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A B S T R A C T   

Invasive fungal infections remain highly problematic for human health. Collectively, they account for more than 
1 million deaths a year in addition to more than 100 million mucosal infections and 1 billion skin infections. To 
be able to make progress it is important to understand the pathobiology of fungal interactions with the immune 
system. Here, we highlight new advancements pointing out the pivotal role of fungal cell wall components 
(β-glucan, mannan, galactosaminogalactan and melanin) in modulating host immunity and discuss how these 
open new opportunities for the development of immunomodulatory strategies to combat deadly fungal infectious 
diseases.   

The incidence of invasive fungal infections on human health repre
sents a major worldwide health burden accounting for more than 1 
million attributed deaths a year. These deep-seated infections, mostly 
caused by Candida, Cryptococcus and Aspergillus species, are associated 
with mortality rates that may be 20 to 50% in immunocompromised 
patients (Bongomin et al., 2017; Papon et al., 2013; Rokas et al., 2020). 
For this reason, research to better understand fungal pathophysiology is 
essential for the development of new strategies for early diagnosis and 
antifungal therapies. Fungi have a complex cell wall, mostly composed 
of polysaccharides, such as glucans (β- and α- linked), chitin, chitosan, 
mannans, galactosaminogalactan (Garcia-Rubio et al., 2019; Gow et al., 
2017; Latgé et al., 2017). In the past two decades, unprecedented 
progress has been made in understanding the roles of the major cell wall 
components in activation of the host immune system. These components 
represent the predominant pathogen-associated molecular patterns 
(PAMPs) that orchestrate the antifungal immune response. The last few 
years have led to several conceptual breakthroughs that have pointed 
out the pivotal role of fungal cell wall components in modulating host 

immunity. Here, we highlight a selection of benchmark articles pub
lished in this domain in recent years and discuss how these contribute to 
a better comprehension of molecular events governing host-fungus in
teractions, and how this may pave the way for rational developments in 
innovative therapeutic approaches for combating life-threatening fungal 
infections. Our current issue does not cover all aspects of fungal poly
saccharides and readers should refer to other reviews or recent primary 
articles for more comprehensive details concerning chitin, chitosan, or 
other polysaccharides (Garcia-Rubio et al., 2019; Gow et al., 2017; Latgé 
et al., 2017; Fuchs et al., 2018; Moeller et al., 2019; Vendele et al., 2020; 
Wagener et al., 2017). 

β-glucans train the immune cells to rheostat the inflammation 

Candidiasis is responsible for 250–400,000 deaths each year, and 
remains the leading cause of invasive fungal infection (Campion et al., 
2015). The cell wall of Candida albicans is mainly composed of mannans 
and β-glucans (Garcia-Rubio et al., 2019) which are the major fungal 
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PAMPs that activate diverse pattern recognition receptors (PRRs) 
including C-type lectin receptors (CLRs), Dectin-1 and Toll-like re
ceptors (TLRs), TLR-2 and TLR-4, but also the complement receptor 3 
(CR3) (Erwig and Gow, 2016). Fungal β-glucans are also known to 
mediate trained immunity, which results in functional reprogramming 
of innate immune cells enabling adaptive responses following secondary 
exposures to pathogens (Netea et al., 2020). In a recent report, Camilli 
and colleagues demonstrate that β-glucan-mediating trained immunity 
inhibits inflammasome activation (Fig. 1A) (Camilli et al., 2020). The 
inflammasome is a multimeric protein complex that induces inflam
matory responses via caspase-1 activation, leading to proteolytic 
maturation of pro-inflammatory cytokines IL-1β, IL-18 and the inflam
matory cell death executioner gasdermin D, that mediates pyroptosis 
(Xue et al., 2019). Recent studies have also shown that fungi can also 

induce PANoptosis, a unique form of inflammatory cell death regulated 
by the PANoptosome complex, which provides a molecular scaffold for 
contemporaneous engagement of key molecules from pyroptosis, 
apoptosis, and necroptosis (Banoth et al., 2020). Interestingly, the 
macrophages from patients with the cryopyrin-associated periodic syn
drome (CAPS) have an auto-activation of the NLR family pyrin domain- 
containing 3 (NLRP3) inflammasome. However, the β-glucan training of 
CAPS macrophages drastically reduces the auto-activation of inflam
masome and the release of pro-inflammatory cytokines (Camilli et al., 
2020). This supports previous observations on the innate immune 
training of microglia with LPS, which induces tolerance to ischemic 
shock and reduces IL-1β release (Wendeln et al., 2018). These reports 
bring together two crucial innate immune mechanisms that are induced 
during fungal infections and suggest a pivotal role of the fungal cell wall 

