
sensors

Article

Efficient Sky Dehazing by Atmospheric Light Fusion

Jaouad Hajjami 1,2 , Thibault Napoléon 2 and Ayman Alfalou 2,*
1 Forssea Robotics, 130 rue de Lourmel, 75015 Paris, France; jaouad@forssea-robotics.fr
2 L@bISEN Yncréa Ouest, 20 rue Cuirassé Bretagne, 29200 Brest, France; thibault.napoleon@isen-ouest.yncrea.fr
* Correspondence: ayman.al-falou@yncrea.fr; Tel.: +33-(0)298-038-409

Received: 23 June 2020; Accepted: 25 August 2020; Published: 29 August 2020
����������
�������

Abstract: In this article, we present a new method of dehazing based on the Koschmieder model,
which aims to restore an image that has been affected by haze. The difficulty is to improve the estimation
of the transmission and the atmospheric light that generally suffer from the nonhomogeneity and the
random variability of the environment. The keypoint is to enhance the dehazing of very bright regions of
the image in order to improve the treatment of the sky that is often overestimated or underestimated
compared to the rest of the scene. The approach proposed in this paper is based on two main contributions:
1. an L0 gradient optimization function weighted by a set of Gaussian filters and based on an iterative
algorithm for optimization convergence. Unlike the existing methods using a single value of the
atmospheric light for the whole image, our method uses a set of values neighboring an initial estimated
value. The fusion is then applied based on Laplacian and Gaussian pyramids to combine all the relevant
information from the set of images constructed from atmospheric lights and improves the contrast to
recover the colors of the sky without any artifacts. Finally, the results are validated by three criteria:
an autocorrelation score (ZNCC), a similarity measure (SSIM) and a visual criterion. The experiments
carried out on two datasets show that our approach allows a better dehazing of the images with higher
SSIM and ZNCC measurements but also with better visual quality.

Keywords: image processing; single image dehazing; atmospheric light fusion

1. Introduction

Image restoration is one of the fundamental issues in image processing taken under degraded
conditions, such as fog or turbidity in underwater environments. Several solutions have been proposed in
the literature such as regularization of histogram [1,2], CLAHE [3], etc. In order to implement dehazing
on real applications like visual positioning for offshore companies, that suffer from haze and fog, we are
particularly interested in dehazing techniques with the following two constraints: 1. using only a single
input image with no additional data. 2. computation time less than ten seconds.

Dehazing an image usually consists of using the diffusion model of Koschmieder [4]. Among the
first methods to have dealt with this problem, He’s [5] method is based on the dark channel (DCP) which
is then refined with the Laplacian matrix to obtain the transmission. This solution is robust but very
expensive in calculation time and it is based on a statistical observation that claims that in a small window
of the image there is at least one dark channel, which is not always true and does not lead to a good
estimation of the transmission. Several other methods derived from the DCP. For example, He [6] proposed
an improvement of the transmission with a smoothing guided filter to preserve the contours. Others have
used a median filter [7], a median of a median filter [8] or bilateral filter [9]. The weak points of these
methods are the calculation time, which is quite high and generates several errors in areas where the image
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is very bright or close to the color of the haze. This is due not only to their approach but to the diffusion
model [4] itself. On the other hand, Meng [10] tried to use another paradigm based on the optimization of
the transmission by an iterative algorithm, but their method generates color distortions in the dark areas
of the image. The approach of Ancuti [11] is based on the weighted fusion of two images derived from
the haze image: contrast enhancement and color correction. However, their algorithm works mostly on
images with degraded illumination.

In order to improve the performance of these methods, we propose to fuse several values of the
atmospheric light to better estimate the haze, or the transmission, and obtain results closer to reality as
the atmospheric light appears twice in the diffusion formula. We also improve the radiance by a gradient
optimization function weighted by a Gaussian filter of the transmission. We summarize in three points
our contributions:

• efficient estimation of As (scalar atmospheric light) used as a central value for the fusion,
• optimization of two regularization terms of the transmission,
• radiance J(x) computed by two possible methods:

– total fusion of all possible values of As = [0, 255] weighted by Gaussian coefficients,
– limited weightless fusion of the neighborhood values of As estimated in the first step.

