4%, 1989/3292) harbored the predominant mutational sig-
natures. The mutational signatures associated with deamination, 
MSI, and MMR were distributed widely among the tumor types. A 
high contribution ratio of the POLE signature was only observed in 
TMB-high tumors derived from colorectum and uterus. APOBEC, 
smoking, UV, and Signature 16 tended to be dominant in head and 

neck, lung, skin, and liver cancers, respectively. These trends were 
consistent with previous reports.1,6,7,32-35 Furthermore, we ana-
lyzed the Pearson correlation coefficient between TMB and muta-
tional signatures. The UV and POLE signatures showed moderate 
correlation, whereas APOBEC, smoking, and MSI signatures were 
weakly correlated (Figure S2). Defective POLE harboring mutations 
and DNA damage by UV irradiation lead to predominant POLE and 
UV signatures, respectively, together with extensive mutation ac-
cumulation.1,36 These results indicated that POLE deficiency and 
UV exposure were more mutagenic than the other stimuli, leading 
to massive mutation accumulation during tumorigenesis.

3.3 | Signature 16 in tumors derived from 
head and neck

Recently, molecular profiling by next-generation sequencing 
revealed that Signature 16 is dominant in hepatocellular carci-
noma of alcohol drinkers.7 In Japanese patients with liver cancer, 
Signature 16 indicated a similar tendency (Figure S3). The con-
tribution ratio of this signature was remarkably high in head and 
neck tumors of drinkers, and especially for hypopharynx cancer 
(Figure 3). Additionally, esophageal cancers of alcohol drinkers 
tended to harbor Signature 16 (Figure S3). Therefore, in Japanese 
patients, Signature 16 might be associated with alcohol consump-
tion in patients with head and neck and esophageal tumors, in ad-
dition to liver tumors.

3.4 | Microsatellite instability‐predominant tumors

Consistent with previous reports,1,35,36 the MSI signature was fre-
quently observed in TMB-high tumors in our study (see Figure 2). 

F I G U R E  1   Sample classification and tumor mutational burden (TMB). A, Distribution of tumor types in 4297 samples. The “Other” 
group contains multiple tumor types that comprise less than 20 samples. B, Distribution of TMB across 4297 samples from 22 tumor types 
corresponding to the above sample classification. TMBs of less than 1 and 1–5 mutations/Mb defined TMB-ultralow and TMB-low tumors, 
respectively. Tumors with less than 20 mutations/Mb were defined as TMB-intermediate tumors and those with 20 or more mutations/Mb 
as TMB-high tumors. GIST, gastrointestinal stromal tumor
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The MSI signature was predominant in 2.8% of all cases (122/4297), 
and 92 out of 122 samples were classified as TMB-high tumors, 
mainly derived from colorectum, stomach, and uterus (Figure 4). 
Moreover, MSI-predominant TMB-low tumors were observed in di-
verse tumor types (Figure 4B).

3.5 | Expression of immune‐related genes and 
mutational signature

Although an understanding of the tumor microenvironment, as well 
as the TMB, is crucial to estimate the response to immune checkpoint 

blockade, the relationship between microenvironment diversity and 
mutational signatures is less understood. In tumors with predomi-
nant signatures, we confirmed the expression of immune-related 
genes reflecting the tumor microenvironment and intratumoral im-
mune cells. Cluster analysis classified signatures into 2 subgroups, 
based on gene expression (Figure 5). The C1 subgroup mostly in-
cluded upregulated genes; the remaining subgroup was designated 
as C2. No significant differences in age (at surgery), tumor cellularity, 
or TMB were observed between C1 and C2. Among tumors with pre-
dominant POLE signature, a higher number of uterine tumors were 
found in the C2 than in the C1 subgroup (Fisher's exact test, P < 0.01). 