Fig. 1. Fungal cell wall metabolites 
modulate our immune system. (A) 
Fungal β-glucan mediates trained im
munity to inhibit canonical NLRP3 
inflammasome (B) Host immune system- 
Candida auris interplay. The C. auris cell 
surface harbors mannoproteins with 
specific α-1,2-mannose-phosphate (M- 
α-1-phosphate) side chains. Macrophage 
mannose receptor (MMR) and comple
ment receptor 3 (CR3) play a substantial 
role in the recognition of these specific 
mannoproteins and the subsequent in
duction of cytokines. (C) Aspergillus 
fumigatus galactosaminogalactan (GAG) 
promotes host immune protection. GAG 
present at the surface of the germinating 
conidia directly triggers activation of the 
NLRP3 inflammasome inside the im
mune cells. (D) Macrophage metabolism 
is rewired in response to Aspergillus 
fumigatus melanin. Fully mature parti
cles of melanin at the surface of the 
conidia are probably removed during 
the swelling process, and this inhibits 
calcium/calmodulin (CaM) signaling in 
macrophages. Melanin modulation of 
calcium signaling induces the mTOR 
pathway, leading to activation of HIF- 
1α. HIF-1α participates in the transcrip
tional upregulation of a set of genes for 
immunometabolic responses. These 
include not only genes encoding en
zymes involved in the glycolysis 
pathway but also those encoding some 
pro-inflammatory cytokines.   
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in controlling infection-mediated inflammation. These observations also 
raise some questions that require reconciliation. β-glucans are known to 
directly trigger NLRP3 inflammasome (Briard et al., 2019; Lamkanfi 
et al., 2009), but trained immunity inhibits inflammasome activation 
(Camilli et al., 2020). What therefore is the net effect of trained im
munity on inflammasome activation during fungal infection? Might 
β-glucan mediate counterbalance immune responses via trained immu
nity that can offset the detrimental hyper-inflammation effects due to 
inflammasome activation? What is the exact mechanism mediating 
NLRP3 inflammasome inhibition? Does β-glucan reprogramming inhibit 
other inflammasomes (Non-canonical NLPR3, NLRC4, AIM2,…)? 
Further investigations are therefore needed on the relationship between 
trained immunity and inflammasome activation. 

Candida auris mannan subset drives uncontrolled cytokines burst 

Mannoproteins constitute the cell wall outer layer of Candida. sp 
yeast and are therefore the most accessible PAMP available to the PRRs 
of the immune system (Vendele et al., 2020; Hall et al., 2013). Most cell 
wall mannoproteins are glycosylphosphatidylinositol (GPI) anchored 
proteins, post-translationally modified by a series of glycosyl
transferases that elaborate N- and O-linked mannan assembly. Evidence 
shows that the structure of oligomannoside side chains of these glyco
proteins is Candida species dependent, and that the structure of the 
mannans is highly influenced by local growth conditions (Yan et al., 
2020). Therefore, mannan assembly represents an attractive target for 
the development of diagnostic biomarkers and potentially new thera
peutic antifungal drugs. In this context, a recent study has described the 
innate host immune response against the emerging multidrug resistant 
species Candida auris (Bruno et al., 2020). Since its discovery ten years 
ago, this yeast has dramatically spread worldwide, causing hospital 
outbreaks with infections in long-term care residents and high levels of 
mortality (Du et al., 2020). In their striking new report, Bruno and 
colleagues identified a new mannan oligosaccharide structure that is 
specific to C. auris and occurs within the acid-labile component of the 
Fig. 1 N-linked mannan (Bruno et al., 2020). This has two α-1,2- 
mannose-phosphate residues in the side chains that are elaborated on 
the α-1,6N-mannan backbone (Bruno et al., 2020). The mannan from 
C. auris was the dominant eliciting stimulus responsible for the cytokine 
stimulation. Investigators later revealed that the macrophage mannose 
receptor and CR3 were the PRRs mediating the recognition of these 
specific mannoproteins by innate immune cells and the potential role in 
the induction of strong cytokine response during C. auris infection 
(Fig. 1B). Interestingly, the inhibition of the Dectin-1 pathway during 
the infection with C. auris mediated strong IL-6 and TNF release, while 
during C. albicans infection, it is inhibited. Similarly, C. auris purified 
β-glucan was impotent in stimulating inflammatory cytokines than pu
rified C. albicans glucan (Bruno et al., 2020). Do C. auris β-glucans are an 
antagonist of Dectin-1 receptor? The structure and function of C. auris 
glucans would merit to be elucidated. And, the interplay between 
mannan and β-glucan as well as potential signaling crosstalk between 
signals induced by these two polysaccharides remain to be fully inves
tigated. Candida species have more or less extended families of man
nosyltranferases, but the relationship between the gene set repertoire 
and the fine structure of the N-linked mannans is not fully understood 
(Hall and Gow, 2013). Since rapid adaptive changes in the yeast cell wall 
composition happen during fungal infection, the fungal cell wall stands 
out as a moving target for immunological surveillance (Pradhan et al., 
2019). Such specific mannan/β-glucan balance may also occur for other 
Candida pathogens and it would be relevant to explore this issue in other 
Candida species. In addition, different cells of the innate immune system 
carry different repertoires of PRRs and can induce distinct immune re
sponses to the same palette of β-glucan and mannan structures (Yadav 
et al., 2020). 