2. Contributions

2.1. Estimation of Atmospheric Light As

In Koschmieder’s diffusion model, the atmospheric light As is by definition the color of the haze.
Several works have attempted to estimate it, in general, either by selecting the pixel manually or by taking
the clearest region of the image [12]. To improve this estimation, He [5] took the darkest pixel of the 0.1%
brightest pixels. Narasimhan [13] used two images to retrieve the orientation of As as the atmospheric
light vector corresponds to the difference between the two images. Shwartz [14] goes in the same direction
by exploiting two or more images with different polarization states to estimate the variation of fog and
then deduce the value of As from that. On the other hand, the approach of Fattal [15] is based on the
intersection between the RGB channels of several windows designated by the user. The common weak
point between these methods is the estimation of As in the “burnt” areas causing by several sources such
as artificial light, sun, sky, etc. To overcome these problems, we propose in this section a new and more
robust approach to these situations.

The atmospheric light As plays an important role in the formation of the final image, or the radiance,
and especially on its contrast. For this we propose two key improvements for an efficient and fast
estimation of this scalar: first, the estimation of As is done in the grayscale version of the input image
Igray(x), second, in its downsampled version. This can be expressed by the following formula:

As = max{h(x)win ~ [Rscale ◦ Igray(x)]}, (1)

whereRscale corresponds to the resized image operator by a factor scale < 1 and h(x)win~ is the application
of the minimum filter h(x), which is an order-statistic filter [16], on a window of size win of an image I(x),
which is in our case the resized image: Rscale ◦ Igray(x).

The formulation of the Equation (1) is based on two facts:

1. the fog is best represented in the gray level image because the hazed images contain few colors and
their contrast is very low. So, we propose to estimate it on this single channel for a homogeneous
rendering especially in areas where the haze is more present.
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2. “burned” areas of the image have a maximum pixel value (e.g., 255), which is often incorrect to be
considered as the haze color. For this reason, the grayscale channel is then resized by reducing its
size to further smooth burned areas (high light) by merging several pixels together.

In reality, a simple observation of the image will show that the haze occupies a large part of the scene,
and resizing the image taken from this scene will bring an overall smoothing effect of the haze. Therefore,
the value of As will be considered as an average of all possible values.

The true color of the haze As corresponds to the pixel where the haze is densest. The Figure 1
highlights the areas of haze estimated with the Equation (1). The results show clearly that the proposed
estimation of As succeeds in locating the pixels with greatest depth corresponding to a denser haze. Indeed,
for an infinite depth, we can show that the pixels of an image are equal to the atmospheric light As. By
starting from the Koschmieder [4] model:

I(x) = t(x)(J(x)− As) + As (2)

where I(x) is the input image (the hazed image), J(x) is the output image (the dehazed image), t(x) is
the transmission and it is correlated to the scene depth d(x): t(x) = e−γd(x). If we have an infinite depth:
d(x)→ +∞, then the pixels of the image converge to the atmospheric light As:

lim
d(x)→+∞

t(x) = lim
d(x)→+∞

e−γd(x) = 0 =⇒ lim
d(x)→+∞

I(x) = As (3)

where γ > 0 is the molar extinction coefficient.

a b

c d

Figure 1. This Figure shows two examples of hazed images (first row) and black pixels showing the location
of the estimated As (second row). With scale = 0.2 and win = 10. (a): Hazy image-1. (b): Hazy image-2.
(c): The location of the color of the haze in black pixels for the image (a). (d): The location of the color of the
haze in black pixels for the image (b).

This way of estimating As is very fast, the Table 1 shows that our approach is faster than Meng [10]
that uses the minimum filter h(x) on a full RGB image or by taking the darkest pixel of the 0.1% brightest
pixels such as in [5,17].
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Table 1. Comparison of running time for the estimation of As. In bold the best results.

