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Abstract: Bacteriophage (phage) taxonomy has been in flux since its inception over four decades
ago. Genome sequencing has put pressure on the classification system and recent years have seen
significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide
a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviridae,
Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species,
genus, subfamily and family-level ranks of tailed phage taxonomy.

Keywords: phage taxonomy; phage classification; Caudovirales; Myoviridae; Podoviridae; Siphoviridae;
demarcation criteria

1. An Ongoing Revolution in Phage Taxonomy

Historically, phages have been classified according to their morphology, dating from
the time before the existence of PCR, sequencing or many of the molecular methods we
know today [1–3]. For tailed phages, the formal taxonomy was derived from the pioneering
classification work of David Bradley (Memorial University, Canada) who classified them
into three morphotypes, A (contractile tail), B (long, non-contractile tail), C (short non-
contractile tail, based on electron microscopy, a system that was subsequently enhanced by
Ackermann and Eisenstark (1974) [4,5]. In 1971, this system was formally adopted by the
International Committee on Nomenclature of Viruses (ICNV) but not with the names we
are familiar with today. The names Myoviridae, Podoviridae and Siphoviridae were formally
accepted by the International Committee on Taxonomy of Viruses (ICTV) in 1981 and
1984. The order Caudovirales, unifying all tailed phages, was proposed in 1998 by Hans-
Wolfgang Ackermann and approved by postal vote. Some of the other phage families have
equally long histories with the families Inoviridae, Microviridae, Tectiviridae, Corticoviridae,
Plasmaviridae, Leviviridae, and Cystoviridae all formalised by plenary session vote in 1978 (for
a history of taxonomy releases see https://talk.ictvonline.org/taxonomy/p/taxonomy_
releases, accessed on 5 February 2021). This >40-year-old family-level classification system
resulted in the classic textbook figures (Figure 1) on phage taxonomy, easily represented by
line drawings.

As the age of genomics dawned in the early 2000s, the sequencing of phage genomes
revealed a much higher genomic diversity than had previously been considered, especially
in bacteriophages belonging to the order Caudovirales, leading to the creation of the first
subfamilies within the existing three families Podoviridae [7], Myoviridae [8], and later on
Siphoviridae [9]. As the number of phage genomes in databases rose, it quickly became ap-
parent that these three families were not monophyletic and cohesive within a monophyletic
order. This paraphyly was illustrated by a number of tools and publications: The Phage
Proteomic Tree [10,11], the first phage genome relatedness network representation [12], a
bipartite network of shared genes [13], an updated network of shared predicted proteins
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(vConTACT) [14,15], a composite tool combining gene homologies and gene order (GRAV-
iTy) [16,17], a virus domain orthologous groups approach (VDOG) [18] and a concatenated
protein phylogeny of members of the order Caudovirales (CCP77) [19]. Based on this ev-
idence, the ICTV’s Bacterial and Archaeal Viruses Subcommittee started disentangling
the web of overlapping and complementary groups of tailed phages by defining new,
genome-based families. At the time of writing, three new families of myoviruses have
been officially ratified Ackermannviridae [20], Chaseviridae [21], Herelleviridae [22,23]; two
for the siphoviruses, Demerecviridae [21], and Drexlerviridae [21], and one of podoviruses,
Autographiviridae [21].
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Figure 1. Line drawing of bacteriophage morphotypes, adapted from Ackermann, 2005 [6].

If we look beyond the traditional tailed bacteriophages, we are observing a similar
increase in genomic diversity in other phage clades, but interestingly, these expansions are
mainly driven by metagenome-derived information. Using a combination of sequencing,
isolation and imaging methods, a new major lineage of non-tailed dsDNA phages was iden-
tified in marine bacteria, named Autolykiviridae [24]. Similarly, isolation of a new ssDNA
phage and description of the new family Finnlakeviridae links non-tailed icosahedral ssDNA
and dsDNA phages together [25,26]. Major lineages of presumed novel dsDNA tailed
phages have also been inferred and isolated based on metagenomic/viromic assemblies,
including the crAssphage lineage [27–29], Lak megaphage [30], and multiple other lineages
of “huge phages” [31].

