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Abstract
Purpose  We evaluated the generalization capability of deep neural networks (DNNs) in the task of classifying chest X-rays 
as Covid-19, normal or pneumonia, when trained in a relatively small and mixed datasets.
Methods  We proposed a DNN to perform lung segmentation and classification, stacking a segmentation module (U-Net), 
an original intermediate module and a classification module (DenseNet201). To evaluate generalization capability, we tested 
the network with an external dataset (from distinct localities) and used Bayesian inference to estimate the probability distri-
butions of performance metrics. Furthermore, we introduce a novel evaluation technique, which uses layer-wise relevance 
propagation (LRP) and Brixia scores to compare the DNN grounds for decision with radiologists.
Results  The proposed DNN achieved 0.917 AUC (area under the ROC curve) on the external test dataset, surpassing a 
DenseNet without segmentation, which showed 0.906 AUC. Bayesian inference indicated mean accuracy of 76.1% and 
[0.695, 0.826] 95% HDI (high-density interval, which concentrates 95% of the metric’s probability mass) with segmentation 
and, without segmentation, 71.7% and [0.646, 0.786].
Conclusion  Employing an analysis based on LRP and Brixia scores, we discovered that areas where radiologists found 
strong Covid-19 symptoms are the most important for the stacked DNN classification. External validation showed smaller 
accuracies than internal, indicating difficulty in generalization, which is positively affected by lung segmentation. Finally, 
the performance on the external dataset and the analysis with LRP suggest that DNNs can successfully detect Covid-19 even 
when trained on small and mixed datasets.

Keywords  Covid-19 detection · Layer-wise relevance propagation · Lung segmentation · Deep neural networks · Bayesian 
inference · Chest X-rays

Introduction

Diagnosis is an important aspect for controlling Covid-19 
spread and helping infected patients. Nowadays, an active 
SARS-CoV-2 infection is normally diagnosed with the 
detection of its ribonucleic acid (RNA) genome (usually 

employing reverse transcription–quantitative polymerase 
chain reaction, RT–qPCR, or, alternatively, using next-
generation sequencing, NGS, or isothermal nucleic acid 
amplification assays) or with antigen tests, which assess the 
presence of viral proteins (Mercer and Salit 2021). Having 
higher sensitivity (50–70% in a real clinical scenario) and 
specificity (~ 99%), to this date (August 2022), the gold-
standard Covid-19 diagnosis method is RT-qPCR (Wang 
et al. 2020; Mercer and Salit 2021). However, this method 
is expensive, requires a considerable amount of time, and is 
at high demand during infection peaks.

X-ray is one of the cheapest and most available Covid-
19 alternative detection methods, mostly when the disease 
spread in developing countries is considered. Covid-19 has 
characteristic signs, which can be observed in chest X-rays, 
like bilateral radiographic abnormalities, ground-glass 
opacity, and interstitial abnormalities (Guan et al. 2020). 
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However, the images’ analysis is not an easy task. Therefore, 
artificial intelligence may be able to help in the creation of a 
reliable system to help clinicians in this endeavor.

Deep neural networks (DNN) for Covid-19 detection 
were already proposed by many studies (Shoeibi et al. 2020). 
However, some researchers raised concerns about the pos-
sibility of bias falsely improving the reported results. Magu-
olo and Nanni (2020) mixed different chest X-ray datasets, 
removed most of the lungs from the images, and trained 
DNNs to classify to which dataset the images belonged. 
They were able to obtain high accuracies and, according to 
them, this study reveals that dataset biases may influence 
DNNs trained with mixed datasets, reducing their generali-
zation capability. We do not think this test alone is enough 
evidence to conclude that the biases can strongly influence 
DNN decisions, because a deep neural network is a very 
flexible model: if the relevant information in the X-rays 
is deleted, it may be more prone to learn even tiny dataset 
particularities. However, we agree that the study proves the 
existence of bias in mixed datasets.

Accordingly, a review (López-Cabrera et al. 2021) has 
shown that if the DNNs are allowed to analyze the entire 
X-ray, they tend to focus on areas outside of the lungs. The 
study suggested that the DNNs pay attention to X-ray fea-
tures that are not representative of the disease symptoms 
(like text outside of the lungs), i.e., they focus on image 
characteristics that represent bias. Analyzing these features, 
the DNN can achieve high accuracy on the training data-
set and standard test databases, which are independent and 
identically distributed (i.i.d.) in relation to the training data 
(they present the same founts of bias as the training dataset). 
However, the DNNs do not properly generalize to real-world 
scenarios or out-of-distribution (o.o.d.) datasets, whose 
X-rays are gathered from external sources in relation to the 
training samples. This phenomenon is known as shortcut 
learning, and the review shows that, in Covid-19 detection, 
performances on i.i.d. test databases can be unrealistically 
high (López-Cabrera et al. 2021).

Open and large Covid-19 X-ray datasets, with all images 
collected from the same sources, are still not very common, 
making the study of mixed datasets relevant. Databases with 
the aforementioned characteristics represent the best-case 
scenario, as different classes would not present different 
biases. But Covid-19 classification datasets tend to be rela-
tively small and mixed, i.e., different classes have dissimilar 
sources (Shoeibi et al. 2020). The objective in this study is 
to understand how, in a dataset like this, bias affects a DNN 
classifying healthy individuals, Covid-19 and pneumonia, 
which is a disease that also creates abnormalities in chest 
X-rays, such as airspace consolidation, poorly defined small 
centrilobular nodules, and bilateral asymmetric ground-glass 
opacity (Kim et al. 2002). Therefore, to remove any effect of 
dataset bias in our reported results, we used external testing 

and validation (hold-out) databases, whose X-rays were not 
from the hospitals that provided the training images. We 
can also refer to the external datasets as out-of-distribution 
(o.o.d.) in relation to the training database. Furthermore, we 
analyzed if the utilization of lung segmentation improves 
performance on the external test dataset, which would indi-
cate a reduction of bias and improved generalization.

In this study, we use a large DNN, which performs lung 
segmentation, and then classifies the segmented images. 
We trained for classification with twice transfer learning, 
downloading ImageNet (Deng et al. 2009) pretrained clas-
sification networks, training them on a large X-ray database 
showing many lung diseases (Wang et al. 2017), and finally 
on our dataset (including Covid-19, normal and pneumonia).

We evaluated our networks with traditional performance 
measurements (point estimates). But, due to the small num-
ber of available Covid-19 X-rays, our test dataset is small, 
lowering the performance metrics’ reliability for prediction 
of real-world behavior. Therefore, we quantified the meas-
urements’ uncertainty, using a Bayesian model (Zhang et al. 
2015) to estimate the performance metrics probability distri-
butions and their statistics, e.g., 95% high density intervals 
(an interval containing 95% of the metric probability mass, 
and whose points have probabilities that are higher than any 
point outside of it). We expanded the model in Zhang et al. 
(2015) to also estimate class specificity and mean specificity.

We employed a technique called layer-wise relevance 
propagation or LRP (Bach et al. 2015) to create heatmaps 
of the X-rays, showing which areas most contributed to the 
DNN classification, and which were more representative of 
other classes. These maps allow for a better understanding 
of how DNNs make decisions, improving interpretability. 
They also show if the proposed DNN is truly ignoring the 
unimportant information outside the lungs, and they allow 
a clearer understanding of the lung segmentation impact on 
classifier behavior. Furthermore, the maps may be helpful 
for a clinician in finding the Covid-19 signs in an X-ray and 
evaluating the DNN prediction.

This study presents a large DNN, containing 3 stacked 
modules. The segmentation module is a U-Net (Ron-
neberger et al. 2015), trained beforehand to receive X-rays 
and output segmentation masks (images that are white in 
the lung regions and black everywhere else). Afterwards, 
we utilize an original intermediate module, which uses the 
U-Net output and the input image to erase the unimportant 
X-ray regions, and performs batch normalization. Finally, 
the classification module, a 201-layers dense neural network 
(Huang et al. 2017), returns the probabilities of the X-ray 
containing healthy lungs, pneumonia, or Covid-19. A com-
mon DenseNet201 (without segmentation) is employed for 
comparison.

