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Abstract
Axial SpA (axSpA) is a common rheumatic disease characterized by inflammation leading to bone formation and

functional impairment. TNF-a and IL-17 represent established targets in axSpA. TNF-a and IL-17 inhibitors have

demonstrated efficacy in clinical trials and are currently approved biologic DMARDs for all subsets of the disease.

Several lines of evidence implicate a role of an IL-23–IL-17 axis in the disease pathogenesis. In this light, and given

the success of IL-17 blockade in axSpA, a similar good response to IL-23 was anticipated. Nevertheless, two clin-

ical trials of anti-IL-23 monoclonal antibodies in axSpA have clearly exhibited negative results. This failure has

raised theories for a degree of IL-23 independent pathway. The Janus kinase (JAK) pathway is also a potential

therapeutic target, since several cytokines, including those involved in the IL-23–IL-17 axis, signal through the JAK

family of tyrosine kinases. Further studies and more extended evaluation of response to cytokine inhibition across

different tissues will be required to improve our understanding of SpA pathogenesis and determine its optimal

management.
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Introduction

Axial SpA (axSpA) is a disease characterized by inflam-

mation and new bone formation in the spine [1].

According to Assessment of SpondyloArthritis

International Society (ASAS) classification criteria, the

disease spectrum includes two types: radiographic axial

SpA, called AS, and non-radiographic axSpA (nr-axSpA)

[2]. AxSpA is relatively common among inflammatory

arthritides, with a prevalence of up to 1.40% [3]. The

disease typically starts in the SI joints, but can involve

any part of the spine, as well as the peripheral joints

and the entheses [4]. Enthesitis is a hallmark feature of

axSpA, with entheses being well-characterized as a

key target of musculoskeletal inflammation [5]. An

understanding of the enthesitis-based model in disease

pathogenesis has emerged as a matter of importance in

AS-associated inflammation in the last 2 decades.

Mechanical stress has been suggested to be important

for initiation and potentially maintenance of inflamma-

tion, a notion explaining the disease distribution in the

weight-bearing areas [6]. Nearly half of axSpA patients

experience extramusculoskeletal manifestations, includ-

ing anterior uveitis, psoriasis and inflammation of the

terminal ileum, with all these tissues representing sites

subject to biomechanical stress, sharing remarkable bio-

mechanical properties with entheses [7].

New bone formation and structural damage in the SI

joints and spine as consequences of inflammation have

been well-defined in axSpA. The inflammatory lesions of

the axial skeleton can be well-depicted in MRI [8]. It has

been suggested that subchondral bone marrow is

replaced by a granulation tissue carrying osteoblasts,

which promote new bone formation, leading to intra-ar-

ticular ankylosis of the facet joints [9]. Development of

syndesmophytes and finally ankyloses in the spine as a

result of inflammation can lead to restriction of spinal

mobility and dysfunction [10]. The mechanisms of inter-

action between inflammation and new bone formation
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have not been fully elucidated. Our understanding of

this interaction is important for the prevention of long-

term structural damage. Basic research has highlighted

a key role for TNF-a and IL-23–IL-17 cytokine dysregula-

tion in the aetiology of AS [11]. IL-23 acts as an up-

stream driver of Th17 cells, the T lymphocytes

producing IL-17 [12]. Single nucleotide polymorphisms

identified by genome-wide association studies (GWAS)

implicate the IL-23–IL-17 axis in AS [13]. Acquiring tis-

sue from the affected sites is difficult. Hence, in human

SpA, the main evidence that the IL-23–IL-17 axis plays a

pathogenetic role comes from clinical studies of IL-17

and IL-23 blockers.

TNF inhibition

The use of TNF inhibitors (TNFis) in AS followed their suc-

cess in treating other inflammatory conditions. Suggestive

for introduction was the demonstration of TNF-a overex-

pression in the SI joints of AS patients [14]. On the basis

of evidence from clinical trials, TNF-a appears to have an

established role in AS pathogenesis, being effective and

indicated after NSAIDs failure for both AS [15–21], with

no limitation, and nr-axSpA [22–26] if there is an elevated

CRP and/or inflammation on MRI [27]. Given that many

studies suggest that patients with AS with elevated base-

line CRP levels respond better to TNFi [28, 29], the latter

limitation would rationally be applied in AS as well.