For the filamentous, ssDNA phages, the family Inoviridae has been split into two
families, Inoviridae and Plectroviridae which are grouped together in the order Tubulavi-
rales [21], with a potential further increase with five new families based on the analysis
of cryptic inoviruses from bacterial genome datasets [32]. In a similar vein, many ad-
ditional subfamilies have been proposed in the ssDNA family Microviridae, beyond the
existing subfamilies Bullavirinae [9] and Gokushovirinae based on the detection in virome
data, i.e. the subfamilies “Alpavirinae” [33], “Pichovirinae” [34], “Stokavirinae” [35], and
“Aravirinae” [35]. Recently, computational approaches identified a massive expansion in
the number of ssRNA phage genomes of the Leviviridae family, first with 158 [36] then with
a further 1k complete and 15k partial genomes [37].
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Across all the different lineages of bacteriophages it has become clear that fundamental
changes to classification are required in order to address this increasing genomic diversity.

2. The Next Steps for Tailed Phage Taxonomy

Within phage taxonomy, the most pressing issue remains the paraphyly of the tailed
phage families, because they make up the majority of isolated and metagenomically-
inferred viruses, illustrated by a dendrogram of hierarchical relations of dsDNA bacterial
and archaeal viruses generated by the GRAViTy pipeline (Figure 2, Figure S1) [16,17] and a
network-based representation of shared genes generated by vConTACT2 (Figure S2) [15].

In recent years, the ICTV expanded the taxonomic ranks, previously Species to Order,
to include 15 divisions up to Realm to assist with describing higher order relationships
between groups of viruses [38,39]. For the tailed phages, this has led to the introduction
of the class Caudoviricetes comprising all tailed phages. With the creation of the class, we
are now able to abolish the order Caudovirales and the families Myoviridae, Podoviridae, and
Siphoviridae, and replace them with monophyletic, genome-based families. We have used
the creation of the family Herelleviridae as a case study for the delineation and internal
structuring of future new families [22] but have not addressed the wider implications for
all tailed phages.

2.1. Step 1: Abolish the Order Caudovirales

As a first step we propose to abolish the order Caudovirales with all current members
automatically assigned to the class Caudoviricetes. This creates the space to define new
orders that group families based on underlying evolutionary relationships. A first example
of this is the creation of the order “Crassvirales”, currently under consideration by the
ICTV, which groups six families of crAss-like viruses (Taxonomy Proposal 2020.039B, under
consideration).

2.2. Step 2: Abolish the Families Myoviridae, Podoviridae and Siphoviridae

The removal of the classical phage families will in the first instance create a large num-
ber of “unclassified Caudoviricetes” subfamilies and genera. While this is a situation that is
unsustainable in the long term, in the short term, little taxonomically important information
will be lost. For example, the genera Lederbergvirus and Myxoctovirus are both assigned to
the family Podoviridae, but their members share no orthologues (verified by CoreGenes 5.0
(coregenes.ngrok.io, accessed on 5 February 2021) as in [40](CoreGenes 3.5 [41]). Therefore,
their position as floating genera in the class Caudoviricetes, is a better representation of their
genomic relatedness than grouping them together in the family Podoviridae.

We do not suggest that the terms myovirus, podovirus, and siphovirus indicating
the phage morphology get lost and suggest to use this terminology in publications and
add this description in the annotated sequence records (e.g., note in the GenBank file of
the genome).
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Figure 2. Dendrogram generated by GRAViTy (http://gravity.cvr.gla.ac.uk, accessed on 5 February 2021) for DB-B: Baltimore
Group Ib—Prokaryotic and archaeal dsDNA viruses (VMRv34) and annotated using iTOL [16,42]. The inside coloured ring
indicates the morphotype and the outside ring the new proposed and ratified families as of 2021. The distance from tip
to node, indicated by the scale rings, represents the composite generalised Jaccard distance (0–1) between two genomes
calculated based on relatedness of the proteins and the genome organisation, where 0 is identical and 1 is no measurable
relation between two genomes. The Jaccard distance of 0.8, unifying the majority of eukaryotic virus families is indicated
in blue for illustration purposes. Bootstrap values (0–1) are indicated by branch colour on a greyscale, from light grey (0)
to black (1), showing that the majority of branches are well-supported. Bootstrap values were calculated as described by
Aiewsakun and Simmonds [16] by random resampling of the protein profile hidden Markov models that form the basis
of the protein relatedness score, recomputing the pairwise distance matrix and then recomputing the dendrogram and
repeating this 100 times.