Galactosaminogalactan calls for a strike by transcription 
machinery to mediate inflammasome 

Aspergillus infections also represent a major problem in human 
health, resulting in 100,000 deaths a year worldwide due to invasive 
disease and high morbidity due to allergy and induced lung inflamma
tion (Brown et al., 2012). Galactosaminogalactan (GAG) is a poly
saccharide produced by Aspergillus fumigatus and is not present in the 
wall of Candida species. GAG is an α-1,4-linked linear heteroglycan 
composed of a variable combination of galactose, galactosamine and N- 
acetyl-galactosamine (Briard et al., 2016; Fontaine et al., 2011; Shep
pard, 2011). A. fumigatus GAG has a primary function of adhesin for the 
fungal binding on biotic and abiotic surface (Gravelat et al., 2013). GAG 
exerts immunomodulatory effects with IL-1Ra release and interleukine- 
1 receptor (IL-1R) blockage (Gresnigt et al., 2014). Recognition of 
A. fumigatus by the host immune system leads to inflammasome acti
vation, which protects against infection (Karki et al., 2015; Saïd-Sadier 
et al., 2010). Previous studies have shown that A. fumigatus is sensed by 
a variety of membrane bound innate immune receptors, including TLRs 
and CLRs, and cytosolic NOD-like receptors (NLRs) and absent in mel
anoma 2 (AIM2)-like receptors. The receptors NLRP3 and AIM2 are well 
documented for assembling the inflammasome and can form a single 
cytosolic inflammasome complex along with caspase-1 and caspase-8 to 
provide protection against A. fumigatus infection (Karki et al., 2015). 
However, the A. fumigatus specific PAMPs that regulate and activate the 
inflammasome have yet to be fully characterized. Recently, Briard and 
colleagues demonstrated for the first time that GAG acts as a PAMP by 
directly changing the transcription of cells leading to NLRP3 inflam
masome activation (Fig. 1C) (Briard et al., 2020). Importantly, GAG- 
induced activation of the inflammasome provides host protection 
against aspergillosis as well as inflammatory models such as dextran 
sulfate sodium-induced colitis (Gresnigt et al., 2014; Briard et al., 2020). 
Mechanistically, the galactosamine subunit of GAG is necessary to 
interact with ribosomes and polysomes, leading to the blocking of 
transcription. The infected cells accumulate unfolded proteins, which 
drive endoplasmic reticulum stress, and proteasome overactivation, 
which mediates NLRP3 inflammasome activation and pyroptosis cell 
death (Briard et al., 2020). Interestingly, the GAG was previously shown 
to mediate the apoptosis of human neutrophils in contact with NK cells 
(Robinet et al., 2014). Do the mechanism of cell death in human neu
trophils is dependent on the inflammasome? Further investigations are 
needed. The deacetylation of GAG is a crucial mechanism for the poly
saccharide’s bioactivity as an adhesin (Lee et al., 2016). The enzymatic 
pathway was intensively investigated to elucidate the fungal mechanism 
of remodeling the GAG (Lee et al., 2016; Bamford et al., 2015; Bamford 
et al., 2020; Lee et al., 2015). In like manner, the GAG deacetylation is 
required for A. fumigatus mediate innflammasome activation (Briard 
et al., 2020). 