Resolution Proposed Method Meng [10] He [5], Amer [17]

500× 332× 3 0.005205 0.036404 0.02140
2516× 3873× 3 0.208691 8.541274 3.8477

Despite these improvements that can be made during the computation of As, it is not sufficient. In
fact, the haze in all the areas of the image (with artificial light, clouds, sky, etc.) is estimated with the same
constant As. We will see in the Section 3 how to give more importance to this variable through pyramidal
fusion.

2.2. Estimation of the Transmission t(x)

Transmission t(x) is based on the molar extinction γ and the depth of the scene. These parameters
are very often not given and cannot be easily estimated from a single camera image. Therefore, we define
the transmission as the “depth” of the haze and not as the depth of the scene. For this, we propose to
introduce a new optimization function that is defined with a weighted smoothing operator. First of all,
we use the boundary constraint from Meng [10] who considers fog as nonhomogeneous and unknown,
defined as follows:

0 ≤ tb(x) ≤ t(x) ≤ 1, (4)

with tb(x) is the minimum value of t(x) computed as: tb(x) = min

{
max

(
As−I(x)
As−C0

, As−I(x)
As−C1

)
, 1

}
where

C0 = 20 and C1 = 300 are the radiance limits. As stated by Meng [10], in Figure 2, this comes from the fact
that the scene radiance J(x) is always bounded by C0 and C1: C0 < J(x) < C1.

The Figure 2 shows an example of tb(x) image that will be used to initialize our transmission
estimation process to obtain a map that looks like a fog’s depth map. Our estimation process is being
characterized by:

• keeping only the main contours defined by the greatest depth difference between two regions of the
image. Given that no depth information is available, our estimation is based on the difference of
intensity between two homogeneous regions.

• using a Gaussian filter for smoothing the areas where the variation of the depth (e.g., intensity
variation) is small.

To integrate these two criteria, we introduce them as a prior representing two regularization terms.
The first term corresponds to the L0 norm of the contours of tb(x) and the second term corresponds to
the Gaussian smoothing of tb(x). After that we propose a model based on those two prior pieces of
information about the unknown t(x). This model is then optimized using an alternating minimization
algorithm with a total variation (TV) regularization as it is presented by Wang [18].

2.3. Formulation

We assume that the transmission t(x) is defined in a bounded variation in [0, 1] over the domain
Ω ∈ R2. The goal is to minimize the following energy:

min
t
‖t− tb‖2

2 (5)
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where ‖t− tb‖2
2 is the TV term to keep the function from oscillating in accordance with other parameters.

The final solution converges towards a unique solution close to the observed image, tb(x) in our case.
In order to converge the Equation (5) to a unique solution, we have to stabilize it with two

regularization terms:

min
t

λ ‖t− tb‖2
2 + |∇t|0 + ‖H ~ t‖1 (6)

with:

1. λ is the regularization parameter.
2. |∇t|0 = |δxt| + |δyt| : the "norm" zero corresponds to the number of times the magnitude

|δxt|+ |δyt| is not black.
3. ‖H ~ t‖1 : the application of the Gaussian filter H on the transmission t for smoothing areas with a

low gradient.

In order to have a stable and convergent minimization of this kind of objective function, Wang [18]
proposed an alternate solution by introducing auxiliary variables into the cost function. For our
Equation (6), it would be two variables W and w = (wh, wv), where W, wh and wv are the approximations
of the transmission, the horizontal gradient and the vertical gradient, respectively.

By integrating those variables, the new cost function becomes:

min
t,W,w

λ ‖t− tb‖2
2 +

β

2
(‖δxt− wh‖2

2 +
∥∥δyt− wv

∥∥2
2) + |∇w|0 + ‖H ~W‖1 +

β

2
‖W − t‖2

2 (7)

The quadratic terms are used to keep the auxiliary variables close to their corresponding variables
and they are measured in 0-norm and 1-norm to handle noise (other than white noise). β is a penalty
parameter. Theoretically speaking, if β → ∞, the solution of the cost Equation (7) converges to the cost
Equation (6).

Solving the cost Equation (7) is done by simultaneously optimizing three subproblems with respect
to W, w and t. Meaning that, we solve for each optimal W, w or t while considering the two others as
constants.