2.3. Step 3: Elevating Existing Subfamilies to Family Rank

In the last decade, subfamilies have been created to account for monophyletic groups
within the paraphyletic families. For example, the subfamily Tunavirinae has been used to
create the new family Drexlerviridae and the subfamily Spounavirinae was the inspiration to
create the family Herelleviridae. Going forward, there are a number of existing subfamilies
such as the Tevenvirinae and Peduovirinae that are currently being considered for family
status, given that their diversity is similar to those of the newly instated families. However,
the elevation of subfamilies to families will be assessed on a case-by-case basis.

http://gravity.cvr.gla.ac.uk
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2.4. Step 4: Addressing the Unclassifieds

While tailed phages exhibit huge genomic diversity, removing the traditional order
and families will leave a significant fraction of sequenced phages unclassified at the family-
level. In a first instance, we will create floating genera in the class Caudoviricetes for these
isolates. We propose that for under-represented groups, families should only be created
if a sufficient number of genomes, representing multiple genera, have been sequenced to
allow the proposal/satisfaction of family-level demarcation criteria (discussed below).

3. Rank-Specific Demarcation Criteria for Tailed Phages, Class Caudoviricetes
3.1. Species

Two phages are assigned to the same species if their genomes are more than 95%
identical at the nucleotide level over their full genome length, tested reciprocally. These
values can be calculated by a number of tools, such as BLASTn (% identity multiplied by
% coverage) [43], VIRIDIC (intergenomic distance calculator, [44]), or CD-HIT-EST [45].
This threshold was first introduced in taxonomy proposals in 2012 [46] and has since been
independently confirmed using global population-level analyses [47–49].

In order to scale up these calculations for the exceedingly large numbers of genomes
that are available through metagenomics studies, future studies will need to look into
more high-throughput calculations using, for example, genome distance estimations using
Mash [50] and appropriate thresholds determined.

3.2. Genus

In search for criteria that create cohesive and distinct genera that are reproducible
and monophyletic, the Subcommittee has established 70% nucleotide identity of the full
genome length as the cut-off for genera, calculated in the same way as the species cut-off.
Pairwise genome comparisons can result in “edge-cases” where inclusion in the genus is
only partially supported, needing additional evidence in support. Genomes comprising a
proposed genus should be examined for the presence of homologous conserved ‘signature
genes’ and evaluated using phylogenetics.

Various tools have been developed for the assessment of pangenomes (identification
of entire gene set of a group of organisms) and, while predominantly designed for the
analysis of bacteria, can be employed for the assessment of phage gene products. Exam-
ples include Roary [51], Proteinortho [52], PIRATE [53], GET_HOMOLOGUES [54] and
CoreGenes 3.5 [41] and 5.0 (https://coregenes.ngrok.io/, accessed on 5 February 2021).
We recommend less stringent criteria for the generation of phage pangenomes where
sequence similarity and sequence coverage of the proteins are set to >30% identity and
>50% coverage, respectively. These approaches allow for hierarchical clustering of phages
based on their gene content and demonstrate the presence of signature genes which are
stable throughout the genus, subfamily or family. We do encourage phage biologists to
check the results of clustering by using multiple sequence alignments and through the use
of domain searches (e.g., InterProScan/Pfam/CDD) and more sensitive HMM methods
such as hmmscan against the VOGdb and HHPred [55–59].

