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Abstract

Within the national innovation system literature, the low- and middle-income countries

(LMICs) eligible for the World Bank’s International Development Association (IDA) support,

are rarely part of empirical discourses on growth, development, and innovation. One major

issue hindering empirical analyses in LMICs is the lack of complete data availability. This

work offers a new full panel dataset with no missing values for IDA-eligible LMICs. I use a

standard, widely respected multiple imputation method (specifically, Predictive Mean

Matching) developed by Rubin in the 1980s, which conforms to the structure of multivariate

continuous panel data at the country level. The incomplete input data consisting of many

variables come from publicly available established sources. These variables, in turn, cap-

ture six crucial country-level capacities: technological capacity, financial capacity, human

capital capacity, infrastructural capacity, public policy capacity, and social capacity. Such

capacities are part and parcel of the National Absorptive Capacity Systems (NACS). The

dataset (MSK dataset) thus produced contains data on 47 variables for 82 LMICs between

2005 and 2019. The dataset has passed a quality and reliability check and can therefore be

used for comparative analyses of national absorptive capacities and development, transi-

tion, and convergence among LMICs.

1. Introduction

Without data, you’re just another person with an opinion.

(William Edwards Deming)

The National Innovation System (NIS) focuses on a broad range of variables, activities, institu-

tions, and their interactions that can foster economic growth and development in countries
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[1]. However, this literature underrepresents the global South. One of the major problems for

this lack of reasonable representation stems from the lack of data for low- and middle-income

countries (LMICs). By resulting in the exclusion of LMICs in empirical analyses, missing data

lead to either positively or negatively biased results that manifest themselves in over and

underestimated effect sizes.

Despite the general limitations, several studies have recently investigated NIS and its rela-

tionship with growth and development in some developing economies [2–5]. Other studies,

using capacities as a way to operationalize NIS, have employed available data for diverse sam-

ples of countries to estimate the quantitative impact of financial, technological, and social

capacities of countries on their economic growth and development process [6–11].

Inspired by the studies on capacities and economic development, Khan [12] has recently

rigorously operationalized a thorough list of capacities that capture innovation, knowledge

absorption, and learning processes in LMICs and further included those capacities in a formal

framework of National Absorptive Capacity System (NACS). A firm-level concept of “absorp-

tive capacity,” as advanced by Cohen and Levinthal [13], particularly motivates the NACS

framework. As a modified version of NIS, NACS considers an LMIC an “economic learning”

entity that absorbs, creates, and deploys knowledge, learning, and skills subject to the strength

of its local capacities [14].

To study NACS and its evolution in LMICs and to further examine the impact of the frame-

work capacities on economic development in LMICs, complete panel data (country-year

observations) on variables that measure capacities are required. Unfortunately, such variables

are not wholly available across LMICs eligible for the World Bank’s International Develop-

ment Association (IDA) support. The IDA eligibility depends mainly on a country’s relative

poverty, defined as the Gross National Income (GNI) per capita below an established threshold

updated annually (1,185 US dollars in the fiscal year 2021). IDA also supports some countries,

including several small island economies, that are above the operational cutoff but lack the

creditworthiness needed to borrow from the International Bank for Reconstruction and Devel-

opment (IBRD). Since IDA eligibility is based on GNI per capita, countries graduate and rein-

ter (More information on IDAs can be accessed here: https://ida.worldbank.org/en/about/

borrowing-countries). Such IDAs are the foci of this study (I have data on 82 countries—74

among them are still eligible for IDA resources and 8 countries recently graduated, together I

call them LMICs). Since the LMICs are data-impoverished, there is a dire need to fix the prob-

lem of missing data for those LMICs, presumably prime candidates for development, learning,

and innovation. Therefore, in this article, I build a complete and recent dataset on variables

constituting capacities within LMICs, using established statistical and machine learning

techniques.

Data incompleteness, commonly called the missing data problem, severely hampers empiri-

cal research. Various research fields have extensively investigated missing data dynamics, con-

sequences, and possible remedies [15–20]. However, the innovation system and absorptive

capacity literature have yet to thoroughly investigate missing data’s nuances, processes, and

implications. One significant repercussion of missing data is that the current empirical litera-

ture on NIS and economic growth suffers from an imbalance. The literature either focuses on

many countries within a limited period [7] or analyzes a few economies for an extended time

[21, 22]. The former strand of literature can only provide a limited study of the evolution

within NIS and NACS, whereas the latter prevents analyses in many LMICs. Hence neither is

ideal; while the former is static, the latter is not representative of the LMICs.

This article systematically compiles, estimates, and imputes an incomplete dataset to allevi-

ate the missing data problem in LMICs eligible for IDA support. It employs multiple imputa-

tion (MI) approach that efficiently and consistently estimates missing data and generates a
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panel dataset for 82 LMICs between 2005 and 2019. MI uses state-of-the-art statistical methods

to address the missing data problem [18, 23]. By treating missing variables as outcomes and

complete variables as predictors, MI statistical methods either impute all incomplete variables

in a single computation step (multivariate regression model) or impute one variable at a time

in a series (univariate regression models). Many research fields in physical and biological sci-

ences have embraced such techniques [24–27]. This work explicitly employs univariate regres-

sion modeling, a variable-by-variable (sequential or chained) predictive mean matching

(PMM) technique [28]. As an MI conditional modeling approach, PMM imputes missingness

dependent on observed data in continuous, panel variables that do not have to be normally dis-

tributed [28–30]. This technique returns meaningful imputations that respect the data distri-

bution of the original incomplete dataset (observed dataset).

Castellacci and Natera [31] conducted a similar data compilation study (CANA hereon).

The researchers estimate a CANA dataset for 134 countries between 1980 and 2008 using an

MI algorithm developed by Honaker and King [32]. The proposed MSK dataset is similar to

CANA dataset as both are panel datasets estimated using novel MI techniques. Similarly, both

datasets have a roughly identical structural build of NACS and NIS. For instance, they contend

that such systems are measured by dimensions (CANA) and capacities (MSK), which, in turn,

are captured by many variables interacting in multiple ways.

Although this article builds on CANA, it is different in several ways. First, as opposed to the

CANA dataset, the MSK dataset estimated here focuses on relatively more data-deficient and

economically poor IDA-eligible countries.

Secondly, though the MSK dataset employs some CANA dataset variables, it has an entirely

different functional and operational conception of the capacities and the variables used to

operationalize those capacities. Particularly, Public Policy and Social Capacity are operationa-

lized very differently. In the MSK dataset, the Public Policy Capacity includes variables about

public sector management and institutions, economic management, structural policies, the

strength of legal rights, and statistical capacity scores of countries, whereas the Social Capacity

includes variables on policies for social inclusion, human resource rating, social protection rat-

ing, equity of public resource use, poverty headcount ratio, and social contributions. On the

other hand, in the CANA dataset, the analogous dimensions are the Political-institutional

dimension (which comprises freedom of press and speech, human rights, women’s rights, and

political rights, among other factors) and the Social capital dimension (which includes the

importance of friends, family, marriage, trust, happiness, and Gini Index).