However, the disease per se, with �40% of AS patients

having normal baseline CRP levels, does not allow for

such a recommendation [30]. Results from clinical trials

initially showed that TNFis do not retard new bone forma-

tion, at least when administered up to 2 years [31, 32].

Nevertheless, more recent data point to the direction that

long-term TNFi exposure leads to a reduction of MRI in-

flammation and exerts beneficial effects on spinal radio-

graphic progression in axSpA [33–35].

Studies regarding the persistence of clinical response

after TNFi withdrawal are available. TNFi discontinuation

has not proved successful, since almost all AS [36] and

half of the nr-axSpA patients [24] have been shown to ex-

perience a clinical relapse within several weeks to

months. Efficacy after re-treatment may be as good as

before discontinuation in AS, but not in nr-axSpA

patients, considering that �40% of the latter did not

reachieve their disease activity status as before withdraw-

al 3 months after treatment reintroduction [24]. On the

contrary, TNFi dose reduction in axSpA in remission has

been proven to be an approach similarly effective as con-

tinuous TNFi treatment [37]. A key question remains, how

we can effectively perform dose reduction? There are

aspects of evidence suggesting ‘the slower the better’. In

patients with sustained remission, one could slowly in-

crease the dosing interval and transit to the lowest effect-

ive dose [38]. TNFi dose reduction up to 50% in patients

with early axSpA in sustained remission was shown to be

a feasible option to avoid flares and reduce costs [39].

Meta-analyses on the safety of TNFis in AS identified a

higher incidence of adverse events (AEs) compared with

placebo [40–42]. AEs were similar to the ones reported

in other inflammatory conditions, including injection site

reactions, higher risk of haematological malignancy, wor-

sening of heart failure, risk of tuberculosis and hepatitis

reactivation. Nevertheless, no significant difference in

the incidence of serious AEs (SAEs) between biologic

DMARDs (bDMARDs) and placebo was identified.

IL-17 inhibition

IL-17A has been found to be a key mediator of inflamma-

tion in axSpA, psoriasis and PsA. Therefore biologic

agents targeting IL-17A signalling pathways have been

developed for treating these entities [43]. Secukinumab, a

fully human IgG1/j monoclonal antibody (mAb) selectively

binds to IL-17A, leading to inhibition of its interaction with

the IL-17 receptor. Its approval for the whole spectrum of

axSpA is based on results of the MEASURE clinical trial

program [43–46] and the PREVENT trial [47] for AS and

nr-axSpA, respectively. Its long-term efficacy and safety

was confirmed in both naı̈ve and TNFi-experienced

patients [48]. In addition to improving symptoms and dis-

ease activity in AS, extension studies and an ongoing

randomized controlled trial (RCT) have confirmed that, at

least midterm, secukinumab is associated with low risk of

radiographic progression [49, 50].

The efficacy of IL-17A inhibition in AS was confirmed in

the studies of ixekizumab, a recombinant humanized

IgG4j mAb that selectively binds and neutralizes IL-17A.

All three COAST studies (COAST-V, -W and -X) in AS

TNFi-naı̈ve and TNFi-experienced patients and patients

with nr-axSpA, respectively, met their primary endpoints

[51–53]. Netakimab, a humanized IgG1 mAb targeting IL-

17A, was found superior to placebo in TNFi-naı̈ve axSpA

patients [54]. A phase III study of brodalumab, a mAb

inhibiting the IL-17 receptor A, in Asian patients with AS

and nr-axSpA met its primary end point [55].

Bimekizumab, an IgG1 monoclonal antibody that binds to

an epitope expressed on both IL-17A and IL-17F, select-

ively neutralizes both cytokines [56]. Dual inhibition of

IL-17A and IL-17F in patients with AS resulted in improve-

ments in disease activity, quality of life and function in a

phase IIb study [57]. There are currently two phase 3 tri-

als: BE MOBILE 1 (NCT03928704) in nr-axSpA and BE

MOBILE 2 (NCT03928743) in AS patients. Both trials are

reported as of Nov 2, 2021 in clincialtrials.gov as active/

ongoing; however, BE MOBILE 2 is active but no longer

recruiting. Although two separate entities, PsA with axial

involvement and axSpA have overlapping characteristics

[58]. Patients with PsA with axial manifestations seem to

have a good response to the same biologics as patients

with axSpA, a fact recently confirmed with IL-17A inhib-

ition in the MAXIMISE trial [59]. IL-17 inhibition has shown

an acceptable safety profile in RCTs, with nasopharyngitis

and local oral fungal infections being commonly reported

AEs [60]. No increase in the incidence of SAEs or in drug

discontinuation due to AEs compared with placebo has

been identified in these studies.
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Patients’ outcomes in clinical trials of both TNFi and

anti-IL-17 biologics are in line with the goals defined by

the ASAS and EULAR for the management of axSpA.