This work introduces a new technique to compare 
DNN’s analysis of Covid-19 X-rays to radiologists’, which 
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is based on LRP and X-rays scored with the Brixia scor-
ing system. The Brixia score is a methodology created 
for radiologists to semi-quantitatively score Covid-19 
severity in six lung zones (Borghesi and Maroldi 2020). 
Please refer to “The Brixia score” section for a detailed 
explanation of the scoring system. Based on LRP heat-
maps and the Brixia score, we will answer the follow-
ing questions: do DNNs and radiologists look at the same 
Covid-19 signs? Is there a correlation between areas where 
radiologists find more severe symptoms to areas with more 
relevance in heatmaps? Do DNNs predict higher Covid-19 
probabilities in X-rays that radiologists considered more 
severely affected by the disease?

The main contribution of this paper consists in a pro-
found analysis of the effects of mixed datasets and lung 
segmentation on generalization in the field of Covid-19 
detection, using a test dataset created by external sources 
(with respect to the training dataset). Novel aspects of the 
analysis are the utilization of Bayesian inference to esti-
mate the performance metrics probability distributions 
and the comparison of LRP heatmaps with X-rays ana-
lyzed using the Brixia score. Furthermore, we suggested 
a modular DNN architecture, composed of two state-of-
the-art DNNs and an original intermediate module. The 
proposal is flexible: researchers can utilize just our trained 
segmentation module, along with the intermediate one, 
attach it to an alternative classification network and train 
for classification. This can provide a simple and fast way 
to create other DNNs that perform segmentation and clas-
sification, thus, our trained DNNs are available for down-
load at https://​github.​com/​Pedro​RASB/​Covid-​19-​detec​
tion-​with-​lung-​segme​ntati​on.

Methods

In this section, we explain the employed datasets, the data 
processing and augmentation procedures, the deep neural 
networks, their training schemes, and, finally, the LRP strat-
egy and Bayesian model used to analyze this study’s results.

The source databases

In sections “NIH ChestX-ray14 dataset (Wang et al. 2017),” 
“Montgomery and Shenzen datasets (Jaeger et al. 2014),”  
“Covid-19 dataset (Cohen et al. 2020),” and "CheXPert 
dataset (Irvin et  al. 2019)," we describe the open and 
anonymized databases that we utilized as data sources to 
create the datasets employed in this study, which we explain 
in “The segmentation dataset,” “Classification training data-
set,” and “External classification dataset” sections.

NIH ChestX‑ray14 dataset (Wang et al. 2017)

ChestX-ray14 is an exceptionally large dataset of fron-
tal chest X-rays, containing 112,120 images, from 30,805 
patients, showing 14 different lung diseases, as well as 
healthy individuals. The dataset was originally created by 
the US National Institutes of Health and the authors auto-
matically labeled it with Natural Language Processing, using 
radiological reports. The labels have an estimated accuracy 
higher than 90% (Wang et al. 2017). The open database is 
available at the following link: https://​nihcc.​app.​box.​com/v/​
Chest​Xray-​NIHCC.

It is an unbalanced dataset and a single patient can have 
more than one disease, therefore, classifying the database is 
a multi-label classification problem. The dense neural net-
work CheXNet (Rajpurkar et al. 2017) was trained on this 
dataset.

Nine hundred twenty-five images showing healthy 
patients were extracted from the database and used in our 
classification training dataset. Those images correspond to 
925 different patients, with mean age of 46.8 years (with 
15.6 years of standard deviation) and who are 54.3% male. 
Additionally, 1295 ChestX-ray14 images, showing patients 
with pneumonia, were also included in our classification 
training dataset. They correspond to 941 patients, with a 
mean age of 48 years (standard deviation of 15.5 years), and 
who are 58.7% male.

Montgomery and Shenzen datasets (Jaeger et al. 2014)

This database was created by the National Library of Medi-
cine, National Institutes of Health, Bethesda, Maryland, 
USA, in collaboration with the Department of Health and 
Human Services, Montgomery County, Maryland, USA and 
with Shenzhen No. 3 People’s Hospital, Guangdong Medical 
College, Shenzhen, China (Jaeger et al. 2014). The X-rays 
taken in Shenzen show 336 normal cases and 326 tubercu-
losis cases. In the Montgomery images, there are 80 normal 
cases and 58 tuberculosis cases. Please refer to the following 
website to request access to the open database: https://​www.​
ncbi.​nlm.​nih.​gov/​pmc/​artic​les/​PMC42​56233.

The Montgomery images came with segmentation masks, 
created under the supervision of a radiologist (Candemir 
et al. 2014; Jaeger et al. 2014). The dataset authors seg-
mented the images excluding the lung part behind the heart, 
and following some anatomical landmarks, such as the ribs, 
the heart boundary, aortic arc, pericardium line, and dia-
phragm (Candemir et al. 2014; Jaeger et al. 2014).

The authors in Stirenko et al. (2018) created segmentation 
masks for most of the Shenzen database; and they are similar 
to the Montgomery’s (e.g., they also exclude the lung part 
behind the heart).

https://github.com/PedroRASB/Covid-19-detection-with-lung-segmentation
https://github.com/PedroRASB/Covid-19-detection-with-lung-segmentation
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256233
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The healthy patients in the Montgomery and Shenzen 
database have a mean age of 36.1 years (with standard devia-
tion of 12.3 years) and are 61.9% male. Their X-rays were 
used in our classification training dataset.

Covid‑19 dataset (Cohen et al. 2020)

Covid-19 image data collection (Cohen et al. 2020) is one 
of the most utilized Covid-19 X-ray databases, making it 
an interesting candidate for this study analysis. The data-
set also contains other kinds of pneumonia, including viral 
variants (such as Middle East respiratory syndrome/MERS, 
and severe acute respiratory syndrome/SARS) and bacterial 
pneumonia, but we did not employ them in this work. From 
the dataset, we obtained 475 Covid-19 X-rays, representing 
all the frontal Covid-19 X-rays. Please find the open dataset 
on https://​github.​com/​ieee8​023/​covid-​chest​xray-​datas​et.

It is a public open dataset, whose images were collected 
from public sources or indirectly from hospitals and clini-
cians (Cohen et al. 2020). It is also one of the largest public 
collections of Covid-19 chest X-rays we could find by the 
date that we started training the DNNs. Furthermore, it is 
also well documented, e.g., it contains information about 
patient age, gender, and the image source.

The images we utilized correspond to 295 Covid-19 
patients, with a mean age of 42.5 years (with standard 
deviation of 16.5 years) and who are 64.5% male. Informa-
tion about disease severity is available for some of them: 
from 87 patients, 79.3% survived; from 118 patients, 61.9% 
needed ICU; from 77 patients, 61% were intubated; from 
107 patients, 62.6% needed supplemental oxygen.

CheXPert dataset (Irvin et al. 2019)

The CheXPert database contains images collected from the 
Stanford University Hospital. It has 224,313 chest X-rays, 
from 65,240 patients, showing 13 lung diseases or no find-
ings (Irvin et al. 2019). As in the NIH ChestX-ray14 data-
set, the database authors automatically labeled the images, 
employing Natural Language Processing to analyze radio-
logical reports. The labels’ estimated accuracy is also above 
90%. As exceptions, those of the original CheXPert test 
dataset were manually labeled by three board-certified radi-
ologists. To request access to the open database, please uti-
lize the following website: https://​stanf​ordml​group.​github.​
io/​compe​titio​ns/​chexp​ert/.

We used part of the CheXPert database in our classifica-
tion dataset, as part of the external validation. Seventy-nine 
pneumonia and 79 healthy images were used, including the 
ones manually labeled by three radiologists (8 of the pneu-
monia X-rays and 26 normal X-rays). The normal images 
correspond to 73 patients, with a mean age of 49.5 years 
(with standard deviation of 18.5 years), who are 56.2% male. 

The pneumonia images correspond to 61 patients, with mean 
age of 61.9 years (standard deviation of 18.1 years), and who 
are 60.7% male.