Additionally, the MSK dataset includes an extended set of other relevant variables to mea-

sure capacities. The MSK dataset consists of 47 variables for all economies in the dataset. In

contrast, CANA consists of 34 variables for all economies and another seven variables for a

restricted set of countries within the dataset.

Fourth, the timeframe for this study is truncated to fifteen years, not only because it is a

decent period for panel analysis but also because of pragmatic concerns regarding data avail-

ability, particularly on public and social policy capacity variables. The World Bank Group’s

country offices started collecting these variables in the IDA-eligible countries from 2005

onwards [33].

The last vital distinction worth considering is that the CANA dataset is estimated using

Honaker and King’s [32] Expectation-Maximization algorithm. The MSK, on the other hand,

is estimated using the Multiple Imputation by Chained Equations Predictive Mean Matching

(MICE PMM) algorithm. Although the EM algorithm is efficient and undoubtedly suitable for

panel data, it forces a normal distribution on the imputed data regardless of the distribution

structure (skewed, unimodal, bimodal) in the observed data [34]. In contrast, the MICE PMM

algorithm preserves the distribution pattern of observed data in the imputed values [35], and it
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has been used for panel data imputation [36]. Besides preserving the distribution pattern in

the imputed values, the MICE PMM is best suited for this study because the data structure is

heteroskedastic (Variances of the variables in data mostly differ; for instance, variance for days
to enforce a contract is 80 times larger than the variance for days to start a business) and associ-

ations among variables are nonlinear as can be seen in scatterplots.

In short, this article contributes to the literature by constructing a complete dataset and

establishing its relevance for panel analyses of NACS and economic growth, among other anal-

yses, in LMICs. A standard MICE PMM algorithm is employed to construct this dataset. The

panel dataset, hence obtained, is complete with no missing values. It consists of 47 variables

grouped into six vital capacities for each country: technological capacity, financial capacity,

human capital capacity, infrastructural capacity, public policy capacity, and social capacity.

The incomplete (original or observed) dataset, which contains many missing values, is con-

structed from reputable data sources such as the World Bank, International Monetary Fund

(IMF), International Labor Organization (ILO), United Nations COMTRADE, and United

Nations Educational, Scientific and Cultural Organization (UNESCO), among others (see S2

Table). The MSK dataset is estimated from this observed dataset, which provides information

on 82 LMICs between 2005 and 2019 (total observations are 1,230 country-year observations).

A four-way quality check establishes this dataset’s reliability and usefulness for researchers

interested in panel analyses of absorptive capacity and innovation system, economic develop-

ment, economic policy, and convergence analysis within LMICs.

The rest of the paper is shaped as follows. Section 2 gives a brief literature landscape, the

association between NIS and NACS, and discusses the missing data and its implications on

methodologies. Section 3 further discusses the importance of handling missing data, strategies

to address missingness, and underlying missing data mechanisms. Section 4 elaborates on

Multiple Imputation and MICE PMM technique. Section 5 discusses the MSK dataset and the

steps taken to develop this dataset. Section 6 carries out a brief descriptive analysis of the MSK

dataset, and Section 7 conducts a quality check of the estimated dataset. Lastly, Section 8 con-

cludes by summarizing the results and implications of this work. The Supporting Information

includes graphs and tables, conveying more information on how the database is constructed

and other dataset characteristics.

2. From NIS to NACS: Comparative analyses of national systems

and growth, and development and the problem of missing data in

LMICs

The concept of NIS emerged in the 1990s [37–39]. It considers systems, activities, institutions,

and interactions as the driving force behind economic growth and development [1, 40]. The

strength of these factors explains cross-country differences in growth, development, and inno-

vation. Around the time NIS emerged, Cohen and Levinthal developed the idea of “absorptive

capacity” to explain how learning is consolidated in a firm and how it impacts its growth [13].

In the early 2000s, researchers extended the firm-level concept to a national level [41, 42].

They developed a theoretical framework for aggregating national absorptive capacities

upwards from a firm level. Other empirical studies also applied the idea nationally [8]. These

works used different capacities emerging in NIS literature (such as technological and social

capacities) as proxies for national absorptive capacity. In this essence, NACS is essentially an

offshoot of NIS.

Earlier, foundational theoretical and empirical work on NIS focused mainly on prosperous

economies [37, 43]. Later, NIS literature theoretically included developing countries, as they

considered developing countries “national economic learning” entities and “imitation” centers
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[4, 44, 45]. National-level capacities literature examining the impact of capacities on economic

development also included some developing economies in their analyses [8]. However,

because of the lack of data in LMICs, such studies had to compromise operationalizing the

complex and multifaceted capacities proposed in NIS and NACS. Similarly, the lack of data on

many vital variables perhaps trimmed the list of essential capacities in their analyses.

Another critical challenge that missing data poses is limiting the application of study meth-

odologies in many LMICs. In general, quantitative studies of capacities and development use

mainly two different methodologies: panel regression analyses and composite indicator

analyses.

Panel regression analyses examine the empirical relationship between a few capacity vari-

ables and comparative national differences in GDP per capita growth across countries [46, 47].

While powerful as they consider the dynamic nature of capacities, such panel studies ignore or

drop off many LMICs because longitudinal data for many variables are missing in these coun-

tries. As a result, the coefficients of interest obtained through panel analyses do not provide

information about the economically poor economies. Using econometric terminology, the

estimates from such studies exhibit an upward or downward bias by overestimating or under-

estimating the effect of capacities on economic growth.

On the other hand, composite indicator analyses establish a country’s comparative standing

against other countries by building aggregate or composite indicators that denote different

dimensions of technological and social capabilities [7, 48]. Compared to panel analyses, the

composite analyses consider many countries, including some LMICs. However, since most

LMICs have limited data, such studies are usually static (one-year studies), ignoring how

NACS evolved. Also, not all LMICs have data on all the variables of interest available for one

particular year. Therefore, even composite analyses cannot possibly include all LMICs.

Generally, data availability restricts the number of countries and periods used in the analy-

ses. Both methodologies are challenging for developing countries, particularly LMICs eligible

for IDA resources, which are the foci of this study. This article contributes to alleviating the

problems stemming from missingness by constructing a new complete panel dataset. A statisti-

cal technique called MICE PMM is employed to estimate the missing values in the original

incomplete data sources [23]. Out of many imputation suites, this article considers MICE

PMM because they are powerful, efficient, consistent, convenient, and reliable. The following

section elaborates on why it is essential to adequately handle missing data and what strategies

could be used to deal with missing data.

3. Properly handling missing data- why it is crucial, mechanisms

underlying missing data, and strategies to handle missing data

It is essential to carefully consider the missing data problem to obtain accurate estimates of the

parameters of interest in any analysis. Missing data pose many dilemmas in data analysis. The

chief dilemma is that if a researcher uses original data by excluding subjects with missing data

from the study, the researcher will not use all the existing information in the data, most likely

causing over- or underestimated parameters (aka ‘biased parameters’). To treat bias in param-

eters due to the exclusion of subjects in the analysis, a researcher can impute the missing data.