Solving W:

The first subproblem is the minimization over W by fixing t and w and it is given by:

min
W
‖H ~W‖1 +

β

2
‖W − t‖2

2 (8)

Considering the approximation H ~W ≈W as we apply a Gaussian operator with smaller blurs, the
problem becomes easier to solve. Thus it can be written as:

min
x
|x|+ β

2
(x− cst)2

where cst is constant at this stage. This has a unique minimizer x∗:

x∗ = max(|cst| − 1
β

, 0) . sign(cst)

where sign() is the sign function.
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Solving the intermediate transmission ti:

We introduce in this subproblem the intermediate transmission ti(x) in which we consider only the
gradients w. We then solve the following problem:

min
ti

λ ‖ti − tb‖2
2 +

β

2
(‖δxti − wh‖2

2 +
∥∥δyti − wv

∥∥2
2) + |∇w|0 (9)

Solving w: The second subproblem is the minimization over w by fixing ti and it is given by:

min
w
‖δxti − wh‖2

2 +
∥∥δyti − wv

∥∥2
2 +

2
β
|∇w|0 (10)

where |∇w|0 corresponds to the number of times w is nonzero. This energy can be spatially decomposed
where wh and wv could be estimated independently. Thus the above problem reaches its minimum under
the following condition:

w = (wh, wv) =

{
(0, 0) i f (δxti)

2 + (δyti)
2 6 2

β

(δxti, δyti) Otherwise
(11)

Solving ti: The third subproblem is the minimization over ti by fixing w:

min
ti

λ ‖ti − tb‖2
2 +

β

2
(‖δxti − wh‖2

2 +
∥∥δyti − wv

∥∥2
2) (12)

We note that the objective Equation (12) is quadratic in ti and the optimal t∗i could be given by the
normal equation:

(
2λ

β
+∇wT∇w)ti =

2λ

β
tb +∇wTti (13)

We can compute an optimal solution for ti(x) when it is resolved in the frequency domain, for
speedup, by applying a two-dimensional discrete Fourier transform to the above equation. We then have
the optimal solution t∗i as:

t∗i = F−1

{ 2λ
β F (tb) +F ∗(δx)F (wh) +F ∗(δy)F (wv)

F ∗(δx)F (δx) +F ∗(δy)F (δy)

}
(14)

where F is the Fast Fourier Transform (FFT) operator and F ∗ is the complex conjugate.

Solving the final transmission t(x)

After solving the intermediate ti(x), we tackle here the final transmission t(x) by optimizing the
following problem that includes t(x) in both of its terms from the original cost Equation (7) while
considering the intermediate transmission ti(x) instead of tb(x):

min
t

λ ‖t− ti‖2
2 +

β

2
‖W − t‖2

2 (15)

Again, the above subproblem has the same form as the previous one, as in the cost Equation (12).
Therefore, we apply the Fourier transform to its optimal solution which is the normal equation:

(
2λ

β
+ WTW)t =

2λ

β
ti + WTt (16)
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After that we get the optimal transmission computed in the frequency domain as follows:

t∗ = F−1

{ 2λ
β F (ti) +F ∗(1)F (W)

2λ
β +F ∗(1)F (1)

}
(17)

where F (1) is the FFT of the dirac delta function.
This process is repeated until convergence with a fixed number of iterations that depends on β and λ.

In our case, the algorithm converges after ten iterations with β = 0.01 and λ = 5 and they were chosen
based on numerical experiments. For more information on the convergence conditions of this type of
functional and its regularization (with a single regularization term), we recommend the work of Wang [18].