F I G U R E  2   Spectra of somatic mutations and mutational signature. Mutation frequency (vertical axis, top panel) was analyzed for all 
samples except for tumor mutational burden (TMB)-ultralow tumors (horizontal axis). The mutational signatures are represented in the 
middle panel. These signatures included more than 10 samples with predominant contribution ratio higher than 0.5, based on 30 mutational 
signatures from COSMIC.27 Nucleotide substitutions are shown in the bottom panel. Lung tumors were classified as adenocarcinoma 
(adenoca.), squamous cell carcinoma (SCC), and others. DSBR, double-strand break repair; GIST, gastrointestinal stromal tumor; MMR, 
mismatch repair; MSI, microsatellite instability

T > G
T > C
T > A
C > T
C > G
C > A

Nucleotide
substitutionAge (y)

Tumor
cellularity

Fraction of
mutations attributed

to each signature
30 80

0.2 0.8 0.2 0.80 10.4 0.6

TMB

Intermediate
High

Low

Colorectum
Lung adenoca.
Lung SCC
Lung others
Stomach
Head and neck

Breast
Liver
Pancreas
Uterus
Brain
Ovary

GIST
Sarcoma
Esophagus
Skin
Kidney
Thymus

Other (primary)
Liver metastasis
Lung metastasis
Brain metastasis
Other (meta.)
Nontumor

Tumor type

Age
Tumor cellularity
Tumor type
TMB
UV
POLE
DSBR
APOBEC
MMR
Signature 16
Smoking
MSI
Deamination

0.1
1

10

100

1000
TM

B
 

(m
ut

at
io

n/
M

b)

0
20
40
60
80

100

S
ub

st
itu

tio
n 

fre
qu

en
cy

 (%
)

F I G U R E  3   Correlation of Signature 16 with clinical features of tumors derived from head and neck (n = 271). Gray-filled rectangles in 
the correlation profile of mutational signatures indicate cases where tumor mutational burden (TMB)-ultralow tumors were excluded from 
signature analysis. n.s., not significant

Gender
Alcohol

Tobacco
Signature 16

APOBEC
Region

TMB

1.22 x 10–3

4.85 x 10–9

n.s.

Signature 16

3.24 x 10–3

(hypopharynx)

n.s.
n.s.
n.s.

APOBEC

n.s.

q value

Gender

Female
Male Yes

No
Not abailable

Alcohol/Tobacco
Hypopharynx
Oropharynx
Larynx

Region in head & neck

Others0 1 0 >105

Contribution ratio
of mutational signature

TMB
(mutation/Mb)



     |  2625HATAKEYAMA ET Al.

No accumulation of somatic mutations influencing mutational sig-
natures distinguished the 2 subgroups (Figure S4A). These findings 

suggested that tumors with predominant signatures harbored dis-
tinct expression profiles of immune-related genes.

F I G U R E  4   Distribution of tumors with predominant microsatellite instability (MSI) signature (except tumor mutational burden [TMB]-
ultralow tumors) in TMB intervals. A, Frequency of MSI-predominant samples in each TMB interval. Contribution ratio of MSI-predominant 
tumors was more than 0.5. The “Others” group contains tumors not satisfying the above criterion (0.5 or lower). B, Variation of tumor types 
in each TMB interval
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4  | DISCUSSION

Mutational signatures were calculated from 96 nucleotide substi-
tution patterns in somatic mutations. Signature analysis based on 
low-frequency mutations potentially leads to inaccurate estima-
tion.27 We thus removed TMB-ultralow tumors from our signature 
analysis. In the removed samples, known (likely) pathogenic muta-
tions or fusion genes were frequently absent. This result suggested 
that tumors with extremely low mutation frequency either harbored 
unknown driver mutations/fusion genes or did not develop muta-
tion-driven tumorigenesis. Further studies addressing copy number 
alterations or epigenetic changes are needed to clarify tumorigen-
esis in TMB-ultralow tumors.

Approximately half of the endo/exogenous factors implicated in 
30 COSMIC mutational signatures remain unclear. Recently, Letouzé 
et al7 reported an association of Signature 16 in liver cancer with al-
cohol consumption. Our analysis revealed a similar tendency in liver-
derived tumors. Interestingly, the contribution ratio of Signature 16 
in hypopharynx cancer was significantly higher among drinkers than 
among nondrinkers, and, in esophageal cancer, this ratio tended to 
further increase. The location of these tumors could reflect direct 
exposure to alcohol. Notably, no accumulation of somatic mutations 
(GG > TT) caused by acetaldehyde37 was observed in these tumors 
(data not shown). Signature 16 could be generated by direct expo-
sure to alcohol, rather than its metabolites. To clarify the influence 
of alcohol on this signature, the presence of germline mutations in 
alcohol metabolism-related genes (such as alcohol dehydrogenases) 
should be verified and validated in further studies.