During the imputation process, however, the researcher should take utmost care in preserving

variability found in existing data and incorporating uncertainty underlying any missing data.

Therefore, employing proper and standard imputation methodologies is imperative to esti-

mate a reliable dataset.

Provided that the imputation technique is sound, one may get reliable imputations. The

first step in getting the imputation technique right essentially means being mindful of the
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missing data pattern and what might have caused it. The literature considers three potential

mechanisms underlying missing data [49].

Missing Completely At Random (MCAR)

Missing is MCAR if it is genuinely by chance, i.e., missingness is independent of data charac-

teristics. In other words, missingness in MCAR is not related to any nonmissing or missing

values in the data set. For example, the random loss of a blood sample in the lab suggests

MCAR.

Missing At Random (MAR)

Data exhibits MAR if the missingness is due to observed but not unobserved data. In other

words, the observed data explains the missingness. For example, women may be less likely to

report their age, regardless of their actual age.

Missing Not At Random (MNAR)

In such a mechanism, missing values explain missingness. For example, individuals with

higher salaries may be less willing to answer survey questions about their pay. Another exam-

ple of MNAR relates to a person not attending a drug test because they took drugs the night

before.

Understanding the mechanisms underlying missing data is extremely important to properly

handle data. If a researcher fails to understand the missing data pattern and the underlying

mechanism and imputes missing values, the missing data may be mistreated. Consequently,

results will exhibit insufficient statistical power, upward or downward biases in parameters of

interest, under or overestimated standard errors of the parameters, and other inaccurate

findings.

Two main strategies are employed to handle missing data: 1) deletion and 2) substitution

and imputation [50]. Deletion (also called complete or available-case analysis) is of two kinds:

pairwise or listwise deletion [51]. Both these kinds exclude observations with missing values

while analyzing data [51]. Imputation or substitution imputes or substitutes for missing values,

and it is also of two main types: single imputation and multiple imputation [19].

Single imputation produces one complete dataset when imputing for missing values. It can

be accomplished via several techniques such as mean substitution, mode substitution, nearest

neighbor-based imputation, regression, or cold deck imputation [52]. Multiple Imputation

(MI), on the other hand, produces multiple imputed data sets, employs a statistical analysis

model to each one, and eventually merges all analysis results to generate an overall result [18].

Based on various data pattern assumptions and underlying data structures, MI is executed

in many ways, such as parametric approaches (Multivariate Normal MI) that work well with

normally distributed data or semiparametric approaches (Multiple Imputation by Chained
Equations including Predictive Mean Matching) that relax normality assumption (Please see

Pace [53] for more details on parametric vs. semiparametric approaches). Another imputation

technique, performed in one or many runs, is Expectation-Maximization (EM) algorithm. EM

is an iterative algorithm that finds maximum likelihood estimates in parametric models [54].

These strategies have both pros and cons (see S1 Table). Of those strategies, this article

employs Multiple Imputation by Chained Equations (MICE), specifically Predictive Mean

Matching (PMM), for imputing missing values that do not observe a normal distribution.

MICE PMM is not only a convenient, standard, and reliable technique but also gives very

accurate and plausible estimates for the data under consideration [36, 55]. The next section

briefly describes MI, MICE, and PMM.
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4. The multiple imputation method and predictive mean matching

Rubin [56] first introduced the multiple imputation methodology as an efficient statistical

methodology to estimate missing values in a dataset. Several other researchers also explain this

technique [56, 57]. Over the years, this methodology has evolved into various methods, cater-

ing to missingness in diverse data models. MI overcomes many of the problems associated

with deletion and other single imputation techniques [58, 59]. In addition, the methodology

returns efficient and accurate estimates and preserves variability, which is otherwise lost using

other single imputation techniques (such as mean or cold deck imputation).

MI is valid under MAR (Missing at Random) assumption [59]. Therefore, MI estimates

missing values using available, observed data [60].

Since there is uncertainty about missing data values, the estimation process is repeatedm
times (this step refers to the imputation stage). From the imputation stage,m complete datasets

are generated. In the next stage (analysis stage), econometric analyses of interest are separately

performed onm datasets. Finally, all these multiple results are combined (pooled) to obtain a

final value of the coefficient of interest, for instance, regression coefficients (pooling stage). In

short, a standard MI process produces multiple imputed datasets, applies a statistical analysis

model to each dataset, and then integrates all analysis results to create an overall result (see Fig

1 below).

Suppose the imputation model at the imputation stage is specified correctly and the data

exhibit a normal distribution. In that case, MI yields consistent parameter estimation and con-

fidence intervals that incorporate uncertainty because of the missing data [29]. To clarify, the

correct specification of an imputation model entails the inclusion of variables considered to

predict missingness and variables associated with the variable being imputed, and the outcome

variable of the analysis model [29, 61].

One of the common parametric approaches for MI execution is Multivariate Normal distri-

bution MI (MVN). This approach assumes all imputed variables to follow a joint multivariate

normal distribution. Conversely, MI by Chained Equations (MICE) is a semiparametric

approach that does not take a joint MVN distribution but considers a different distribution for

each imputed variable [62]. Unlike MVN, MICE employs a sequential (variable-by-variable)

approach while incorporating functional relationships among variables and data characteris-

tics such as ranges. Within MICE, one can either use Linear Regression or Predictive Mean

Matching (PMM) for continuous variables. This article carries out the PMM technique to

impute missing values. PMM relaxes most of the assumptions of parametric MI techniques

Fig 1. Shows a standard multiple imputation process. In the first step (imputation stage), missing data at hand,

shown in white dots, are imputed (all in blue now showing imputation happened) to createm imputed datasets.

Following imputation, each imputed dataset is separately analyzed using standard methods (such as OLS regression).

Lastly, the analysis results are combined using Rubin’s rules [22].

https://doi.org/10.1371/journal.pone.0274402.g001
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[30]. Hence, it is handy for imputing quantitative variables that are not normally distributed

[63]. In the PMM, the missing value for an observation (considered as a ‘recipient’) is imputed

by the observed value from another observation (called a ‘donor’) with a similar predicted

mean outcome as follows [30, 64]:

In the imputation stage, for every missing value, the PMM algorithm structures a small set

of donors (typically 5 or 10) from all complete cases that have predicted values closest to the

predicted value for the missing value. Next, one donor is randomly drawn from the neighbor-

hood pool. The observed value of such a donor is assigned to the missing value. This procedure

is conductedm times, which generatesm datasets. After the imputation stage, the analysis and

pooling stages follow the same pattern as any standard MI. Like any MI, in the analysis stagem
times analyses are conducted, and in the pooling stage, these results are combined to get a sin-

gle estimate.

A more step-by-step computational process within the imputation stage of PMM is

explained below:

Suppose there is a variable (X) that has missing values and another set of variables (Vs) to

be used to impute X, the software (STATA or R) carries out the following computations in the

imputation stage:

• Firstly, it estimates a linear regression of X on Vs for complete observations (those with no

missing values). This step produces a set of coefficients a.