The Figure 2 shows a comparison between the transmission obtained from the optimization model
and the real depth image estimated by Zhang [19].

a b c

d e

Figure 2. Optimization of the transmission: (a): haze-free image. (b): hazy image. (c): tb(x) the initialization
of the transmission t(x). (d): ground truth depth [19]. (e): t(x) the transmission. As the haze is very often
nonhomogeneous, the depth information is not sufficient for dehazing. For illustration purpose, we show
both the ground truth depth (d) and the estimated transmission (e). The estimated transmission should be
proportional to the depth map but also reflects the density of the haze. In the transmission (e), the right
side is less hazy and very close to the camera, so the transmission is approaching zero (dark color) and on
the left side; however, the haze is denser, so the transmission approaches one (white color). The sky area in
the ground truth image (d) is missing the depth information; it is usually considered as undefined or as
infinity. This is useless in dehazing, particularly, sky dehazing which is the main contribution of this paper.
Therefore, for those two reasons (nonhomogeneity and invalid depth in sky regions) the depth information
cannot be introduced in Equation (3) as it is defined in Koschmieder [4] model and it needs to be considered
as a haze density for real image dehazing.

3. Fusion

As mentioned earlier, despite the improvement in the estimation of As proposed in the Section 2.1,
the results are insufficient because the color of the haze is not homogeneous throughout the scene. The
Figure 3 shows an example of this situation where any dehazing processing using a simple scalar for
atmospheric light fails in restoring the sky.
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Figure 3. Image where sky restoration failed.

To solve this problem, we introduce the fusion of several values of As with the multiresolution
approach which has the advantage of extracting the relevant information at each level of resolution.

In the literature, this is known as the pyramid fusion, consisting of a set of successive levels of
resolution that are increasingly reduced compared to the original image. We propose to use the approach
introduced by Burt [20] based on the Gaussian and Laplacian pyramids.

In this section, we explain how the two pyramids are used for fusion using two different methods.
First by combining all possible values of As with a Gaussian weighting to reduce the dominance of images
from low-values of As. Secondly, by limiting ourselves to a weightless fusion of some values of the
atmospheric lights neighboring the previously estimated value As. This second approach allows us to
gain in calculation time and memory needed to store all the images while keeping the same performance.

Note:

We noted the estimated atmospheric light value introduced in Section 2 as As for Ascalar and in the
rest of the article, A will be considered as a vector of values between 0 and 255.

3.1. Gaussian Pyramid

The Gaussian pyramid G is applied to the weight map with a resolution of k and a depth equal to N
the number of images to fuse. Considering a standard weight map W, we have:

Wn
i,j :=

Wn
i,j

∑N
n=1 Wn

i,j
(18)

where i = [0, 2k] is the number of columns, j = [0, 2k] is the number of rows and n = [1, N] is the number
of images to fuse.

The multiresolution representation of this weight map can be written as:

Gl(i, j){W} = ∆(Gl+1(i, j)){W}

=
2

∑
m=−2

2

∑
n=−2

wg . Gl+1(2i + m, 2j + n){W}
(19)

where Gl represents the level l of the image in the pyramid, wg is the Gaussian kernel coefficients,

l = [0, lev − 1] where lev is the level of the pyramid defined by: lev = log(min(cols,rows))
log(2) = log(2k)

log(2) and

i = 0, ..., 2k − 1, j = 0, ..., 2k − 1.
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3.2. Laplacian Pyramid

The Laplacian pyramid L is simply defined as the Gaussian pyramid G except that each level
corresponds to the pixel to pixel difference at two levels of the Gaussian pyramid. This pyramid is then
applied to the images of the radiance J(x) to be fused:

Ll{J} = Gl −∇(Gl−1){J} (20)

where ∇ is the expansion operator from level l − 1 to the level l.

3.3. Fusion Process

After the transmission estimation and the initialization of the atmospheric light As, we present in
this section our pyramidal fusion to merge images from multiple A values. We propose the total fusion
of 256 images for all A = [0, 255] and then its optimized version of fusion using only 2δ + 1 images for
A = [A− δ, A + δ]. The radiances J(x) based on 256 values is generated using the Koschmieder diffusion
Equation (2), such as:

Ji(x) =
I(x)− Ai

t(x)
+ Ai, i = [0, 255] (21)

3.3.1. Pyramidal Fusion

The fusion consists of multiplying the two pyramids, the Gaussian pyramid G of the weight map and
the Laplacian pyramid L of the radiances (see Figure 4):

R(x) =
lev

∑
l=1

N

∑
n=1

G{W}l
nL{J}l

n (22)

Figure 4. The R(x) image obtained with a fusion of 255 images and W = [1]n unit weights.