The interferon GTPase Irgb10 was recently shown to target the 
fungal cell wall and release fungal PAMPs to mediate the inflammasome 
activation. In addition, IRF1 upregulates the expression of Irgb10 in 
response to TLR and CLR signaling (Briard et al., 2019). Therefore, it will 
be interesting to explore how Irgb10 regulates the GAG to mediate 
transcription inhibition and inflammasome activation. Similarly, 
β-glucan is known to mediate NLRP3 inflammasome activation, 
although this occurs through a distinct mechanism that does not involve 
interaction with ribosomes (Briard et al., 2020). Future studies should 
address whether inflammasome activation is specific to GAG and 
β-glucan or represents a property that is shared by a wider range of 
polysaccharides. Moreover, GAG mediates IL-1Ra release and has an 
anti-inflammatory effect in colitis mouse model (Gresnigt et al., 2014; 
Gressler et al., 2019), whereas GAG also induces inflammasome acti
vation and inflammation (Briard et al., 2020). Is therefore IL-1Ra pro
duction dependent on the inflammasome activation by negative 
feedback control in DSS-induced colitis? Further investigations on the 
relationship between inflammasome and IL-1Ra are required. 
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Melanin pigment sequesters cellular calcium to reprogram the 
immune cell fate 

Melanin is a common component of conidia of A. fumigatus and the 
cell walls of a range of darkly pigmented fungi (van de Veerdonk et al., 
2017). The two predominant types of fungal melanins are dihydrox
yphenylalanine (DOPA)-melanin and dihydroxynaphthalene (DHN)- 
melanin (Scharf et al., 2014). Cell wall DHN-melanin has been previ
ously shown to play a central role in A. fumigatus survival and virulence 
during host invasion (Scharf et al., 2014). Recently, DHN-melanin 
detection was shown to involve specific recognition by the C-type lec
tin receptor MelLeC that is present on the surface of endothelial cells 
(Stappers et al., 2018). Interestingly, in mice, MelLeC receptors are 
present only on endothelial cells, whereas in humans, MelLeC is also 
present on cells of the myeloid lineage (Stappers et al., 2018). Phago
cytosis digestion of A. fumigatus conidia occurs after the shielding effect 
melanin and rodlet layers are removed or fragmented to induce the 
activation of the autophagy pathway termed LC3-associated phagocy
tosis (LAP) and successfully eradicate the conidia (Akoumianaki et al., 
2016; Carrion et al., 2013). In a striking new study, Gonçalves and 
colleagues showed that fungal melanin is necessary to mediate macro
phage metabolic reprogramming leading to increasing glycolysis during 
the induced host defense (Gonçalves et al., 2020). They also revealed 
that melanin modulates intracellular calcium availability independently 
to MelLeC, which in turn mediated hypoxia and mTOR pathways acti
vation (Fig. 1D). Interestingly, addition of melanin to non-melanized 
conidia was not able to restore the stimulation of macrophage glycol
ysis. The authors concluded that melanin layer removal was crucial to 
the metabolic reprogramming of the immune cells (Gonçalves et al., 
2020). Moreover, β-glucan mediates LAP (Kyrmizi et al., 1950), and 
melanin inhibits LAP (Akoumianaki et al., 2016). Does therefore the 
absence of melanin enhance β-glucan exposure and LAP activation to 
inhibit the metabolomic reprogramming of innate immune cells? This is 
in accordance with recent studies indicating that β-glucans may coop
erate with other cell wall components to mediate immune recognition 
and regulation (Bruno et al., 2015). 

Future directions 

Recent insights provide evidence for a pivotal role of various fungal 
cell wall components during fungus-host interactions. These involve an 
array of polysaccharides that includes β-glucans, mannans, and GAG and 
other wall components (melanin) that represent fungal specific signa
tures. These components influence multiple innate and adaptive im
mune mechanisms, including trained immunity, inflammasome 
activation, immunomodulation, or LAP. In the past, a considerable 
amount of studies have been initiated with purified polysaccharides or 
dead pathogens to evaluate the immune response. However, more evi
dence shows that the fungal cell wall is a moving target evolving during 
the developement of the pathogen and that the presence of a multitude 
PAMPs may induce a fine-tuning of immune response compared to an 
isolated PAMP. Focusing research on fungal cell wall biosynthesis and 
remodeling during infection will likely provide new opportunities to 
develop innovative therapeutic approaches to fight deadly fungal in
fections and pro-inflammatory and autoimmune diseases. This will 
require the development of integrative studies that include a multitude 
of fungal components that articulate with a complex set of multimodal 
immune mechanisms. It will also be important to consolidate immuno
metabolism investigations by integrating data from multi-omics ap
proaches obtained from fungal and immune cells as well as a detailed 
understanding of the immunomodulatory features of fungal cell walls. 
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