• Secondly, it randomly draws from the “posterior predictive distribution” of a (the posterior

predictive distribution is the distribution of possible unobserved values conditional on the

observed values [65]). This step generates a new set of coefficients a�. (this step ensures vari-

ability in the imputed values produced later on).

• Thirdly, the software uses coefficients a� to generate predicted values for X for all

observations.

• Fourthly, for each observation with a missing value of X, the software identifies a set of

observations with observed X (called donors or neighbors) whose predicted values are

roughly close or similar to the predicted value for the observation with missing data.

• Lastly, from the neighborhood pool identified, it randomly chooses one donor and desig-

nates its observed value to fill in for the missing value.

For each completed dataset, steps 2 through 5 are conducted. The key idea is constructing

the right donor pool from where observations with missing data will be matched with observa-

tions with available data [66]. Researchers have answered how many donors or neighbors

should be in the donor pool [29, 66]. They assert that the size of the pool depends on sample

size. In general, for most situations, these studies suggest k = 10 or k = 5. The default in the

Stata MI command is k = 1.

In short, PMM is simple to perform and a versatile method. It relaxes the normality distri-

bution assumption, which is not always observed in continuous data. Since PMM imputations

are based on observed neighborhood values, they are much more realistic. Unlike other tech-

niques such as EM or MVN, PMM does not produce imputations outside the observed values;

thus, they overcome the problems with meaningless imputations. Compared to other suites

such as Normal Linear Regression imputation, PMM is also less susceptible to model specifica-

tion and can handle many variables irrespective of their distributions [36]. While imputing

from the neighboring donor candidates, it incorporates nonlinearities (nonlinear associations

among variables) and returns the same distribution for missing data present in the observed

data [36].
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5. MSK panel dataset

Here I am presenting the main features of the MSK dataset. The dataset has been compiled

and estimated after applying the MICE predictive mean matching technique described in the

previous section. The complete dataset consists of information for many pertinent variables

and for all LMICs eligible for IDA support over time (panel data). Specifically, the dataset con-

tains complete data for 47 variables for 82 countries between 2005 and 2019 (1,230 country-

year observations).

This new complete dataset offers ample statistical content to conduct longitudinal compara-

tive country analyses of national absorptive capacity systems (NACS) within LMICs. Among

other valuable insights, such analyses illustrate the relative standing of LMICs. Similarly, the

dataset’s time-series feature enlightens how LMICs’ NACS evolved in the last one and a half

decades. Immediate use of the dataset would entail estimating the relationship between the

variables within the dataset (capacities constituting NACS) and the LMICs’ economic develop-

ment. Such an exercise will offer crucial lessons on economic growth and development to lead-

ing and lagging LMICs. Similarly, another use will involve clustering LMICs into different

groups based on capacities scores.

Since NACS are multifaceted, any analysis of NACS would involve a large number of possi-

bly relevant variables interacting in many ways. Therefore, the MSK dataset embraces a multi-

dimensional operationalization of NACS. In this dataset, the NACS constitutes six capacities

drawn from the literature. In addition, various incoming flows from abroad (learning, knowl-

edge, skills, and technology) also may influence the NACS. Fig 2 represents these capacities of

NACS while alluding to the incoming flows. The six capacities are: 1) Technological capacity,

2) Financial capacity, 3) Human capacity, 4) Infrastructural capacity, 5) Public Policy capacity,

and 6) Social capacity. The discussion of all these capacities (and incoming flows) and how

encompassing they are compared to other narrow definitions of capacities is beyond this arti-

cle’s scope (please see [12] for this discussion). However, the central hypothesized idea behind

this dataset’s construction is that LMICs that are severely lacking in data need to appreciate

that these capacities and their dynamic interaction drive economic development and science,

technology, and innovation (STI) in those economies. For this purpose, development

Fig 2. Shows National Absorptive Capacity System (NACS) and its capacities. These six capacities constitute NACS.

Incoming flows mediate capacities within NACS. Figure Source: Khan [12].

https://doi.org/10.1371/journal.pone.0274402.g002
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economists and STI policymakers need access to panel statistical data (country-year observa-

tions) on these capacities, which would help them conduct empirical analyses.

Literature on NIS helped identify 64 variables, likely constituting one of these capacities in

NACS. After performing imputation analysis, the list of variables was reduced. Resultantly, the

MSK dataset consists of 47 variables, as shown in Table 1. As a matter of good practice, the

table also compares descriptive statistics (mean, standard deviation, minimum, maximum,

and observation count) of the variables in the new (complete) dataset with descriptive statistics

for corresponding variables in the observed (incomplete) dataset. The last column of the table

reports the share of missing data present in the original dataset. As can be seen, the missing-

ness is very high for some variables; missingness ranges from 0.89% to about 87%. A quick

look at the table shows that descriptive statistics of the two data (complete and incomplete) do

not differ much. This is one of the many ways to show that the complete dataset is sufficiently

reliable (this will be elaborated on in the forthcoming section).

The dataset was constructed in five main steps (also illustrated in S1 Fig).

Step1- Data collection

In the first step, I collected 64 variables from publicly available databases (see S2 Table for a

complete list of variables and their sources). These variables are potentially crucial for measur-

ing the six capacities of countries. This initial dataset (original) contains a large number of

missing values for countries and variables of interest.

Step2- Choice of specification

To multiply impute, the choice of a correct multiple imputation specification is necessary. In

STATA, either one can employ multivariate normal (MVN) MI or MI by chained equations

(MICE). One can employ Amelia II in R statistical tool [54]. However, Amelia II assumes nor-

mality, which is not the case here. Both MVN and MICE strategies assume a MAR missing pat-

tern in data before execution. There is no direct way of testing this (and other missingness

MCAR and MNAR) assumption(s) illustrated earlier [67]. To repeat, MCAR is the most

restrictive assumption (requiring the missingness to be truly random) whereas MNAR is the

most relaxed (requiring the missingness to be systematic). Between these two assumptions is

MAR, which is a moderately restricted assumption involving some degree of randomness.

Since it is hard to directly test for the assumptions, all one can do is offer a plausible expla-

nation of how the missingness pattern may conform to MAR assumption or how it may not be

MNAR and MCAR. Alternatively, one may investigate indirectly, including sensitivity analyses

and multiple reliability checks of the imputed dataset, that are far from perfection [67]. One

indirect way to check for MAR assumption is to implement some other imputation model that

requires MNAR assumption and then compare the estimates (and standard errors) from both

MAR and MNAR analyses (as conducted by [68]). The authors obtained approximately similar

estimates in both analyses, thus claiming that their MAR assumption was adequate to get unbi-

ased estimates [68]. However, it is hard to support this claim fully—the same estimates from

different models may not mean unbiased estimates.