The segmentation dataset

This dataset was used to train a U-Net to segment the lungs 
in frontal chest X-ray images. It contains images of Covid-
19 (327), pneumonia (327), normal lungs (327) and tuber-
culosis (282). Pediatric patients were excluded from this 
study, because the Covid-19 database youngest patient is 
20 years old. Thus, we hypothesized that allowing the pres-
ence of children in other classes could create bias during 
classification (training the DNN not to associate children 
with Covid-19).

The normal and tuberculosis images were all the X-rays 
in Montgomery and Shenzen datasets that had correspond-
ing segmentation masks; therefore, in the segmentation data-
set, we excluded the normal and tuberculosis X-rays without 
segmentation targets. The pneumonia X-rays were randomly 
selected from the NIH ChestX-ray14 images, and the Covid-
19 images were randomly taken from the Covid-19 database 
(Cohen et al. 2020).

As targets, this dataset contains a segmentation mask for 
each X-ray. For the healthy and tuberculosis images, the 
masks were already provided in the Montgomery database 
and in Stirenko et al. (2018), for the Shenzen dataset. We 
created the other segmentation masks (for pneumonia and 
Covid-19). The mask creation process will be described with 
more details in “Creating the masks for the segmentation 
dataset” section.

Segmentation dataset subdivisions

We separated the segmentation dataset in 3: training, valida-
tion, and testing. We employed them to train the U-Net with 
hold-out validation. The dataset subdivisions were random, 
but we performed a patient split: if we had more than one 
image from the same patient, all of them were used in a 
single subdivision. For testing, we selected 150 images, 50 
from each class (pneumonia, Covid-19, and normal, with 
10 from Montgomery and 40 from Shenzen). We did not 
include tuberculosis images in the testing dataset because 
this class is not present in our classification database, thus 
the U-Net performance on it was not as relevant. But they 
were included in training and validation because we thought 
that more images would improve the network’s segmentation 
performance.

To create the training and validation datasets, we removed 
the test images, then randomly selected 80% of the remain-
ing X-rays as training and 20% as validation, while keeping 
both datasets balanced.

https://github.com/ieee8023/covid-chestxray-dataset
https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
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Classification training dataset

We used this dataset to classify chest X-ray images in one of 
three classes: healthy, pneumonia, or Covid-19. It consists 
of frontal X-rays and has 1295 images of healthy subjects, 
1295 of pneumonia patients and 396 of Covid-19 patients. 
Unlike the segmentation dataset, which had masks, this data-
set has simple classification labels: Covid-19, normal, or 
pneumonia.

The coronavirus images were all Covid-19 frontal X-rays 
in Cohen et al. (2020), except for the ones from Hannover 
Medical School, Hannover, Germany (they will be used in 
the external testing and validation datasets). The pneumonia 
X-rays were NIH ChestX-ray14 images labeled as pneumo-
nia and with adult patients. Finally, the healthy images were 
all normal images from the Montgomery and Shenzen data-
bases (with adult patients), along with 925 normal images 
from ChestX-ray14 (randomly selected, among adults).

External classification dataset

We used the external classification dataset for validation 
(hold-out) and testing when training for Covid-19 detection.

We did not get the external Covid-19 images from another 
coronavirus database, because, as the current availability 
of Covid-19 X-rays is still limited, different datasets can 
share the same images. Instead, we separated the Covid-19 
image data collection (Cohen et al. 2020) in two, according 
to geographical location. We chose all the images from Han-
nover Medical School (Hannover, Germany) for the external 
dataset because there are 79 images from this locality, a 
reasonable amount to create a validation and a test dataset 
(considering the small number of Covid-19 images), and 
because there are only 3 other images from Germany in the 
entire dataset (from Essen and Berlin). Therefore, the chance 
of a patient from Hannover having X-rays in another hospital 
from our database is exceedingly small.

The images for the normal and pneumonia classes were 
extracted from the CheXPert database. Seventy-nine images 
from each class were randomly selected, among the adult 
patients. We included, in the external dataset, all the normal 
and pneumonia images labeled by the three radiologists.

We divided the external dataset in two, for test and valida-
tion. The test dataset included 50 images from each class, 
and the validation dataset, 29. The division was random, but 
we did not allow X-rays from a single patient to be in more 
than one dataset.

Image preprocessing

Original image sizes varied between datasets or sometimes 
even within the same dataset, and we decided to utilize 
the input shape of 224 × 224, with 3 channels. This is the 

DenseNet original input size, and the shape that we suc-
cessfully used in our previous work with Covid-19 detec-
tion in X-rays (Bassi and Attux 2021). With 3 channels, we 
can take better advantage of transfer learning, due to the 
convolutional kernel shapes; images larger than 224 × 224 
would be more detailed, but they would cause the simula-
tions to be much slower, and a large input shape with a small 
training dataset can make the data very sparse in the input 
space, aggravating the problem of overfitting (Trunk 1979). 
Therefore, although we think that the exploration of differ-
ent input shapes is an important research topic in the context 
of Covid-19 detection, we used the ImageNet standard of 
224 × 224, because this choice had already been success-
ful (Bassi and Attux 2021), and because it does not detract 
from the main purpose of this paper, which is to analyze 
generalization on an external dataset and the effects of lung 
segmentation.

When we loaded the X-rays, we converted them to gray-
scale and single-channel images (using OpenCV), with 
pixel values ranging from 0 to 255. We did this to remove 
any color information from the datasets, as some images 
had slight color variations, which could become a source 
of bias. As the DenseNet original input size is 224 × 224 
with 3 channels, we converted the grayscale images to RGB 
(replicating the single-channel pixel values into three chan-
nels). Afterwards, we applied histogram equalization and 
normalized the pixel values between 0 and 1. Finally, we 
resized the X-rays to 224 × 224.

In the external test and validation datasets, as well as 
the segmentation datasets, we made the images square (if 
they were not already) by adding black bars in their borders, 
before resizing. We used the black bars to avoid changing the 
X-rays aspect ratio. Furthermore, as we did not use the bars 
in the classification training dataset, the DNNs (especially 
the one without segmentation) could not learn to identify 
them.

Training for segmentation

The U‑Net

The U-Net architecture was proposed in Ronneberger et al. 
(2015), as a DNN for segmentation in biomedical databases. 
Therefore, it was designed to perform well using a small 
quantity of annotated samples and a large amount of data 
augmentation. For example, the authors in Ronneberger 
et al. (2015) used the DNN to segment neuronal structures in 
electron microscopic stacks, winning the International Sym-
posium on Biomedical Imaging (ISBI) cell tracking chal-
lenge in 2015. As we had a relatively small amount of lung 
X-rays with masks, the U-Net seemed like a good option for 
lung segmentation.
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The architecture was already used for this purpose. In 
Heo et al. (2019), the authors used a U-Net to successfully 
segment lungs in chest X-rays, generating masks that were 
used to create a new dataset, with images that contained only 
the lungs (and black pixels outside them). Afterwards, they 
classified these images as tuberculosis or non-tuberculosis, 
utilizing convolutional neural networks (CNNs).

A U-Net is a fully convolutional DNN with two symmet-
ric paths, a contracting path, which captures context in the 
image, and an expanding path, which allows precise locali-
zation. The paths are connected at multiple points by skip 
connections. More information can be found in Ronneberger 
et al. (2015).

Our U-Net implementation is the same as the original 
(shown in Fig. 1 of Ronneberger et al. 2015); it has 5 blocks 
in each path, each one with two 2D convolutions and ReLU 
activation.

Training with the Montgomery and Shenzen databases

We trained a U-Net with the Shenzen and Montgomery data-
sets, using their manually created segmentation masks as 
targets. We randomly selected 70% of the images for train-
ing, 20% for validation (hold-out), and 10% for testing. We 
used data augmentation in the training dataset, multiply-
ing the number of images by 8 (the original images were 
not removed), with random rotations (between − 40 and 40 
degrees), translations (with a maximum of 28 pixels up or 
down and 28 left or right), and horizontal flipping (50% 
chance).

