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The presence of artificial agents in our everyday lives is continuously increasing. Hence,
the question of how human social cognition mechanisms are activated in interactions
with artificial agents, such as humanoid robots, is frequently being asked. One
interesting question is whether humans perceive humanoid robots as mere artifacts
(interpreting their behavior with reference to their function, thereby adopting the design
stance) or as intentional agents (interpreting their behavior with reference to mental
states, thereby adopting the intentional stance). Due to their humanlike appearance,
humanoid robots might be capable of evoking the intentional stance. On the other
hand, the knowledge that humanoid robots are only artifacts should call for adopting
the design stance. Thus, observing a humanoid robot might evoke a cognitive conflict
between the natural tendency of adopting the intentional stance and the knowledge
about the actual nature of robots, which should elicit the design stance. In the present
study, we investigated the cognitive conflict hypothesis by measuring participants’
pupil dilation during the completion of the InStance Test. Prior to each pupillary
recording, participants were instructed to observe the humanoid robot iCub
behaving in two different ways (either machine-like or humanlike behavior). Results
showed that pupil dilation and response time patterns were predictive of individual
biases in the adoption of the intentional or design stance in the IST. These results may
suggest individual differences in mental effort and cognitive flexibility in reading and
interpreting the behavior of an artificial agent.
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INTRODUCTION

Artificial agents are becoming increasingly present in our daily environment. From vocal assistants to
humanoid robots, we are observing a change in the role played by these new entities in our lives
(Samani et al., 2013). However, it is still a matter of debate as to whether humans perceive embodied
artificial agents, such as humanoid robots, as social and intentional agents or simple artifacts
(Hortensius and Cross, 2018; Wykowska et al., 2016). Several researchers have investigated whether
humans would deploy similar sociocognitive mechanisms when presented with a novel type of
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(artificial) interaction partner (i.e., humanoid robots) as they
would activate in an interaction with another human (Saygin
et al., 2012; Cross et al., 2019; Wykowska, 2020).

In this article, we report a study in which we investigated
whether robot behavior—by being humanlike or
mechanistic—can modulate the likelihood of people adopting
the intentional stance (Dennett, 1971). The study also addressed
the question of whether pupil dilation—a marker of cognitive
effort—can predict the type of stance people would adopt toward
the robots, and how all these factors are related to individual
“mentalistically inclined” or “mechanistically inclined” biases.

According to Dennett (1971), the intentional stance is a
strategy that humans spontaneously adopt to interpret and
predict the behavior of other humans, referring to the
underpinning mental states (i.e., desires, intentions, and
beliefs). The intentional stance is an efficient and flexible
strategy, as it allows individuals to promptly interpret and
predict others’ behavior. However, when interacting with
nonbiological systems, humans might adopt a different
strategy, which Dennett describes as the design stance.
According to the author, we deploy this strategy when
explaining a system’s behavior based on the way it is designed
to function. The intuition behind Dennett’s definition is that
humans would adopt the stance that allows them to predict and
interpret the behavior of a system in the most efficient way. Thus,
the adoption of either stance is not predefined; on the contrary, if
the adopted stance is revealed as inefficient, one can switch to the
other stance.

Several authors have demonstrated that people tend to
spontaneously adopt the intentional stance toward other
human and nonhuman agents (Abu-Akel et al., 2020; Happé
and Frith, 1995; Heider and Simmel, 1944; Zwickel, 2009; see also
Perez-Osorio and Wykowska, 2019a and Schellen & Wykowska
(2019) for a review). However, it is not yet entirely clear which of
the two aforementioned stances humans would adopt when
interacting with humanoid robots. On the one hand,
humanoid robots present humanlike characteristics, such as
physical appearance (Fink, 2012). Hence, it is possible that
these characteristics elicit representations and heuristics similar
to those that we rely on when interacting with humans (Airenti,
2018; Dacey, 2017; Waytz et al., 2010; Złotowski et al., 2015). This
might trigger the neural representations related to the adoption of
the intentional stance (Chaminade et al., 2012; Gallagher at al.,
2002; Ozdem et al., 2017; Spunt et al., 2015). Indeed, the presence
of humanlike characteristics is one of the key factors that,
according to Epley et al., 2007, contribute to
anthropomorphism toward artificial agents, facilitating the
adoption of the intentional stance. On the other hand,
humanoid robots are man-made artifacts, and therefore, they
might evoke the adoption of the design stance, as they can be
perceived simply as machines (Wiese et al., 2017).