Both classes of bDMARDs are recommended as se-

cond-line treatment in axSpA and axial involvement of

PsA [27, 61].

IL-23 inhibition

Considering the good response of AS patients to IL-17

inhibition and evidence showing blockade of IL-23 as a

promising therapeutic modality in AS [62], similar posi-

tive outcomes were expected in trials of IL-23 inhibitors.

That was not the case, however, as the studies of anti-

IL-12/23 inhibitor ustekinumab [63] and risankizumab, a

selective inhibitor of the IL-23 p19 subunit [64], did not

meet their primary endpoints. The initial question raised

by these results was whether there were flaws in the

study design. This assumption was rejected, given that

the patient population was similar to that of other AS

studies; the treatment agents had previously shown effi-

cacy in psoriasis, PsA and IBD; the pharmacokinetics

were analogous to those in psoriasis and, at least for

risankizumab, there was no evidence of improvement in

any outcome. Consequently, the next question is why

IL-23 inhibition does not work in AS. A hypothesis for

the difference in efficacy of IL-17 and IL-23 inhibition in

AS is that IL-17 and IL-23 are at least partially

uncoupled. Data from SpA animal models reported that

IL-23 inhibition could affect IL-17 production only before

disease induction, suggesting that IL-23 could be im-

portant for the initiation but not the persistence of SpA

[65]. Moreover, IL-17 is not only produced by Th17 cells,

but also by certain innate cell types such as cd T cells,

mucosal-associated invariant T cells (MAITs), invariant

natural killer T cells and innate lymphoid cells 3 (ILC3)

[66, 67]. Although, IL-23-dependent production of IL-17

by cd T cells has been described in murine entheses

[68], evidence suggests that in human enthesis this hap-

pens in an IL-23-independent manner [69]. IL-17A and

IL-17F production by MAIT cells was also demonstrated

to be IL-23-independent and was driven by other cyto-

kines such as IL-12 and IL-18 [70].

Several studies have highlighted the role of the IL-36

family of cytokines and their antagonist IL-38 in the

pathogenesis of psoriatic skin disease [71, 72] and in

synovial inflammation [73] in patients with PsA. IL-36

has been shown to induce the production of T cell–

derived cytokines including IL-17A. It is hypothesized

that IL-36 could be involved in the pathogenesis of SpA

by increasing the production of pro-inflammatory cyto-

kines such as IL-23, IL-17, IL-22, TNF-a and IL-6. These

findings point in the direction of IL-23-independent in-

duction of inflammation by IL-17 in AS not responding

to IL-23 inhibition. A further assumption is that within

the SpA spectrum, cytokines exert discrete pathogenet-

ic actions, depending on the tissue. In vitro studies have

shown that the extent of IL-23’s contribution to IL-17

production depends on cell-to-cell interactions at

different anatomic sites and is greater in skin than in

synovium or bone marrow [74, 75]. This theory could

partly explain discrepancies of treatment effects across

the SpA spectrum: the efficacy of IL-23 inhibition in

psoriasis [76] but not in axSpA, the efficacy of IL-12/23

inhibition in ulcerative colitis [77] and the failure of IL-17

inhibition in Crohn’s disease [78, 79].

JAK inhibition

Inhibition of the Janus kinase (JAK) pathway with targeted

synthetic DMARDs (tsDMARDs) has recently been shown

to be a good additional strategy to effectively manage AS.