During every training procedure in this work, we used 
the validation error to estimate the DNN with the best gen-
eralization capability, and this network was then evaluated 
on the test dataset. Furthermore, the hold-out validation 
error was also used in preliminary tests to determine train-
ing parameters, such as learning rate, number of epochs, and 
weight decay (L2 regularization). We also note here that we 
conducted all training procedures and network implementa-
tions described in this paper using PyTorch, a Python library 
specialized in neural networks. We employed a NVidia Ray 
Tracing Texel eXtreme (RTX) 3080 Graphics Processing 
Unit (GPU), with mixed precision.

Using the segmentation masks as targets, we trained the 
U-Net with cross-entropy loss, stochastic gradient descent 
(SGD), momentum of 0.99, and mini-batches of size 8. We 
began by training the network for 200 epochs with a learn-
ing rate (lr) of 10−4. Afterwards, we changed the rate to 
10−5 and used a reduce on plateau learning rate scheduler, 
reducing the lr by a factor of 10 if our validation loss did 
not decrease in 20 epochs. We trained in this configuration 
for 200 epochs more.

We used mean intersection over union (IoU) to measure 
the U-Net test performance. IoU is a similarity measurement 

between two images, to calculate it we change the DNN out-
put mask, transforming any value below 0.5 in 0 and over or 
equal 0.5 in 1. We then find the intersection of this binary 
image and the target mask (the area where both are 1), and 
divide it by their union (the area where the target or the output 
is 1). Thus, the maximum IoU is 1, when the two images are 
equal. Calculating the mean IoU for all testing X-rays, we can 
quantitatively measure the DNN segmentation performance.

After this training process, we achieved a mean test IoU 
of 0.927 in the Montgomery and Shenzen datasets. We also 
checked the generated images to have a qualitative measure 
of performance, and we found the U-Net satisfactorily seg-
mented the lungs.

Creating the masks for the segmentation dataset

In our segmentation dataset, we only had segmentation masks 
for the Shenzen and Montgomery images. Thus, we still needed 
to create masks for the Covid-19 and pneumonia images.

We used the U-Net trained before (in the Montgomery 
and Shenzen datasets) to help us in this task. We began by 
using the DNN to generate automated masks for pneumo-
nia and Covid-19 images. We transformed these masks in 
binary, changing any value over or equal to 0.5 to 1 and 
below 0.5 to 0.

Then, we manually edited the automated masks, remov-
ing imperfections and comparing them with the X-rays. The 
ones that were not good enough were deleted and manually 
recreated. As in the Montgomery and Shenzen masks, we 
excluded areas behind the heart and used anatomical land-
marks (like the ribs and the diaphragm) to create our masks. 
In total, we created 327 masks for the pneumonia class and 
327 masks for the Covid-19 class.

Training with the segmentation dataset

With the Montgomery and Shenzen masks and the new 
masks for the Covid-19 and pneumonia images, we had tar-
gets for every X-ray in the segmentation dataset.

We created a new U-Net, with the same structure as the 
last one (Ronneberger et al. 2015), to be trained employing 
the segmentation dataset. For this process, we used data aug-
mentation (online) to avoid overfitting. All images were ran-
domly rotated (between − 40 and 40°), translated (maximum 
of 28 pixels up or down and 28 left or right) and horizontally 
flipped (with a 50% chance). This augmentation multiplied 
the training dataset size by 15 and we did not remove the 
original images.

We trained the U-Net using cross-entropy loss, stochastic 
gradient descent (SGD) with momentum of 0.99, and mini-
batches of size 5. We used a learning rate of 10−4 and trained 
for 400 epochs (when the DNN was already overfitting).
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The DNN ended up with 0.864 mean intersection 
over union in the test dataset. We analyzed the generated 
masks and found that they correctly indicated the lung 
areas. Most of the DNN mistakes were generating brighter 
regions in the gastric bubble area and in the lung region 
behind the heart. You can see examples of the generated 
masks, created with Covid-19 X-rays, in Fig. 1.

Training for classification

We trained two DNNs for classification: a stacked network 
(which also performs segmentation) and a DenseNet201. 
The dense network and the stacked DNN classifier module 
have the same structure, a DenseNet201. For this reason 
and to better compare the networks, we trained them for 

Fig. 1   Examples of masks 
(created by the U-Net) and the 
corresponding Covid-19 X-rays. 
The images were gathered from 
the segmentation test dataset. 
From top to bottom, they repre-
sent a 70-year-old female on the 
first day of Covid-19 symptoms, 
a 67-year-old female on day 8 
of symptoms, and a 40-year-old 
male on day 10
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classification in the same manner, which is described in 
“Pretraining with the ChestX-ray14 dataset” and “Training 
with the classification dataset” sections.

The stacked DNN creation

To perform lung segmentation and classification, we pro-
pose an architecture composed of stacked modules. The 
first one (segmentation module) is the U-Net, already 
trained on the segmentation dataset. This DNN receives 
an X-ray and outputs a segmentation mask, where 
high values indicate lung regions and low values refer 
to areas without importance. The segmentation mod-
ule parameters will always be frozen when training for 
classification.

After the segmentation module comes the intermediate 
module that we designed. It applies a softmax function 
to the U-Net output, takes only the last dimension of the 
softmax result (which displays the important regions of 
the image with high values), and replicates it to create an 
image with 3 channels. Afterwards, the module performs 
an element-wise multiplication of this image and the input 
X-ray. Thus, it removes the unimportant regions from the 
X-ray while keeping the lungs. Lastly, the module per-
forms batch normalization on the multiplication output; 
our objective with this operation is to improve the DNN 
generalization.

Therefore, with batch normalization, the classi-
fier input is normalized for each training mini-batch. 
BatchNorm is mostly used to make training deep neu-
ral networks faster, by reducing the problem of internal 
covariance shift. However, it also makes the DNN output 
for a single example non-deterministic, creating a regu-
larization effect, which improves generalization (Ioffe 
and Szegedy 2015). Its creators discovered that the tech-
nique’s regularization effect can even reduce the need 
for other regularization methods, like dropout (Ioffe and 
Szegedy 2015).

The intermediate module output enters the second neu-
ral network, the classification module, a DenseNet201 
(Huang et al. 2017) that predicts the chances of Covid-19, 
pneumonia, or normal images.

We decided to use a dense neural network as our clas-
sification module because it is a large DNN with reliable 
results in image classification (Huang et al. 2017) and 
because its architecture was highly successful in lung 
disease classification, obtaining F1-Scores in pneumonia 
detection that surpassed radiologists’, in Rajpurkar et al. 
(2017). Note that the F1-Score is defined as the harmonic 
mean between precision and recall. Considering a certain 
class as positive and the remaining classes as negative, we 

can define the number of true positives (tp) as the number 
of positive samples correctly classified, false negatives (fn) 
as the number of positive samples incorrectly classified as 
negative, and false positives (fp) as the number of nega-
tive samples incorrectly classified as positive. With these 
definitions in mind, it is possible to calculate the class pre-
cision (P), recall (R), and F1-score (F1). The three equa-
tions below summarize the concepts. The DenseNet201 
was downloaded already pretrained on ImageNet (Deng 
et al. 2009), an exceptionally large image classification 
dataset, with millions of samples.

Figure  2 shows our network structure and its three 
modules.

Pretraining with the ChestX‑ray14 dataset

We trained our DNN using a twice transfer learning 
approach, which is similar to the one that we used in a pre-
vious Covid-19 detection study (Bassi and Attux 2021). 
Another work that used twice transfer learning in a medical 
classification problem is Cai et al. (2018), which applied the 
technique for mammogram classification.

Our approach consists in a transfer learning with three 
steps: we download ImageNet pretrained DenseNet201s (to 
be used as a classification DNN or the classification mod-
ule of our stacked DNN), train the networks on the large 
ChestX-ray14 database, and then on our classification data-
set (smaller, with the Covid-19, pneumonia, and normal 
classes). We expect training on ChestX-ray14 to improve 
generalization of the DNNs, as it is a large X-ray database 
with a similar task to Covid-19 detection (classification of 
14 lung diseases and healthy patients).