In most situations, the previously estimated atmospheric light has values converging to 255, so
its value is never centered in the range [0, 255]. Thereby, the fused radiance R(x) is dominated by the
structure of the images which corresponds to values less than As. This explains the "burned" area on the
top of the Figure 4. To overcome this problem, we propose to introduce Gaussian weights W such as:

W ∼ N (As, 255− As)

After the application of the Gaussian weights W ∼ N (193, 52) , we recover the burned area of the
Figure 4 (see Figure 5).
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A=1 A=32 A=64 A=80 A=96 A=128

As=192 A=208 A=210 A=224 A=240 A=255

Raw image Weighted
pyramidal

fusion

Figure 5. Sample images of the radiances Ji(x) and their fusion image R(x). The atmospheric light
estimated is As = 192. So, the image with As = 192 is our dehazing approach without fusion.

3.3.2. Reduced Pyramidal Fusion

The fusion proposed previously can be expensive in memory because it requires the storage of 256
high-resolution images in memory with their Laplacian levels (256× log(2k)

log(2) images). In order to reduce
the calculation time and the memory needed by more than 10 times, we propose a fusion without weight
map W and with a reduced set of A values.

As previously stated, A will take values centered on the estimated value as of Section 2 such as
A = [As − δ, As + δ], and the weight map will be set to unit values of W = [1]n.

The Figure 6 shows, for our test image, the result of the weightless fusion of twenty one radiances
Ji(x) of Ai:

Figure 6. Weightless fusion of 21 radiances. A = [As − δ, As + δ] = [193− 10, 193 + 10] = [183, 203].
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4. Results

Our algorithm achieves good results both quantitatively, according to SSIM and ZNCC criteria and
qualitatively based on the visual quality of the images dehazed. By definition, SSIM [21] measures the
structural similarity while ZNCC [22] computes the centered standardized cross-correlation. These two
criteria are applied to images before generating haze and after applying the proposed dehazing method to
determine how identical the images are. For this, we use the database of artificially hazy images generated
by Zhang [19] based on the visual aspect of the scene proposed by Mccartney [23] (see Figure 7).

1 
 

 

Figure 7. Description of Zhang [19] method for generating the database used in the Figure 8.

The following subsections show the results of our approach comparatively to the state of the art [5,10,15,17,24]
on quantitative measures and visually.

4.1. Quantitative Results

In this section, we present the quantitative results on five different images in comparison to the
methods proposed by Meng [10], Amer [17] and Cho [24]. We consider the method to be efficient and
likely to have a good visual rendering if it achieves a better score on both SSIM and ZNCC, usually greater
than 0.65 for each criterion. The Figure 8 shows the different scores obtained on five images taken from
Zhang’s database.

The Figure 8 shows that the proposed approach outperforms the state of the art for the SSIM and
ZNCC measures. Only one image has a lower SSIM but very close to the best one. The method of Amer [17]
works well when the haze is dense but, on the other hand, it tends to have overall dark images and is
totally burned in some areas of the image where the haze is relatively low. This may be due to the Gaussian
filter applied to the transmission during its formation; the transmission is then homogeneous over a large
region of the image where the haze is not. Cho [24] has a contrary effect on some regions with few hazes
and often gets a blue and reddish hue. This is probably due to the method of estimating parameters based
on atmospheric light. Meng [10] obtains good SSIM and ZNCC scores but the weak point is the instability
of areas like the sky due to the initialization of the transmission with the value of A that is not robust.
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input hazy
input