JAKs are associated with receptors of numerous cyto-

kines, with those involved in the IL-12–IL-23 axis among

them. A phase 3 study of the JAK1/3 inhibitor tofacitinib in

AS patients met its primary end point [80]. Similarly, phase

2/3 and phase 2 studies of the preferential JAK1 inhibitors

upadacitinib and filgotinib, respectively, were both suc-

cessful across a wide range of disease parameters [81,

82]. Primary results regarding radiographic progression are

promising, with AS patients experiencing clinically mean-

ingful reductions in spinal MRI inflammation at week 12

with both tofacitinib and filgotinib [83, 84]. The incidences

of AEs, SAEs and withdrawals due to AEs did not differ

between JAK inhibitors and placebo in RCTs. No new

safety signals were detected in AS studies [85]. To date,

upadacitinib is the only JAK inhibitor approved by the

European Medicines Agency for AS. JAK inhibitors have

not been evaluated in nr-axSpA.

Discussion

Introduction of bDMARDs has been a major break-

through in axSpA [86]. TNFis have proved highly effect-

ive in controlling inflammation in clinical trials, with

similar efficacy across all TNF blockers [87]. Their bene-

fits are confirmed by real-world evidence in both nr-

axSpA and AS [88]. Long-term data indicate their pos-

sible protective effect on spinal radiographic progression

[35]. Even so, 20–30% of patients with axSpA do not re-

spond adequately to TNF inhibitors, leading to the need

for targeting alternative pathways of the disease [89].

Preclinical and clinical data resulted in a high level of

interest in IL-17 as a potential therapeutic target in SpA

and gave rise to the development of anti-IL-17 antibod-

ies. Our current armamentarium includes mAbs inhibiting

IL-17A, while promising dual inhibition of IL-17A and IL-

17F is being investigated. No difference was observed

in the response of AS patients to either TNF-a or IL-17A

in clinical trials. In contrast, fewer patients with nr-

axSpA achieved a 40% improvement in ASAS criteria

(ASAS40) in studies of anti-IL-17A compared with those

of anti-TNF-a (Table 1). One would assume that TNF-a
inhibition works better than anti-IL-17A in nr-axSpa.

However, this discrepancy is a consequence of the de-

sign of anti-IL-17A studies. After a specific time point,

patients were allowed to switch to open-label anti-IL-
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17A or to the standard of care based on clinical judge-

ment. All these patients were imputed as non-responders,

although a percentage of them had actually achieved

ASAS40 at the time of the switch. To date TNF-a and

IL-17 blockers are the only approved bDMARDs for

axSpA that have long-term efficacy and safety data

available [90–95]. However, some patients may still ex-

perience inadequate response and require alternative

treatments.

Success of IL-17 blockade raised the question of the

therapeutic value of targeting upstream activators of Th17

cells rather than IL-17 itself. This concept, along with data

supporting the existence of an anti-IL-23–IL-17 axis in

axSpA and the effect of IL-23 inhibition in other diseases

in the SpA spectrum, led to studies of anti-IL-23 in axSpa.

Surprisingly, blockade of IL-23 did not work in the trials.

Theories for uncoupling of IL-17 production from IL-23

emerged from this failure. Several observations pointed to

the identification of cell types other than Th17 as a source

of IL-17, findings suggesting that IL-23 can inhibit inflam-

mation induced by IL-17 only early in the disease course

and the notion that the extent to which IL-23 is necessary

for IL-17 production depends on the tissue microenviron-

ment. The failure of published IL-23 trials reminded us that

preclinical data and data on animal models cannot be dir-

ectly extrapolated to humans. It cannot be excluded that

the various affected structures, such as entheses and the

synovium, might respond differently to treatments such as

IL-23 blockade. Before making a statement for a class ef-

fect in axSpA, more data from clinical studies are required.

In this sense, guselkumab, an anti-IL-23 mAb, has been

shown to improve axial symptoms in the subgroups of

patients with sacroiliitis through week 24 in its phase 3

studies in PsA [96].

Despite the progress, there is a lot to learn in axSpA

regarding the available bDMARDs. It remains unclear

whether TNF and IL-17 are equally important in all

patients with axSpA, whether the two cytokines could

be simultaneously safely inhibited, which component of

IL-17 is optimal to inhibit and to what extent IL-17A pro-

duction is dependent on IL-23. Additionally, a definite

answer regarding the effect of bDMARDs in radiographic

progress is still pending. Finally, long-term data of RCTs

regarding the effect of tsDMARDs on axSpA are not

available. Future research could help us optimize the

management strategies with the available agents and

improve our understanding of the mechanisms connect-

ing inflammation to new bone formation in order to de-

velop new treatment modalities.
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