In the ChestX-ray14 dataset, the only augmentation 
technique that we applied was horizontal flipping (with 
50% chance). Unlike the augmentation we performed in 
the other datasets, in this case, the new images substituted 
the original in the mini-batch (in the other datasets, the 
augmented images were added to the mini-batch along the 
originals).

We used the test dataset reported by the database authors 
as our test dataset and randomly separated the remaining 
images, selecting 20% for validation (hold-out). We did not 
allow two images from the same patient to be present in 
more than one dataset.

P =
tp

tp+fp

R =
tp

tp+fn

F1 =
2PR

P+R
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As classifying this dataset is a multi-label classifica-
tion problem, we substituted the DNNs’ last layer for one 
with 15 neurons and used PyTorch’s binary cross-entropy 
loss with logits. We trained the networks using SGD, with 
momentum of 0.9 and mini-batches of size 64. We started 
by training only the last layer, with a learning rate of 10−3, 
for 20 epochs. Then, we unfroze all layers (except for the 
segmentation module’s, when training the stacked DNN) 
and trained for 80 epochs, with a learning rate of 10−4. In 
the end of this process, both DNNs were already overfitting.

Training with the classification dataset

In this step, we started with the DNNs (DenseNet201 and 
stacked DNN) that we trained in the ChestX-ray14 dataset 
and we performed the last stage of twice transfer learning: 
training on our classification dataset to classify the Covid-
19, pneumonia, and normal classes. We substituted the net-
works’ last layer by one with 3 neurons and added a drop-
out of 50% before it (in preliminary tests, we observed that 
regularization improved accuracy on the external datasets).

We also employed online data augmentation in the train-
ing dataset, to avoid overfitting and to balance the database. 
The augmentation process was similar to the one we used 
during the U-Net training (i.e., generating new images with 
random translation, up to 28 pixels up or down, left, or 
right, rotation, between − 40 and 40 degrees, horizontal 
flipping, with 50% chance, and not removing the original 
figures). To obtain almost the same number of images in 
the three classes, we multiplied the number of normal and 
pneumonia images by 3 and of Covid-19 images by 10, 
numbers that we decided to use after some preliminary 
tests. The multiplications did not produce exactly the same 
number of images for each class: they created 3885 nor-
mal and pneumonia training images, and 3960 Covid-19 
training images. To feed the DNN balanced mini-batches, 
a small quantity of the Figures (90 of the 3960 Covid-19 
augmented images and 15 of the 3885 pneumonia and nor-
mal images) were left out of training, but in every epoch a 
new selection of these images was made. Thus, every X-ray 
was used during the training process. At each epoch, the 
neural network received 11,610 training images (3870 for 
each class). The external validation and test datasets were 
not augmented.

We used cross-entropy loss, as the optimizer we chose 
SGD, with momentum of 0.9, and mini-batches of size 30. 
We trained the DNNs with hold-out validation, until over-
fitting was clearly observable. We started by training only 
the networks’ last layer, for 20 epochs, with learning rate 
of 10−5 and weight decay of 0.01. We then trained all lay-
ers (except for the segmentation module, when training the 
stacked DNN), for 240 epochs, with weight decay of 0.05 
and differential learning rates (the learning rate started at 

Fig. 2   The structure of our proposed stacked DNN, for lung segmen-
tation followed by classification
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10−5 in the last layer was divided by 10 for each dense block 
before it, achieving the smallest value in the DenseNet first 
layer) (Howard and Ruder 2018). Each epoch in this stage 
took about 200 s in our NVidia RTX 3080 GPU.

Layer‑wise relevance propagation

DNNs are large and complex structures and it can be hard 
to interpret why they make decisions and classifications. 
Although they have a high capacity to classify images 
(Huang et al. 2017), in medical applications we want to have 
a better understanding of how it is making its choices.

Layer-wise relevance propagation is a technique that 
makes DNNs more explainable and understandable by 
humans. It propagates a value called relevance from the 
network output layer until its first layer, creating a heatmap, 
with the same format as the DNN input shape. This map 
associates a relevance value to each input feature (like a 
pixel in an image), showing how it affects the DNN output 
(Bach et al. 2015). The relevance propagation is approxi-
mately conservative, a neuron receives a certain amount of 
relevance from its posterior layer and propagates almost the 
same quantity to the layer below it (Montavon et al. 2019). 
For example, if a neuron receives 10 relevance and there 
are three neurons in the previous layer, it can propagate 
relevance values of 5, 2, and 3, but not 5, 2, and 4 (as it 
does not sum 10). Therefore, the amount of explanation in 
the heatmap is directly related to what can be explained by 
the DNN output. We cite two uses of LRP in medical con-
texts: in neuroimaging (Thomas et al. 2019) and explaining 
therapy predictions (Yang et al. 2018). LRP has more than 
one rule that can be utilized to propagate relevance, and we 
can apply different rules in different DNN layers to produce 
better heatmaps.

We used LRP to investigate if the DNNs were correctly 
interpreting symptoms of the diseases and to check if areas 
outside of the lungs were properly being ignored. We also 
think that giving these maps to clinicians along the DNN 
predictions may help them to evaluate the DNN classifica-
tion and provide insights about the X-rays, improving their 
own analysis.

We can start the relevance propagation by any output 
neuron and the meaning of the colors in a heatmap depends 
on which neuron we choose (Montavon et al. 2019). In this 
study, we have output neurons with indexes 0, 1, and 2, 
predicting the classes normal, pneumonia, and Covid-19, 
respectively. When we start the relevance propagation by 
an output neuron that predicts a certain class, red areas (i.e., 
positive relevance) in the heatmap will show regions that the 
DNN associated with that class, and blue areas (i.e., negative 
relevance) will have been associated with the other classes. 
As an example, if we start LRP by the neuron that classifies 
the Covid-19 class (index 2), red areas in the heatmap will 

indicate regions associated with Covid-19, and blue areas 
will show regions associated with the other classes (normal 
and pneumonia). Normally, we start propagation by the neu-
ron with the highest output, i.e., the predicted class.

When analyzing the stacked DNN, we only applied LRP 
to the classification module, because we only wanted to 
know which X-ray features were important to classify the 
image, not to create the segmentation mask.

To implement LRP, we used the Python library iNNves-
tigate (Alber et al. 2018), which already works with the 
DenseNet201 that we used as our classification module 
and as the DNN without segmentation. We chose the preset 
A-flat (a selection of propagation rules for the network lay-
ers) because it generated more interpretable results. To apply 
LRP to the classification module, we first needed to unstack 
our DNN. Furthermore, iNNvestigate is a library created to 
work with Keras and we created our DNNs using PyTorch. 
Thus, we used another library, called py2keras Malivenko 
(2018) to convert our classification module to Keras, before 
applying LRP. Accuracy was checked after conversion to 
make sure it was successful.

The Brixia score

To compare our stacked DNN analysis with radiologists,’ 
we will use the Brixia score. This scoring system, pre-
sented in Borghesi and Maroldi (2020), was created to 
grade the severity of Covid-19 cases. To score a chest 
X-ray, the radiologist divides the lungs into 6 parts, using 
two horizontal lines. The upper line is drawn at the infe-
rior wall of the aortic line, and the other line at the level 
of the right pulmonary vein. If it is difficult to identify 
the anatomical landmarks, the authors suggest dividing 
the lungs into three equal zones. For each of the 6 zones, 
the radiologist attributes a partial score, from 0 to 3, 
with higher values indicating higher severity. 0 means no 
abnormalities in the zone, 1 means interstitial infiltrates, 
2 interstitial and alveolar infiltrates, with interstitial pre-
dominance, and 3 interstitial and alveolar infiltrates, with 
alveolar predominance. The lines and the 6 regions are 
illustrated in Fig. 3. Note that a single letter in red (A, 
B, C, D, E, or F) represents a partial score for one of 
the 6 regions. The overall Brixia score (from 0 to 18) 
is the sum of all partial scores (A + B + C + D + E + F). 
The 6 partial scores are presented between square brack-
ets, from A to F ([ABCDEF]), after the overall Brixia 
score. At the bottom of Fig. 3, we show in red how the 
score is presented. Below it, in white, there is the actual 
Brixia score for the example X-ray, which presents a 
72-year-old male diagnosed with Covid-19, 4 days after 
hospitalization. The X-ray was scored by radiologists 
and is presented in Borghesi and Maroldi (2020). The 
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scoring system authors discovered that the score of later 
deceased patients was significantly higher than from dis-
charged patients (Borghesi and Maroldi 2020).