In addition to performing an imperfect sensitivity analysis of the dataset, another way

would be to do reliability checks of the imputed dataset, just like the author has performed in

this paper (the authors of the CANA dataset [31] also performed reliability checks). If the

imputed dataset is reliable, it may imply that the MAR assumption was reasonably met and the

bias in estimates is most likely mitigated. Another indirect way (ex-post) would be to compare

the analysis results obtained through imputed (under MAR) and observed (incomplete) data-

sets, which may offer interesting retrospective insights about the quality of the dataset.
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Table 1. Descriptive statistics of new MSK dataset vs. incomplete observed dataset (for more details on the variables, please consult S2 Table).

MSK Dataset Observed Dataset

Capacity and Variables Variable code Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max Missing

%

TECHNOLOGY CAPACITY

Sci & tech. articles tscitjar 1230 1270.77 9395.79 0 135787.8 1,148 1236.60 9247.52 0 135787.8 6.67%

Intellectual payments

(mil)

Tippay 1230 65.35 492.20 -13.92 7906 818 87.80 601 -13.97 7909 33.50%

Voc. & tech. students

(mil)

tsecedvoc 1230 111698.6 253483.79 0 2300769 571 121436.2 277829.5 0 2300769 53.58%

R&D expend. % of

GDP

Trandd 1230 .21 .16 .01 .86 225 0.25 0.19 0.01 0.859 81.71%

R&D researchers (per

mil)

Tresinrandd 1230 162.65 225.9 5.94 1463.77 148 256 317 5.93 1463.77 87.97%

R&D technicians (per

mil)

Ttechinrandd 1230 57.02 63.01 .13 627.73 144 55.27 70.22 0.13 627.73 88.29%

High-tech exports

(mil)

Thigexperofmanex 1230 6.23 9.29 0 68.14 547 5.80 8.74 0.00008 68.14 55.53%

ECI (econ.

complexity)

teciscore 1230 -.72 .63 -3.04 .82 892 -0.77 0.62 -3.04 0.82 27.48%

FINANCIAL CAPACITY

Tax revenue (% of

GDP)

Ftaxrpergdp 1230 16.22 11.71 0 149.28 583 15.7 11 0.0001 149.28 52.60%

Business startup cost fcosbstpropergni 1230 85.38 137.76 0 1314.6 1,154 79 120.2 0 1314.6 6.18%

Domestic credit by

banks

Fdomcrprsecbybkpergdp 1230 25.07 20.37 .5 137.91 1,100 26.3 20.85 0.5 137.91 10.57%

Days to start business ftdaystobusi 1230 35.34 37.71 1 260.5 1,154 34.48 36.45 1 260.5 6.18%

Days enforcing

contract

fdaystoenfctt 1230 666.61 329.52 225 1800 1,154 662.2 322.4 225 1800 6.18%

Days to register

property

Fdaystoregpro 1230 87.33 97.58 1 690 1,104 81 89.6 1 690 10.24%

Openness measure Fopenind 1230 .11 .08 .01 .44 847 0.11 0.08 0.009 0.44 31.14%

Days to electric

meter

Fdaystoobtelecconn 1230 37.24 33.64 2.5 194.3 153 34.3 31.31 2.5 194.3 87.56%

Business density fnewbusdenper1k 1230 1.06 1.47 .01 12.31 583 1.19 1.67 0.006 12.30 52.60%

Financial

accountholders

faccownperofpop15p 1230 30.94 22.53 1.52 92.97 160 30 19.28 1.52 92.97 86.99%

Commercial banks fcombkbr1k 1230 10.49 11.99 .27 71.23 1,099 10.58 12.045 0.27 71.23 10.65%

HUMAN CAPITAL CAPACITY

Primary enrollment

(gross)

hprimenrollpergross 1230 103.36 18.18 23.36 149.96 911 103.4 18.15 23.36 149.95 25.93%

Sec. enrollment

(gross)

hsecenrollpergross 1230 57.49 25.99 5.93 123.03 711 58.03 26.63 5.93 123.03 42.20%

Primary pupil-

teacher ratio

Hpupteapriratio 1230 34.43 14.36 8.68 100.24 751 35.3 14.63 8.68 100.24 38.94%

Primary completion

rate

Hprimcompra 1230 79.41 20.89 26.1 134.54 735 78.83 20.72 26.09 134.54 40.24%

Govt. expend. on

educ.

Hgvtexpedupergdp 1230 4.36 2.22 .69 12.9 615 4.06 1.91 0.69 12.90 50%

Human Capital

Index 0–1

hhciscale0to1 1230 .42 .09 .29 .69 154 0.43 0.09 0.28 0.69 87.42%

Advanced educ. labor Hlfwithadedu 1230 75.5 10.55 39.97 96.36 265 76.08 10.29 40 96.36 78.46%

(Continued)
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Here I argue missingness in LMICs exhibit a MAR pattern. In other words, the missingness

pattern in data in LMICs is “somewhat” random (as opposed to “completely random” required

by MCAR or “truly systematic” as can be seen in the MNAR pattern). The MAR pattern, by

definition, implies that the observed data (in LMICs) can explain and predict missingness [59].

Therefore, to say that a dataset for LMICs has a MAR pattern, a researcher needs access to

some available data in these countries.

To reiterate, I argue that LMICs havemost likelyMAR data pattern that is somewhat ran-

dom but not entirely systematic. If the missing would have been all systematic (MNAR pat-

tern), then we would not have rich data in such countries on other important economic,

Table 1. (Continued)

MSK Dataset Observed Dataset

Capacity and Variables Variable code Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max Missing

%

Compulsory educ.

(years)

hcompeduyears 1230 8.45 2.16 4 15 1,028 8.57 2.16 4 15 16.42%

Industry

employment

Hempinduspertotem 1230 14.52 7 .64 32.59 1,125 14.08 6.94 0.64 32.59 8.54%

Service employment Hempserpertotem 1230 39.43 15.05 7.16 75.34 1,125 37.8 14.24 7.16 75.34 8.54%

INFRASTRUCTURE CAPACITY

Mobile subscriptions imobsubper100 1230 59.12 38.15 .26 181.33 1,219 59.19 38.17 0.26 181.33 0.89%

Access to electricity Iaccesselecperpop 1230 57.02 31.3 1.24 100 1,135 56.77 31.32 1.24 100 7.72%

Broadband

subscriptions

ibdbandsubper100 1230 1.97 4.12 0 25.41 1,114 2.02 4.23 0 25.41 9.43%

Telephone

subscriptions

itelesubper100 1230 5.31 7.39 0 32.85 1,218 5.29 7.40 0 32.85 0.98%

Energy use (per

capita)

Ienergyusepercap 1230 560.21 392.9 9.55 2246.92 471 553 376.25 9.54 2246.92 61.71%

Logistic perf. Index

1–5

ilpiquoftratraninfr 1230 2.18 .33 1.1 3.34 372 2.19 0.32 1.1 3.34 69.76%

Internet users Iindintperpop 1230 16 16.3 .03 89.44 1,209 16 16.33 0.031 89.44 1.71%

PUBLIC POLICY CAPACITY

CPIA econ. mgmt. pcpiaeconmgtcl1to6 1230 3.39 .69 1 5.5 1,132 3.40 0.67 1 5.5 7.97%