Genus-level groupings should always be monophyletic in these signature genes, as
tested by phylogenetic analysis, i.e. the gene or genes chosen as signature(s) for this genus
should produce a phylogenetic tree in which the genus is presented as a well-supported
single clade. Ideally, phylogenetic trees of signature genes should be rooted using a more
distant relative (outgroup) and be accompanied by bootstrap values, to ensure the group-
ings are robustly reproducible. The Subcommittee recommends Maximum Likelihood
(ML) trees built with IQ-Tree, using ModelFinder for substitution model determination
and UFBOOT for bootstrapping [60–62], but other equivalent tools are acceptable and the
Subcommittee has made ample use of the quick and accessible phylogeny.fr webserver for
ML-based phylogenetics [63].

https://coregenes.ngrok.io/
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3.3. Subfamily

The subfamily level is optional for bacteriophages. Subfamilies are to be created when
two or more discrete genera are related below the family level. In practical terms, this
usually means that they share a low degree of nucleotide sequence similarity and that the
genera form a clade in a marker tree phylogeny.

3.4. Family

The family-level has not had any fixed demarcation criteria in the past. Here, we
propose the following criteria for the establishment of a new family:

• The family is represented by a cohesive and monophyletic group in the main predicted
proteome-based clustering tools (ViPTree, GRAViTy dendrogram, vConTACT2 network).

• Members of the family share a significant number of orthologous genes (the number
will depend on the genome sizes and number of coding sequences of members of the
family), see genus section for methods.

• If a family-level cluster shares orthologues with another family-level cluster, the
family cluster needs to be monophyletic in a phylogenetic analysis of the shared
orthologue(s).

3.5. Order

Orders should be proposed when two or more families are related. The proposed
order should again be monophyletic using the main clustering tools.

4. Perspectives for Non-Tailed Phages

Phages come in a wide variety of genome sizes and compositions. The criteria set
out here cannot necessarily be translated for, for example, the small ssRNA genomes of
leviviruses, for which a separate set of demarcation criteria are being implemented [37] or
the non-tailed dsDNA autolykiviruses [24]. For each of these major groups, new genome-
based criteria will need to be developed by groups of experts, but the expectation is that
these are broadly equivalent across the bacterial virosphere. We welcome studies that
investigate cross-Realm rates of evolution and divergence.

5. Concluding Statement

The classical morphotype family-level taxonomy has been enormously useful for
four decades in advancing our understanding of phage diversity. We express our extreme
gratitude to those that developed it, in particular the late Hans-Wolfgang Ackermann, who
was a supportive yet highly critical collaborator of the authors. For those concerned, while
the morphology-based families will disappear, the morphotypes will continue to exist and
descriptors such as myovirus and podophage will always remain useful.

Driven by the renewed interest in phage-based applications, advances in sequenc-
ing technology, and the era of the microbiome, there is a dire need for a genome-based
classification in which the family level represents a genomic unit of diversity. The first
steps on the route towards a future-proof taxonomy have been taken. Here we have laid
out our future plans to address the need for a stable and informed taxonomic approach
to the viruses of bacteria (and archaea). Implementation of these plans will require the
engagement of and discussion between the scientific community and continued refinement
of bioinformatics tools.



Viruses 2021, 13, 506 7 of 10

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-4
915/13/3/506/s1. Figure S1: Heatmap and dendrogram output of the GRAViTy pipeline as com-
panion information for Figure 2. The clusters corresponding to eukaryotic family level cut-offs
were automatically indicated on the figure as part of the pipeline using genus, subfamily and our
family information. Figure S2: vContact2 network illustrating families of the viruses of bacteria.
Phage genomes were downloaded from GenBank on the 22 February 2021, representing a total of
14,462 sequence records, and reannotated using Prokka via the INfrastructure for a PHAge Reference
Database perl script (https://github.com/RyanCook94/inphared.pl (accessed on 5 February 2021)).
vContact2 version 0.9.21 was used to cluster phage genomes using the parameters –rel-mode ’Dia-
mond’, db ’None’, pcs-mode MCL and vcs-mode ClusterONE. The resultant network was visualised
in Cytoscape v3.8.2 and annotated using a custom python script and Adobe Illustrator. ICTV-ratified
families are shown in italic font, while pending proposals for new families are shown in Roman font.
Putative phage genomes from metagenomic sequence data held in the Sequence Read Archive are
not included, therefore, phages belonging to the classes Leviviricetes, Tokiviricetes, Laserviricetes and
the proposed new order “Crassvirales” are under-represented in this network and their depiction may
not be an accurate representation.
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