The Bayesian performance evaluation

The study in Zhang et al. (2015) proposed a Bayesian model 
to estimate the probability distribution of F1-Scores in the 
context of multi-class classification problems (when we have 
more than two classes and any sample can only be assigned 
to a single class).

The model can be summarized as (Zhang et al. 2015):

where N is the test dataset size (150 in this study), M the 
number of classes (3), Dir() represents the Dirichlet distribu-
tion, and Mult() the multinomial.

n is a random vector, with size M, nj estimates the number 
of samples in class j, if we collected a new test dataset (of 
size N). μ is also a random vector with size M and μj indi-
cates the probability of a new sample belonging to class j. 
β indicates the hyper-parameters of the μ prior distribution. 
Choosing β as [1,1,1] defines a uniform prior, as we and the 
authors of Zhang et al. (2015) did.

� ∼ Dir(�)

n ∼ Mult(N,�)

�j ∼ Dir(�j) forj = 1,… ,M

cj ∼ Mult
(

nj,�j

)

forj = 1,… ,M

� = f (�,�
1
,… ,�M)

cj is a random vector of size M and cj,k estimates the num-
ber of class j samples classified as class k. Thus, the cj,k ele-
ments provide an expected confusion matrix, for a new test 
dataset. θj is a random vector of size M, θj,k estimates the 
probability of classifying a sample from class j as class k. 
αj is a vector with M hyper-parameters, defining the θj prior 
distribution. As in Zhang et al. (2015), we chose all elements 
in these vectors as 1, creating a uniform prior.

ψ represents a function, calculated (deterministically) 
using the posterior probability distributions of μ and θ. 
Zhang et al. (2015) provides functions to estimate many 
performance measurements: class precision (Pj), class recall 
(Rj), macro-averaged F1-Score (maF1), and micro-averaged 
F1-Score (miF1). In a multi-class single-label classification 
problem, miF1 is identical to the overall accuracy (Sakai 
2006). With a balanced test dataset, like our test database, it 
is also identical to the average accuracy. Therefore, we used 
the miF1 posterior probability distribution to estimate our 
accuracy reliability.

We expanded the Bayesian model to also estimate the 
specificity for each class and their arithmetic mean. There-
fore, we expressed the metrics as functions of μ and θ and 
calculated them using these parameters posterior distribu-
tions. Zhang et al. (2015) defines functions for tnj and fpj 
(true negatives and false positives in the class j contingency 
table):

Therefore, using the equations above and the definition 
of specificity, we can deduce the equations that define the 
class specificity and the mean specificity (macro-averaged) 
as functions of μ and θ:

The Bayesian model takes only the classifier confusion 
matrix as input, which it uses to create the likelihoods for 
cj and n.

We computed the posterior probability distributions with 
Markov chain Monte Carlo (MCMC), utilizing the Python 
library PyMC3 (Salvatier et al. 2016). We used the No-U-
Turn Sampler (Homan and Gelman 2014), with 4 chains, 
10,000 tuning samples, and 100,000 samples after tuning.

Results

Table 1 shows the confusion matrix for our stacked DNN, 
and Table 2 for the DNN without segmentation (we created 
both matrices using the external test database).

tnj =
∑

u≠j

∑

v≠jN�u�u,v
fpj =

∑

u≠jN�u�u,j

Specificityj =
tnj

tnj+fpj
=

∑

u≠j

∑

v≠j�u�u,v
∑

u≠j

∑M

v=1
�u�u,v

Mean Specificity =
1

M

∑M

j=1
Specificityj

Fig. 3   Illustration of the lung zones for the Brixia score, and the 
score presentation (bottom, in red), based in Borghesi and Maroldi 
(2020). The actual Brixia score for this X-ray, attributed by radiolo-
gists, is shown in white (bottom). The X-ray presents a 72-year-old 
man with Covid-19 in the fourth day of hospitalization
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Tables 3 and 4 show performance metrics in the external 
test dataset, for the DNNs with and without segmentation, 
respectively. In the second column (score), we show perfor-
mance scores, calculated in the traditional and deterministic 
manner, using the confusion matrix. The other columns refer 
to statistics of the metrics’ posterior distributions, estimated 
using Bayesian inference. They are mean, standard devia-
tion (std), Monte Carlo error, and 95% high-density interval 
(HDI). The HDI is defined as an interval with 95% of the 
distribution probability mass and any point in this interval 
has a probability that is higher than any point outside the 
HDI.

We calculated, with the test dataset, the multi-class area 
under the ROC curve (AUC) using macro averaging and 

the pairwise comparisons approach from Hand and Till 
(2001). The stacked DNN achieved 0.917 AUC and the 
DenseNet201, 0.906. We do not present interval estima-
tions for multi-class AUC because defining its confidence 
interval is not a simple task, and bootstrapping is the sug-
gested method for it (Hand and Till 2001). We cannot use 
bootstrapping in this study, as we are using an external test 
dataset and we have a small number of Covid-19 X-rays.

In Fig. 4, we show the Bayesian estimations of mean 
accuracy (equal to miF1) and macro-averaged F1-Score. In 
Fig. 5, we display the corresponding trace plots (for only 
one MCMC chain). These plots exclude the tuning samples.

Our trained DNNs are available for download at https://​
github.​com/​Pedro​RASB/​Covid-​19-​detec​tion-​with-​lung-​
segme​ntati​on.

Discussion

In a previous study, we utilized a dataset that was similar to 
our classification training database. We also trained dense neu-
ral networks (without segmentation), but we did not perform 
validation and testing on an external database (Bassi and Attux 
2021). There, we could achieve accuracies above 90%, as is 
common in many Covid-19 detection studies, which also use 
internal validation, i.e., they randomly divide a single data-
set in testing, validation, and training (Shoeibi et al. 2020). 
Furthermore, in preliminary tests using the stacked DNN that 
we proposed here, but without external validation, we could 
also achieve accuracies above 90%. We note that, in our pre-
vious study and in the preliminary tests, our classification 
training database was divided in three datasets (for training, 

Table 1   Stacked DNN confusion matrix

Predicted Class

Normal Pneumonia Covid-19

Real class Normal 38 7 5
Pneumonia 8 32 10
Covid-19 2 0 48

Table 2   Confusion matrix for the DNN without segmentation

Predicted Class

Normal Pneumonia Covid-19

Real class Normal 43 0 7
Pneumonia 14 24 12
Covid-19 6 0 44

Table 3   Performance metrics 
for the DNN with segmentation. 
The score values are traditional 
point estimates. The other 
values were obtained with 
Bayesian inference

Metric Score Mean std MC error 95% HDI

Mean accuracy or miF1 0.787 0.761 0.034 0.0 [0.695, 0.826]
Macro-averaged F1-score 0.781 0.754 0.034 0.0 [0.687, 0.82]
Macro-averaged precision 0.791 0.764 0.034 0.0 [0.697, 0.829]
Macro-averaged recall 0.787 0.761 0.032 0.0 [0.698, 0.823]
Macro-averaged specificity 0.893 0.88 0.017 0.0 [0.848, 0.912]
Normal precision 0.792 0.765 0.059 0.0 [0.648, 0.877]
Normal recall 0.76 0.736 0.06 0.0 [0.617, 0.85]
Normal F1-score 0.776 0.748 0.048 0.0 [0.654, 0.839]
Normal specificity 0.9 0.887 0.031 0.0 [0.825, 0.943]
Pneumonia precision 0.821 0.786 0.063 0.0 [0.66, 0.902]
Pneumonia recall 0.64 0.623 0.066 0.0 [0.493, 0.75]
Pneumonia F1-score 0.719 0.692 0.054 0.0 [0.586, 0.795]
Pneumonia specificity 0.93 0.915 0.027 0.0 [0.861, 0.964]
Covid-19 precision 0.762 0.742 0.054 0.0 [0.636, 0.844]
Covid-19 recall 0.96 0.925 0.036 0.0 [0.854, 0.985]
Covid-19 F1-score 0.85 0.822 0.038 0.0 [0.746, 0.894]
Covid-19 specificity 0.85 0.84 0.035 0.0 [0.769, 0.906]

https://github.com/PedroRASB/Covid-19-detection-with-lung-segmentation
https://github.com/PedroRASB/Covid-19-detection-with-lung-segmentation
https://github.com/PedroRASB/Covid-19-detection-with-lung-segmentation
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Table 4   Performance 
metrics for the DNN without 
segmentation. The score values 
are traditional point estimates. 
The other values were obtained 
with Bayesian inference