Public sect. mgmt. &

instit

pcpiapsmgandinscl1to6 1230 3.06 .5 1.4 4.2 1,132 3.06 0.48 1.4 4.2 7.97%

Sructural policies pcpiastpolclavg1to6 1230 3.3 .54 1.17 5 1,132 3.31 0.52 1.17 5 7.97%

Statistical capacity

0–100

Pscapscoravg 1230 59.82 14.89 20 96.67 1,206 59.9 14.87 20 96.67 1.95%

Legal Rights Index

0–12

pstrengthoflegalright 1230 4.83 3.1 0 11 565 5.27 3.05 0 11 54.07%

SOCIAL CAPACITY

Human resources

rating

scpiabdhumanres1to6 1230 3.52 .63 1 4.5 1,132 3.52 0.61 1 4.5 7.97%

Equity of public resc

use

scpiaeqofpbresuse1to6 1230 3.38 .64 1 4.5 1,132 3.39 0.62 1 4.5 7.97%

Social protection

rating

scpiasocprorat1to6 1230 3.03 .59 1 4.5 1,128 3.04 0.58 1 4.5 8.29%

Social inclusion o. scpiapolsocinclcl1to6 1230 3.28 .51 1.5 4.3 1,129 3.28 0.50 1.5 4.3 8.29%

National headcount

poverty

spovheadcnational 1230 38.52 15.13 4.1 82.3 234 35.90 14.20 4.1 82.3 80.98%

Social contributions Ssocialconperofrev 1230 3.23 7.53 0 39.74 569 3.90 8.77 0 39.74 53.74%

https://doi.org/10.1371/journal.pone.0274402.t001
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geographic, seasonal, and demographic data. Since we have plenty of data for the parameters

mentioned earlier in LMICs, the data are not MNAR. On the other hand, if missingness had

been completely random (MCAR), i.e., neither missing data nor available data impact missing-

ness in LMICs, the missing pattern in variables would have been uncorrelated. As the missing-

ness pattern in LMICs is correlated in many or some variables, the data are not MCAR. Thus,

the data in LMICs are MAR. LMICs can have missing data for various reasons, ranging from

poor data infrastructures and meager resources to frequent natural disasters and severe civil

conflicts. However, despite missingness in many variables of significance, the availability of

rich information on poverty indicators, economic development, literacy rates, and demo-

graphics in LMICs can be useful. The propensity of missing values for essential variables (such

as science and tech articles, budget allocation to education, and service sector employment,

among other variables in the dataset) are systematically linked with the LMICs’ observed data

(not the missing data) on GDP, per capita income, and literacy rates variables. For instance, a

country’s per capita income and literacy rate relate to a country’s allocation to education

expenditure. Thus, I argue that the rich corpus of observed data can be employed to explain

and predict the missingness pattern for data on other variables, as required by the MAR

assumption.

Furthermore, since all the variables are continuous, differently distributed, and missingness

among them is “somewhat” arbitrary, Rubin’s [23] multiple imputation by chained equations

(MICE) best serves this study. Researchers argue that MICE allows sound modeling for miss-

ing values and provides rigorous standard errors for the fitted parameters [62, 69]. MICE treats

each variable with missing values as the dependent variable in a regression, with the remaining

variables as its predictors. Once MICE is specified, as mentioned earlier, within MICE, one

can use either a linear regression (regress) or predictive mean matching (PMM) specification

for continuous variables. Chained imputation with linear regression has a severe pitfall as it

implements normal distribution on imputed values regardless of the distribution of original

values [69]. Conversely, PMM caters to this problem by respecting the observed values’ distri-

bution pattern. Besides, the use of PMM is robust against other misspecifications in the impu-

tation model [63]. Notably, it is robust against heteroskedastic residuals and nonlinear

associations between variables [36, 63]. Since the observed variables are not normally distrib-

uted (see kernel density graphs plotted after imputation in Supporting information) and their

residuals are heteroscedastic, PMM is the most suitable chained imputation for this data.

Step3- Variable shortlisting and running the first round of imputations

In the third step, I ran MICE in STATA 16 for all variables. Out of 64 variables, chained impu-

tations did not work for three variables (multipoverty index, multipoverty intensity, agricul-

tural machinery). The system gave the error message that “the posterior distribution from

which MI drew the imputations for these variables is not proper when the VCE estimated

from the observed data is not positive definite.” This essentially means that there is collinearity.

Since these variables have more than 97% missing values, I dropped off these variables from

the analysis to deal with the reported error. I tried linear regression specification too, but again

it did not work. Then I run a first successful round of imputations (m = 20) followed by

descriptive analyses of all these 61 variables. Out of these variables, I dropped off another 14

variables because the results were not of sufficient reliability. They had a considerable fraction

of missing information (FMI). Generally, these variables reported FMI higher than 60%. It is

important to understand that FMI is the proportion of the total sampling variance that is due

to missing data, and it is calculated based on the percentage missing for a specific variable and

how correlated this variable is with other variables in the imputation model [70]. Besides a
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higher FMI, the variables that had to be dropped off had their descriptive statistics very differ-

ent from the observed (incomplete) dataset and varied greatly in successful imputations. Thus,

overall, the list of variables was reduced to 47.

Step 4- Running the second round of imputations on shortlisted variables

In the fourth step, I did a second round of PMM imputations for the truncated list of 47 vari-

ables together. I included data on complete variables of time and country identifiers (year and

country) and auxiliary variables (GDP per capita, technical cooperation grant, total popula-

tion, gross capital formation, net ODA and official aid assistance, number of international

tourist arrivals receipts, merchandise import from high-income economies as percentage of

total merchandize imports, current health expenditure) following the recommendations of the

multiple imputation literature. The inclusion of complete identifiers and other auxiliary vari-

ables increases the precision of the imputation results for variables exhibiting high missingness

and makes the MAR assumption more plausible statistically [71]. To obtain a high-efficiency

level in parameter results, I set m = 50, i.e., fifty complete datasets (copies of the original data-

set) were estimated for all 47 variables.

While traditionally researchers set m = 5 or 10, new research indicates that m should be

high to achieve accurate standard errors and point estimates [72]. With large m, variance esti-

mates stabilize, and standard errors become more accurate. In essence, by returning accurate

standard errors, large m models the uncertainty within imputations (missing values are uncer-

tain) with more certainty. In addition, large m is particularly recommended if FMI is high for

variables. Similarly, large m increases the relative efficiency of parameters (point estimates).

i.e., how well the true population parameters are estimated. Generally, when the amount of

missing information is high, more imputations (high m) are needed to attain adequate effi-

ciency for point estimates [70, 72].

After setting m, subsequent econometric analyses are performed separately on each dataset

(50 analyses because m = 50). Then, the results from each analysis are pooled according to

Rubin’s rules. Here, I randomly pick results from imputation # 25 for descriptive statistics and

illustration purposes. This dataset contains 47 variables for 1,230 observations (82 countries

for the period 2005–2019).