Amer [17]
S=0.38
Z=0.89

Meng [10]
S=0.32
Z=0.81

Cho [24]
S=0.55
Z=0.94

Our
S=0.62
Z=0.97

input hazy
input

Amer [17]
S=0.31
Z=0.53

Meng [10]
S=0.46
Z=0.67

Cho [24]
S=0.35
Z=0.41

Our
S=0.44
Z=0.70

input hazy
input

Amer [17]
S=0.44
Z=0.84

Meng [10]
S=0.63
Z=0.86

Cho [24]
S=0.61
Z=0.85

Our
S=0.71
Z=0.92

input hazy
input

Amer [17]
S=0.52
Z=0.77

Meng [10]
S=0.67
Z=0.80

Cho [24]
S=0.66
Z=0.81

Our
S=0.67
Z=0.86

input hazy
input

Amer [17]
S=0.70
Z=0.91

Meng [10]
S=0.70
Z=0.85

Cho [24]
S=0.62
Z=0.92

Our
S=0.72
Z=0.94

Figure 8. Comparison between five images with their SSIM (S) and ZNCC (Z) scores. In bold the best
results for each criterion.
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We have observed that for high scores of SSIM and ZNCC simultaneously (greater than 0.65), the
images have a rendering very close to a human prediction and the obtained results are convincing. The
Figure 8 shows that a single score can easily reach a value close to 1 but the image remains visually
degraded. As an example, the first processed image of Cho [24] where the ZNCC score is very good
(ZNCC = 0.94) but still the image presents artifacts on a large area (SSIM = 0.55).

Finally, even if the results overcome the state of the art, these measures remain insufficient in front of
the visual aspect. For this purpose, we propose in the following subsections a visual comparison between
our results and some results from the literature [5,10,15,17].

4.2. Qualitative Results

In this section, we evaluate the visual aspect of our method in comparison with some approaches
from the literature considered as a reference in image dehazing [5,15]. So, the comparison between these
methods is based on the details and some particular areas of the image. For this reason, we divide the
images into three categories: 1. images of landscapes (Figure 9). 2. images with large sky (Figure 10).
3. haze-free images (Figure 11). Those images were chosen based on the fact that it is hard to use one
algorithm to restore details from haze regions, successfully process the sky and at the same time not
degrade images with no haze.

4.2.1. Landscape Images

The Figure 9 shows that our method produces good visual rendering and bright colors in the most
difficult real conditions and in a variety of scenes in terms of contrast, depth and haze density. Thanks to
our Gaussian and Laplacian fusion, they give a stable behavior without artifacts.

Fattal [15] significantly improves the result of most situations and, in any case, succeeds in removing
the haze from the images. However, the main problem of that approach is the radiance of the images
becoming less realistic. We can observe this on the first image where the sky light was removed with the
haze or on the third image where the tree is oversaturated, especially the branches.

The method of He [5] is known for its robustness, but it also presents a weak point in the transmission
estimation based on the dark channel, as on the second image where the haze in the upper part is
underestimated. We can think that the dark channel is badly estimated in regions where no channel in the
image converges to a minimum value.

Amer [17] inherits the same positive and negative points of He [5] because their method is based
on the dark channel as well but estimated differently with a Gaussian filter. This one is known for its
smoothing effect which can cause a false estimation of transmission that leads to dark images.



Sensors 2020, 20, 4893 14 of 18

input Amer [17] Meng [10] He [5] Fattal [15] Our
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Figure 9. Qualitative results on well known images of the dehazing literature. Note that these images have
a large variation of depth. Red boxes indicate dehazing artifacts.

4.2.2. Sky Images

The most difficult images to dehaze are usually those with strong contrast differences, images taken
at night or hazy-free images. In Figure 10, we demonstrate the effectiveness of our method to improve the
quality of the results in these situations, especially those where the sky and clouds are both parts of the scene.

The remarks of the Figure 9 remain correct for this kind of images but some details must be given for
sky processing. The methods presented have got fairly similar results for the treatment of the sky except
Meng [10] who succeeded in having a good extraction of the sky despite that it is a bit dark and tinted.
Amer [17] gets good results on the sky part as well but it is a bit oversaturated as it has been stated before.
Even if the state of the art methods perform well, our approach is more stable throughout the images.
Indeed, the sky has a different atmospheric light than the rest of the scene and our Gaussian and Laplacian
fusion leads to a better estimation of it.
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Figure 10. Qualitative results on images with both sky and clouds. Red boxes indicate dehazing artifacts.