Metric Score Mean std MC error 95% HDI

Mean accuracy or miF1 0.74 0.717 0.036 0.0 [0.646, 0.786]
Macro-averaged F1-score 0.729 0.705 0.037 0.0 [0.632, 0.776]
Macro-averaged precision 0.794 0.758 0.032 0.0 [0.696, 0.82]
Macro-averaged recall 0.74 0.717 0.033 0.0 [0.653, 0.781]
Macro-averaged Specificity 0.87 0.858 0.017 0.0 [0.825, 0.891]
Normal precision 0.683 0.667 0.058 0.0 [0.553, 0.779]
Normal recall 0.86 0.83 0.051 0.0 [0.728, 0.924]
Normal F1-score 0.761 0.738 0.045 0.0 [0.647, 0.824]
Normal specificity 0.8 0.792 0.039 0.0 [0.714, 0.867]
Pneumonia precision 1.0 0.926 0.05 0.0 [0.829, 0.998]
Pneumonia recall 0.48 0.472 0.068 0.0 [0.34, 0.605]
Pneumonia F1-score 0.649 0.622 0.063 0.0 [0.497, 0.743]
Pneumonia specificity 1.0 0.981 0.013 0.0 [0.955, 1.0]
Covid-19 precision 0.698 0.682 0.057 0.0 [0.569, 0.792]
Covid-19 recall 0.88 0.849 0.049 0.0 [0.752, 0.938]
Covid-19 F1-score 0.779 0.755 0.044 0.0 [0.667, 0.839]
Covid-19 specificity 0.81 0.802 0.039 0.0 [0.726, 0.876]

Fig. 4   Posterior probability density estimations for test mean accuracy (subfigures a and b) and macro-averaged F1-Score (c and d), considering 
the DNNs with (b and d) and without segmentation (a and c)
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validation and test) and two images from the same patient were 
not allowed to be present in two different datasets. We con-
clude that evaluating DNNs in an external dataset can show 
significantly smaller accuracies, indicating that bias can hinder 
generalization when working with mixed datasets, and that 
internal validation results may not reflect performance when 
analyzing data from other hospitals and locations.

Furthermore, when we compare the results of our stacked 
DNN and the DenseNet201, we observe that segmentation 
influences the model generalization capability, increasing 
mean accuracy score on the external test dataset by 4.7%, 
and the Bayesian estimation mean by 4.4%.

Some works have also used lung segmentation for Covid-
19 detection in chest X-rays. A recent study (Rahman et al. 
2020) used a modified U-Net to segment the X-rays before-
hand, it then applied an image enhancement technique (like 
histogram equalization) and classified the segmented X-ray 
with different DNNs. Like in this study, their work utilized a 
mixed database, but, unlike our work, they constructed their 
test dataset randomly, using five-fold cross validation. As 

can be seen in other works that applied internal validation 
(Shoeibi et al. 2020), their study obtained high accuracies, 
around 95%. But surprisingly, their results showed that lung 
segmentation reduced test accuracy and F1-scores (by about 
1%). This result strongly contrasts with our findings (4.7% 
accuracy improvement with segmentation), and, although 
the utilization of our intermediate module might have posi-
tively influenced our performances with segmentation, we 
do not think that it is the main cause for this discrepancy. 
Instead, we think that the different test methodologies in the 
two papers caused the different results. In our study, lung 
segmentation reduced dataset bias, improving generalization 
and performances on the external test dataset. However, this 
reduction of dataset bias may decrease performance when 
it is measured with internal validation, possibly explaining 
why lung segmentation reduced accuracy and F1-Score in 
Rahman et al. (2020).

The normal class specificity shows the percentage of 
unhealthy patients that were not classified as healthy. The 
score value of 90%, in Table 3, indicates that a relatively 

Fig. 5   Trace plots for test mean accuracy (subfigures a and b) and macro-averaged F1-Score (c and d), considering the DNNs with (b and d) and 
without segmentation (a and c)
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small number of the patients with a disease were miss-clas-
sified as healthy by our model.

We note that the 95% high-density intervals (HDIs) are 
relatively large, e.g., for mean accuracy with the stacked 
DNN the interval length is 0.131. This can also be observed 
in Fig. 4. The strongest reason for the large intervals is the 
small size of the test dataset, and using more test samples 
would increase the performance metrics confidence.

LRP and comparison with radiologists’ analysis 
(using the Brixia score)

We propose comparing X-rays scored by radiologists, using the 
Brixia score, with heatmaps, created by LRP. The maps show 
how much relevance in classification each part of the X-rays has. 
Therefore, if we start the propagation by the neuron that classi-
fies Covid-19, areas that have larger and darker red regions indi-
cate where the DNN found more severe Covid-19 symptoms. 
Checking these areas’ partial Brixia scores may indicate if the 
DNNs look for the same signs of Covid-19 as radiologists do. 
Furthermore, more severe cases of Covid-19 may show stronger 
symptoms and could increase the Covid-19 probability predicted 
by the DNN. Therefore, we may also be able to check if there 
is a correlation between images with high overall Brixia scores 
and the higher predicted probabilities.

Besides presenting the scoring system, Borghesi and Mar-
oldi (2020) also show examples of Covid-19 X-rays, already 
scored by radiologists. These images are also part of our train-
ing dataset. In Fig. 6, we analyze, with our stacked DNN, 
three of them (the ones that had nothing written over the 
lungs). The X-rays displayed in this section were processed 
as indicated in “Image preprocessing” section. The figure pre-
sents the X-rays, the generated segmentation masks, the LRP 
heatmaps, the network outputs and the Brixia scores (given 
by radiologists), with the partial scores in brackets. We note 
that relevance propagation began at the neuron that classifies 
Covid-19; therefore, red areas indicate regions that the DNN 
associated with Covid-19, while blue areas were associated 
with the pneumonia or the normal class.

All X-rays in Fig. 6 were taken from a 72-year-old man diag-
nosed with Covid-19. The one in the first row is from the day 
of admission, one day after the onset of fever (Borghesi and 
Maroldi 2020). We observe that the X-ray shows little signs 
of Covid-19, as the Brixia score is exceptionally low, at one. 
This should make classification more challenging, and, indeed, 
our DNN could not correctly classify this image, predicting 
the normal class, but with only 60.3% probability. The patient 
had a rapid disease progression; the second and third rows 
show X-rays at days 4 and 5 post-hospitalization, respectively 
(Borghesi and Maroldi 2020). Our DNN correctly classified 
both X-rays, with Covid-19 probabilities of 65.9% and 73.5%.

Unlike the Brixia score, our network is not designed to 
analyze disease severity. But we observe that X-rays show-
ing more severe and apparent symptoms (thus, with higher 
Brixia scores) also increase the DNN confidence for the 
Covid-19 class. In Fig. 6, we see that the higher the overall 
Brixia score, the higher the Covid-19 predicted probability. 
This indicates a similarity between the symptoms that the 
radiologists look for and the ones that our DNN analyses.