Step 5- Quality check

Finally, I thoroughly investigated the variables to analyze the imputed values’ quality. This

investigation informs the extent to which the new complete dataset may be regarded as reli-

able. I did a visual inspection of kernel density graphs of imputed, completed, and original val-

ues for all the variables in this investigation. Similarly, I checked descriptive statistics of

observed and imputed values. This quality check is discussed fully in the next section. This

check results suggest that multiple imputations with PMM have been successful for the trun-

cated list of variables.

In brief, following the above steps, the final version of the MSK database is constructed and

made available. The dataset consists of 47 variables for 82 IDA-eligible countries spanning

over 15 years (1,230 country-years observations). In contrast, the remaining 17 variables were

rejected and not included in the database because either the system could not impute them or

returned unreliable imputed values of poor quality.

6. Descriptive analysis of the MSK dataset

To empirically illustrate the usefulness of the MSK dataset and how it can be used to study

absorptive capacity systems across countries, I have conducted a detailed analysis in another
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article [12]. A brief descriptive analysis of the MSK dataset is conducted here. This analysis

offers insights into the trends in capacities constituting NACS in LMICs and how they evolve

over time. Three brief analyses are conducted: distribution (kernel density) of select few vari-

ables of interest within each capacity at the start, middle, and the end of the study period (i.e.,

2005, 2010, and 2019); time trends (2005–2019) of the variables of interest for select countries

(six countries, one from each region in our countries of study); and comparative ranking of

countries based on composite capacity indices.

i) Distribution (kernel density) of select few variables of interest within

each capacity at different periods (i.e., 2005, 2010, and 2019)

The distribution patterns (S2 Fig) are drawn for a select set of variables from each capacity for

three years (2005, 2010, and 2019). Distributions for technological capacity by and large show

that LMICs have not significantly improved their technological base. A rightward shift in

distributions for infrastructure capacity indicates that LMICs overall have experienced an

improvement in their infrastructure base. However, we see a leftward shift in the distributions

for social capacity, meaning that LMICs eligible for IDA support are moving backward in their

social capacity. For the remaining three capacities (human, financial, and public policy), cross-

country distributions’ evolution is not very evident. Their pattern depends on the specific vari-

able under discussion. For example, distributions for human capacity show that employment

in the service sector has improved over time. On the contrary, expenditure on education has

not increased.

ii) Time trends (2005–2019) of the variables of interest for select countries

(six countries, one from each region in our countries of study)

Next, time trends of the select variables from each capacity are observed over time for six

countries (S3 Fig). The trends for technological capacity variables vary over time for most

countries. In Pakistan, while most trends in such variables are either uniform or erratic, the

trends in scientific articles and ECI scores rise. Similar trends (uniform in some cases and

unpredictable in others) are observed for financial capacity variables. Myanmar and Nicaragua

experience a rising trend in domestic credit availability, while other countries have experi-

enced an oscillating trend (increasing and then decreasing). In the case of human capacity and

infrastructure capacity, trends for some variables (primary completion, expenditure on educa-

tion, LPI score) have experienced erratic movements; however, most countries are improving

in other variables (service and technological sector employment, mobile and internet penetra-

tion) of these capacities. This may allude to the fact that these countries are perhaps catching

up with advanced economies in terms of these indicators. Finally, it is hard to identify a clear

winner for the last two capacities (public policy and social capacity); most trends are either

uniform or erratic. However, the statistical score index is strikingly improving for Djibouti

and Myanmar. These results largely corroborate the abovementioned distribution analysis.

The crux is that countries show varying progress (clearly visible in some cases and diffused in

others) over time for all these variables.

iii) Comparative ranking of countries

Lastly, a comparative ranking of countries was conducted for recent data in 2019 (see S3

Table). For this, I first calculated six composite indices (Technology, Finance, Human Capital,

Infrastructure, Public Policy, and Social Capacity) and then aggregated them into a composite

Absorptive Capacity Index. Vietnam tops the list of the countries, whereas South Sudan scored
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the least. This ranking can be conducted for all years, which would show longitudinal changes

in absorptive capacity systems of countries.

While not an exhaustive list of the uses of the dataset, these analyses provided a flavor of

how this dataset might be used in comparative analyses of National Absorptive Capacity Sys-

tems. These analyses can be extended and conducted in several ways in future research. This

section’s purpose was to demonstrate how one might get started on subsequent empirical

analyses.

7. Quality check of the estimated MSK dataset

A quality check is conducted to determine the usefulness and vitality of this dataset.

As mentioned in section 5, I collected 64 variables to measure countries’ capacities to con-

struct the database. After carrying out imputations and evaluation, I shortlisted 47 variables to

be included in the dataset for an entire range of 1,230 country-year observations (15 years for

82 countries). The remaining 17 variables were rejected either because the system could not

impute them (three variables) or the results produced (14 variables) were not of good quality.

In order to assess the imputation procedure and the reliability of the variables included in

the MSK dataset, this article conducts a four-way quality check: first descriptive statistics of the

two datasets (complete and observed) are conducted; secondly, distributions of completed and

observed datasets are observed; thirdly, correlation tables of the observed and complete vari-

ables are compared; and fourthly, trends within imputations and convergence pattern are

observed.

i) Descriptive statistics of two datasets

I looked into means, maximum, minimum, and standard deviation for complete and observed

datasets. Table 1 reports a comparison of such descriptive statistics for both datasets. First, the

table indicates that means (averages) and standard deviations (variability) for all 47 variables

are almost identical. Imputing at the mean might reduce variability in some variables, though

(as evident in lower standard deviation values). Secondly, we can see that the complete dataset

has the same maxima and minima, and the values are meaningful (no negative numbers on

researchers, for instance). Moreover, I inspected relative efficiency values for only imputed

variables. This glance of relative efficiency values (above 98% for all variables with m = 50) sug-

gested highly efficient point estimates. All this shows that the complete dataset’s imputed val-

ues are roughly the best approximation of the original sources’ missing data.

ii) Distribution of compete and observed dataset

A detailed distribution assessment is conducted for the two datasets. This is accomplished via

visual inspection of kernel densities for all 47 variables in the observed (incomplete) and com-

plete (MSK) datasets.

The logic behind comparing the two datasets’ statistical distributions is to see how best the

complete dataset is an extension of the observed dataset. If the two distributions are roughly

similar, we can claim the reliability of the imputed values. But, if the two distributions differ,

the imputation results may not be reliable.

Visual inspection of kernel densities provides an interesting quality check (See S4 Fig). I

looked into kernel density distributions at different imputations (randomly chosen) for all

capacities. For almost all the variables within capacities, variables’ distributions in the MSK

dataset are similar to those in the incomplete data in various imputations. Even for those vari-

ables that report missingness higher than 80% (R & D, Researchers, Technicians, Account

ownership, HCI scale), the approximation level (similarity), while relatively lower, is still very
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close to the original distributions. This means that the PMM imputation has successfully esti-

mated missing information with high accuracy. Thus, this visual inspection of kernel density

distributions grants substantial reliability status to the MSK dataset.

iii) Correlation tables of the original and complete

Lastly, pairwise correlation coefficients are calculated and compared in the original dataset

(m = 0) and complete dataset (at imputation m = 25). The S4 Table(s) report such correlation

coefficients for each capacity within both datasets. The correlation coefficients for the observed

dataset are reported above the pairwise correlations for the complete dataset.