4.2.3. Haze-Free Images

On the Figure 11 we show the results of our approach on two haze-free images. This allows us to see
the visual impact of the estimation of the transmission that should converge towards 1.
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input Amer [17] Meng [10] He [5] Fattal [15] Our
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Figure 11. Qualitative results on haze-free images. Red boxes indicate dehazing artifacts.

The difference between the images is small except for Amer [17] which tended to overestimate the
haze which does not exist (underestimate the transmission) because the images are very bright. Fattal [15]
stated in his article a very small error between the transmission obtained and the desired transmission
(t(x) = 1) compared to He [5] and this is visually validated in the Figure 11. Meng [10] looks similar to
He [5] or to our method, though it is a bit more contrasted on the image of the pizza.

The difficulty of processing haze-free images is due to an overprocessing of the high color pixels by
overestimating the haze. In our approach, this ambiguity is bypassed using the Gaussian and Laplacian
fusion of multiple values of the atmospheric light.

4.3. Computation Time

The computation time was evaluated on color images over an average of 100 iterations to refine the
evaluation. The Table 2 summarizes the results for three image resolutions. The program was developed
in Matlab 2019a on a 2.80 GHz processor with four cores. Overall, the distribution of the computation time
is: 50% for the transmission optimization costs, 40% for the fusion and 10% for the rest of the algorithm
(As estimation, image reconstruction after fusion, etc.).

Table 2. Computation time of our algorithm for three resolutions.

Resolution (RGB) Computation Time (s)
400× 600× 3 1.5746
600× 960× 3 3.7901
768× 1024× 3 5.1347

The Table 3 shows a comparison between the computation time of our method against the state of
the art. Fattal [15] reported 5.4 s for processing 1 Megapixel image size with 5 s for maximization of
the Gauss–Markov model (GMRF). Amer [17] saves a lot of time because of the one-pass iteration on
the frequency domain to perform Gaussian filtering. He [5] presents the longest time spent mostly in
soft-matting for the refinement of the transmission.

Even though the values of the computation time depend on many factors such as code language,
parallel execution or even GPU implementation, the Table 3 shows that our method stays competitive
among the state of the art. Fattal [15] is the second fastest method but still failed when it comes to sky
dehazing, see Figure 10. Excluding Amer [17] which does not perform well visually, our method is one of
the fastest in terms of the running time while having the best performance in terms of the processing effect.
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Table 3. Comparison of the computation time of our method against some methods of the literature on a
2.80 GHz machine and 620× 460 resolution. (*) It was estimated relative to the reported running time of 5.4
s for 1 Megapixel by Fattal [15].

Methods Computation Time (s)

Amer [17] 0.28
Fattal [15] 1.54 *
Our 1.96
Meng [10] 4.25
Cho [24] 8.20
He [5] 18.06

5. Conclusions and Perspective

In this article, we have proposed a new method to deal with dehazing in the most difficult conditions,
namely the sky or scenes with a strong variation of contrast. The difficulty comes from the fact that the
color of the haze is very similar or identical to the color of the sky which generates a false estimation of the
transmission t(x) and thus an image overcontrasted.

To address this problem, first, we have developed a more efficient and faster estimation of atmospheric
light As based on a resized version of the hazed image, and secondly, the fusion of several radiance images
from different values of A centered on the previously estimated value As. This allows us to process the
image indirectly with different values of A. The results presented show that our process obtains the best
visual rendering (quantitatively ant qualitatively) of realistic quality in terms of color and contrast. Our
method has also been tested on underwater images which is a challenging environment where the visibility
is very limited.

The outlook for this work will be focused on integrating the values of A vector at the beginning of
the algorithm, more specifically in the optimization of the transmission. From this, we can fuse images of
transmission and atmospheric light. We also propose to integrate a weighted fusion, based on contrast
and other criteria, of the radiance images. This will then allow us to generate a weight map that we can
reuse for refining the transmission as it could be considered as a second output of the algorithm or even
reintegrate it into the algorithm.
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