An analysis of the partial scores and the heatmaps of the two 
correctly classified X-rays in Fig. 6 also corroborates with the 
conclusion above. In both heatmaps, we observe more relevance 
in the right lung, and it also has higher partial Brixia scores. The 
middle heatmap shows that, in the right lung, the DNN found 
more Covid-19 signs in regions b and c, which also have higher 
partial Brixia scores; in the left lung, we see more relevance in 
the E region, which also contains the highest partial score. In the 
lower heatmap, in the right lung, there is again more relevance 
in regions b and c, which also present higher Brixia scores. The 
f region of the lower heatmap in Fig. 6 has 3 Brixia score, but is 
blue in our heatmap. The reason for this is that the region was 
mostly associated, by our DNN, with the pneumonia class (this 
region is very red if we start LRP by the neuron that classifies 
pneumonia).

LRP analysis showed that our segmentation module and 
intermediate module work as intended, containing almost all 
relevance in the lung regions (as can be seen in Figs. 6 and 
7). Figure 7 also analyzes the stacked DNN. It shows a Covid-
19 input X-ray, the generated mask and LRP heatmap. But, 
unlike in Fig. 6, this radiography is from the external test data-
set. We observe that the segmentation mask is not perfect, but 
the areas outside the lungs are not very bright and are mostly 
ignored by the DNN, as the heatmap shows. Again, this X-ray 
was correctly classified (89.6% probability of Covid-19) and 
the red areas in the heatmap were associated, by the neural 
network, with the Covid-19 class.

We can further understand the differences between the two 
DNNs (with and without segmentation) when we analyze them 
using layer-wise relevance propagation. Therefore, we show, in 
Fig. 8, an LRP analysis for the same X-ray in Fig. 7, but created 
using the DenseNet201 (without segmentation) instead of the 
stacked DNN. We note that this DNN correctly classifies the 
image, but it assigned a much lower Covid-19 probability, of 
46.2%. Red areas on the map were associated with the Covid-19 
class, while blue areas were associated with the other classes.

We observe, in Fig. 8, that there is relevance outside of 
the lungs. Its existence may explain why the stacked DNN 
has better generalization (4.7% higher accuracy on the 
external test dataset) than the network without segmen-
tation. The relevance outside of the critical areas might 
indicate dataset biases learned by the DNN. However, 
some Covid-19 signs, indicated in the heatmap in Fig. 7, 
can still be seen on Fig. 8 (mostly on the left lung).
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Conclusion

First, we observe that our mean accuracy score on the 
external test dataset, using the stacked DNN, was 78.7% 
and, without segmentation, 74%. These values are signifi-
cantly lower than the accuracies calculated using internal 
validation (i.e., randomly splitting a database in test, vali-
dation, and training datasets). Our previous study (which 
used a database like our current classification training 

dataset and employed internal validation, without lung seg-
mentation) (Bassi and Attux 2021), and many other works 
that detected Covid-19 using DNNs without external evalu-
ation (Shoeibi et al. 2020) showed accuracies above 90%. 
Although a loss of performance is expected when a DNN 
is trained on one database and tested on another, this accu-
racy discrepancy may indicate that utilizing mixed datasets 
creates bias and shortcut learning (López-Cabrera et al. 
2021), which improves internal validation accuracies and 

Fig. 6   X-rays (subfigures a, b, and c) from a male 72-year-old Covid-
19 patient. They were created in the first (a), fourth (b), and fifth (c) 
days of hospitalization. Masks (d, e, and f), heatmaps (g, h, and i), 
and class probabilities (right) consider the stacked DNN. In the heat-
maps, red colors indicate areas that the DNN associated to Covid-19, 

while blue areas were associated to the pneumonia or normal classes. 
We observe a clear correlation between Brixia scores and red regions 
in the heatmaps. Moreover, as the disease progressed, Brixia scores 
increased, the DNN predicted higher Covid-19 probability, and heat-
maps became redder
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performance metrics, as the study in Maguolo and Nanni 
(2020) suggests. These extremely high accuracies may not 
hold up when images from other hospitals, locations, and 
datasets are analyzed, as we have seen in this work.

The utilization of lung segmentation, performed by our 
stacked DNN architecture, improved generalization, increas-
ing mean accuracy score on the external test dataset by 
4.7% (or 4.4%, when considering the Bayesian estimations 
means). Other techniques that may have helped mitigating 
mixed dataset bias in this study were histogram equalization 
(in the input X-rays), batch normalization (in our intermedi-
ate module), removing pediatric patients from the datasets 
(because the youngest patient in the Covid-19 class is 20 years 

old), utilizing an external validation dataset, regularization 
(dropout and weight decay), twice transfer learning, and data 
augmentation.

Bayesian estimation of the DNNs’ performance metrics 
allowed us to quantify the reliability of the reported metrics. 
We observed relatively large 95% high-density intervals, 
caused by the small size of the test dataset (150 images). 
This emphasizes both the importance of making interval 
estimations in the context of Covid-19 detection, and how 
beneficial larger Covid-19 X-ray databases would be.

Layer-wise relevance propagation allowed us to gener-
ate heatmaps and analyze how our DNNs performed their 
classification. The stacked DNN heatmaps indicated that the 

Fig. 7   The X-ray (a) is an image from our external test dataset 
(unlike Fig.  6, which presented training X-rays), correctly classified 
as Covid-19. It presents a male patient in the first day of Covid-19 
symptoms. The mask (b) and the heatmap (c) were created with the 

stacked DNN. Red colors indicate areas that the DNN associated to 
Covid-19, while blue areas were associated to the classes pneumonia 
or normal

Fig. 8   Covid-19 X-ray (a) and 
heatmap (b). Unlike Figs. 6 
and 7, this heatmap was created 
with the DNN without lung 
segmentation. The X-ray is an 
image from our external test 
dataset, correctly classified by 
the network, and it is the same 
X-ray seen in Fig. 7. Red colors 
indicate areas that the DNN 
associated to the Covid-19 
class, while blue areas were 
associated to pneumonia or 
normal
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networks successfully ignored areas outside the lungs, as these 
regions’ relevance was exceedingly small, showing almost no 
color in the maps. Comparing X-rays scored by radiologists 
using the Brixia score with our stacked DNN outputs and 
heatmaps demonstrated that, normally, regions with high 
partial Brixia scores also had high Covid-19 LRP relevance. 
Furthermore, X-rays with higher overall scores were asso-
ciated with higher Covid-19 predicted probabilities. These 
observations point out that radiologists and our stacked DNN 
look for the same signs of Covid-19 in a radiography.

Performing LRP in a DenseNet201 without segmentation 
indicated that, although lung areas were relevant and con-
sidered, the DNN also paid attention to regions outside of 
the lungs. This again suggests that segmentation can reduce 
dataset bias and improve generalization.

Although we conclude that mixed dataset bias is signifi-
cant, our DNNs’ performance on an external dataset and LRP 
analysis indicate that it can be partially avoided. On the external 
test dataset our stacked network had 0.916 AUC and, using the 
Bayesian model, we estimated a macro-averaged F1-Score with 
mean of 0.754 and 95% high density interval of [0.687, 0.82].

This study shows the need for large, open, and high-
quality Covid-19 X-ray databases, with all classes collected 
from the same sources, to better avoid dataset bias, improve 
generalization, and increase performance metrics reliability. 
Our DNNs’ performance on the external dataset suggests 
that, even with small and mixed datasets, DNNs can be suc-
cessfully trained to detect Covid-19, if appropriate measures 
to avoid bias are taken. However, we must note that even 
though we utilized an external test dataset, clinical tests are 
needed to further ensure that the performances we observed 
in this study are replicable in a real-world scenario.

This work employed a non-standard testing strategy, eval-
uating the DNNs on an external, out-of-distribution dataset. 
Therefore, we mitigated the effect of bias in the reported 
results, and more realistically assessed the potential of deep 
learning to become an auxiliary tool to help clinicians in 
Covid-19 detection. Moreover, using this evaluation strat-
egy, we demonstrated the importance of lung segmentation 
for DNN generalization, a capability that is paramount for 
the neural network applicability in a real clinical scenario. 
Finally, our novel analysis with the Brixia score and LRP 
heatmaps allowed a more profound understanding of the 
deep neural network decision rules, increasing its trustwor-
thiness, a quality that is crucial for medical applications.
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