The rationale behind this correlation comparison is if the two correlations are similar, then

statistical distributions between the two will likely match. This will indicate the reliability of

the imputation results. However, if the two coefficients are not comparable, this would mean

unreliability and bias in the imputation results produced through the imputation procedure.

The bias and unreliability will subsequently affect the post-imputation analysis on the com-

plete dataset.

A close inspection of the correlation tables suggests that correlation coefficients are very

similar across the variables in both datasets. Not only the magnitudes of coefficients are

roughly similar, but also the signs of the coefficients are maintained in the complete dataset

following the multiple imputation exercise. Some coefficients (for example, R & D, Number of

technicians, and Domestic credit, among others) change in size; however, these changes are

not substantial. Overall, this check suggests that PMM imputation has preserved the correla-

tion structure among the variables. Thus, it can be concluded that the MSK dataset is suffi-

ciently reliable.

iv) Trends within imputations and convergence pattern

Similarly, I inspected the trends in imputed variables’ values across imputations (at m = 1,

m = 10, m = 25, m = 40, m = 50). I noticed that values across imputations were highly similar,

suggesting that the imputation exercise was successful. Also, since the dataset was obtained

through chained imputations involving iterations, the reliability of the imputation process

must be established. Therefore, to establish the reliability of the imputation process, I checked

for convergence among iterations for imputed variables. Convergence can be checked in a few

ways. One way is to plot the mean and variance of the imputed values of different missing vari-

ables against the iteration number [73]. For healthy convergence, these plots form imputed

datasets should freely intermingle, and there should not be any definite trends [73, 74].

Another way is to examine between and within sequence variance [73, 74]. On healthy conver-

gence, the variance between sequences is no larger than the variance within each sequence

[73–75]. Since the plots for imputed datasets freely intermingled with no definite trend, the

convergence pattern of the iterations through which the dataset was generated showed a

healthy convergence (S5 Fig). All this shows that the MSK dataset is of good quality.

8. Conclusion and implications

Comparative country analyses on absorptive capacity and economic development in LMICs

lack because of the lack of complete data availability. To address this problem, this article

employed Rubin’s Multiple Imputation to impute missing values in variables. Specifically, it

used Multiple Imputation by Chained Equations with a Predictive Mean Matching approach

to estimate the MSK panel dataset. The dataset consisted of six country-related capacities. A

total of 47 continuous variables measured these capacities. This dataset was estimated from an
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observed dataset containing many missing values. The complete dataset contained 82 coun-

tries for the period 2005–2019, for 1,230 country-year observations.

The MSK dataset provides a rich panel (across countries and over time) of statistical content

that can be used in several ways. For instance, this dataset can be used to estimate the impact of

absorptive capacities on economic growth in LMICs. Similarly, the capacities can be aggre-

gated for different LMICs to find the relative standing of one economy vis-à-vis other econo-

mies. Further, such an exercise can be used to investigate the factors of development within

leading and lagging LMICs. Finding leading and lagging economies within LMICs at the same

level of development offer lessons to lagging economies on how they can catch up. Here, I

demonstrated how a simple descriptive analysis of capacities within the complete dataset could

be used to gain insights into the dynamic evolution of such capacities in different countries.

On the methodological front, MICE PMM for estimating dataset for the comparative analy-

ses of capacities and economic growth in LMICs is powerful compared to other solutions such

as mean imputation or deletion. MICE PMM is powerful because it retains variability in data

as the imputed value is randomly taken from the suitable donor pool. Moreover, PMM is a

good technique because it reduces bias by keeping information on all variables: variables for

which partial data is available are imputed rather than deleted. Similarly, the technique pre-

serves representation (by keeping all economies even if they have partial data rather than drop-

ping them of analysis), returns accurate or realistic data (imputed data is taken from

neighboring data pool), and captures dynamic evolution for all economies (which is compro-

mised by using other imputation techniques).

However, MI returns multiple datasets, which indicates the uncertainty underlying missing

data values. Thus, no matter how rigorous MI is, no imputation can claim with 100 percent

certainty the accuracy of imputed values. Therefore, the dataset generated through MI must be

carefully used for any analysis. The results of such analysis must make a disclaimer about the

process through which the dataset was obtained. The reliability or quality check must be per-

formed on the newly generated dataset, just as conducted for the MSK dataset. The MSK data-

set generated here passed the quality check as the observed and complete dataset exhibited

almost similar distributions, descriptive statistics, and correlation coefficients, and the process

through which the dataset was imputed returned a healthy convergence among iterations.

As the MI-generated dataset is reliable, such a dataset can be valuable for hypothesis genera-

tion in LMICs suffering from poor data environments. Results from analyses based on original

datasets for countries (and LMICs) with reasonably complete datasets can be compared with

those based on imputed datasets. This may give some insights into the relative vitality of the

completed dataset alongside interesting findings on what drives economic development in var-

ious countries. Moreover, future research may estimate datasets generated assuming MNAR

pattern and then compare the datasets from both MAR and MNAR analyses to further investi-

gate the strength of the MSK dataset.

Supporting information

S1 Table. Handling missing data strategies, assumptions, advantages and disadvantages.

(DOCX)

S2 Table. List of all 64 variables, their definitions, sources, missingness amount in

observed variables, and acceptance/rejection status for the MSK dataset.

(DOCX)

S3 Table. Comparative ranking of countries as per absorptive capacity index (2019).

(DOCX)

PLOS ONE Estimating a panel MSK dataset. . .

PLOS ONE | https://doi.org/10.1371/journal.pone.0274402 October 20, 2022 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274402.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274402.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274402.s003
https://doi.org/10.1371/journal.pone.0274402


S4 Table. Pairwise correlations for incomplete (m = 0) and complete datasets (m = 25).

(DOCX)

S1 Fig. Construction of the MSK dataset.

(DOCX)

S2 Fig. Kernel densities for select variables of interest at different points.

(DOCX)

S3 Fig. Time trends for select countries for select variables.

(DOCX)

S4 Fig. Kernel densities of the observed and complete dataset.

(DOCX)

S5 Fig. Checking for convergence through trace plots.

(DOCX)

Acknowledgments

This article was presented at the 17th Globelics International Conference, Heredia, Costa Rica,

November 2021, the 35th Annual General Meeting and Conference, Pakistan Society of Devel-

opment Economics, Pakistan Institute of Development Economics in Peshawar, Pakistan,

November 2021, Shanghai University of International Business and Economics, Institute of

Artificial Intelligence and Change Management, in Shanghai, China (online), December 2021,

and the Schar School of Policy and Government, George Mason University, in Virginia, US,

June 2022. I am highly grateful to the conference participants, the anonymous referees, and

the editor of this journal for their valuable comments and suggestions. I also want to thank

David M. Hart, James L. Olds, Maurice D. Kugler, and Lucas Núñez for their feedback on this
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