Tumors harboring MSI-high status are frequently found in col-
orectum, stomach, and uterus and most of them are TMB-high 
tumors.1,32,33,38 Consistently, in our analysis, 75% of MSI-predom-
inant tumors were TMB-high and mainly derived from the above-
mentioned tissues. Additionally, MSI-predominant tumors with low 
TMB were found in tumors derived from multiple tissues, consistent 
with a previous report.39 Therefore, signature analysis is a suitable 
approach to estimate the MSI-high status in tumors. Alternative 
approaches for MSI estimation,40,41 different from mutational sig-
nature, were unsuitable due to low information content of repeat 
sequences by the semiconductor DNA sequencer. Although conven-
tional MSI testing using PCR on specific microsatellite sequences is 
necessary for clinical cancer diagnosis in Japan, MSI-predominant 
tumors identified by mutational signature analysis are potential can-
didates for treatment with immune checkpoint inhibitors such as 
pembrolizumab. Therefore, mutational signature evaluation, as well 
as TMB, could support the selection of cancer therapies based on 
immune checkpoint blockade.

The complexity and diversity of the immune context in the tumor 
microenvironment influence tumorigenesis and metastasis.8 By an-
alyzing the expression of multiple immune-related genes,9 we esti-
mated the tumor microenvironment, including intratumoral immune 
cells, in signature-predominant tumors. The expression analysis re-
vealed that all tumors, except for those with the POLE signature, 
were classified into 2 subgroups independently of tumor type, 

implying that tumors with an identical signature might have differ-
ent microenvironments. The expression of immune-related genes 
in POLE-predominant tumors reflected tumor type. This result sug-
gested that the microenvironment of tumors harboring the POLE 
signature differed between colorectal and uterine tumors. The sub-
group C1 was expected to contain more abundant intratumoral im-
mune cells than C2. Recently, Takeda et al42 reported that exposure 
to immune cells promotes genomic instability in tumor cells, favoring 
the emergence of new subclones and increasing tumor heteroge-
neity. This finding raises the possibility that the C1 tumors possess 
higher intratumor genetic heterogeneity than C2 tumors. To eval-
uate the diversity among tumors with predominant signatures, we 
examined VAF, which inversely correlated with intratumor genetic 
heterogeneity.36,43 C1 tumors with Signature 16, MSI, and smok-
ing-predominant signatures showed a significantly lower VAF score 
than the corresponding C2 tumors (Figure S4B). Taken together, 
these data suggest a higher intratumor genetic heterogeneity in 
C1 tumors, due to the exposure to immune cells. Tumor microenvi-
ronment is considered a potential predictor of response to immune 
checkpoint blockade. Among its components, the immune context 
appears to be particularly critical for predicting the overall survival 
and the likelihood of response to immunotherapeutics.8 Therefore, 
response to immune checkpoint blockade could differ between C1 
and C2 tumors.

The generation of several mutational signatures is associated 
with somatic mutations in specific genes.1,44-47 In our analysis, the 
tendency of mutation accumulation was similar between C1 and C2 
tumors with predominant signatures (see Figure S4A). However, no 
relationship between somatic mutations and the expression of im-
mune-related genes was found in these tumors. This finding sug-
gested that the diversity of the immune context, including C1 and C2 
tumors, was unsusceptible to recurrent somatic mutations.

In conclusion, the present study characterized the TMB and 
mutational signatures in 4046 Japanese patients with cancer (4297 
samples) and found mutation frequencies and patterns similar to 
those reported by previous studies mainly involving Caucasian pa-
tients. Signature 16 was associated with alcohol consumption not 
only in liver cancer but also in tumors developing in sites that could 
be directly exposed to alcohol. Microsatellite instability-predom-
inant tumors that are potential candidates for treatment with im-
mune checkpoint inhibitors such as pembrolizumab were found in 
2.8% of Japanese patients. The tumors with predominant signatures 
were classified into 2 subgroups depending on the expression of 
immune-related genes, which, in turn, reflected the tumor microen-
vironment. Tumor mutational burden and mutational signature anal-
ysis including the tumor microenvironment not only characterize 
mutation-driven tumors but could also help in prediction of response 
to immunotherapeutics.
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