Recent literature has addressed the issue of adopting the
intentional stance toward robots. For example, Thellman et al.,
2017 presented a series of images and explicitly asked their
participants to rate the perceived intentionality of the depicted
agent (either a human or a humanoid robotic agent). The authors
reported that participants perceived similar levels of

intentionality behind the behavior of the human and the robot
agents. Marchesi et al. (2019) investigated the attribution of
intentionality to humanoid robots, developing a novel tool, the
InStance Test (IST). The IST consists of a series of pictorial
“scenarios” that depict the humanoid robot iCub (Metta et al.,
2010) involved in several activities. In Marchesi et al. (2019),
participants were asked to choose between mentalistic and
mechanistic descriptions of the scenarios. Interestingly,
individuals differed with respect to the likelihood of choosing
one or the other explanation. Such individual bias in adopting one
or the other stance toward humanoid robots called for examining
whether it is possible to identify its physiological correlates. In
fact, Bossi et al. (2020) examined whether it is possible to relate
individual participants’ EEG activity in the resting state with the
individual likelihood of adopting the intentional or design stance
in the IST. The authors found that resting-state beta activity
differentiated people with respect to the likelihood of adopting
either the intentional or the design stance toward the humanoid
robot iCub. Recently, Marchesi et al. (2021) have identified a
dissociation between participants’ response time and the stance
adopted toward either a human or a humanoid robot. Moreover,
the individual bias emerged as being linked to participants’
individual tendency to anthropomorphize nonhuman agents.

Since the literature presents evidence for various individual
tendencies to adopt either the design or the intentional stance, in
the present study, we aimed at using pupil dilation as a marker of
individual bias and cognitive effort invested in the task of
describing a robot’s behavior, by adopting either stance. In
addition, we were interested in finding out whether observing
different types of robot behavior (humanlike or mechanistic)
would have an impact on adopting the two different stances,
taking into account individual biases.

Pupillometry as an Index of Cognitive
Activity
We focused on pupil dilation, as pupillary response is a reliable
psychophysiological measure of changes in cognitive activity (for
a review, see Larsen and Waters, 2018; Mathôt, 2018). Literature
reports show that the pupils dilate in response to various
cognitive activities. Previous studies have investigated the
mechanisms underpinning pupil dilation, such as emotional
and cognitive arousal (how much activation a stimulus can
elicit) and cognitive load (the mental effort put into a task)
(Larsen and Waters, 2018; Mathôt, 2018). de Gee et al., 2014
reported that, in a visual detection task, pupil dilation was greater
for participants with a tendency to stick to their decisional
strategy (defined as “conservative participants”) who made a
decision not in line with their individual bias in the task. This
result shows that pupil dilation can be considered as a marker of
conflict between participants’ individual bias and the decision
they take. Moreover, it has been shown that the variation in pupil
size is linked to the activity in the locus coeruleus (Jackson et al.,
2009) and to the noradrenergic modulation (Larsen and Waters,
2018), and thus, greater pupil size can be considered as an
indicator of general arousal and allocation of attentional
resources. Other studies have used pupil dilation as an
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indicator of cognitive load and mental effort. For example, Hess
and Polt (1964) reported that pupil dilation is closely correlated
with problem-solving processes: the more difficult the problem,
the greater the pupil size. Moreover, the recent literature
(Pasquali et al., 2021; Pasquali et al., 2020) assessed the use of
pupillometry in real and ecological scenarios where participants
interacted with the iCub robot. The authors show that
pupillometry can be a reliable measure to investigate cognitive
load in the context of human–robot interaction. Overall, these
studies provide evidence that pupillometry is an adequate method
to study individual tendencies and how they are related to
resources allocated to a cognitively demanding task (for a
comprehensive review, see also Mathôt, 2018). Here, we
consider pupil dilation as a measure of cognitive effort related
to the activation of one or the other stance in the context of one’s
individual biases.

Aims of the Study
The aims of the present study were to 1) examine whether
observing an embodied humanoid robot exhibiting two
different behaviors (a humanlike behavior and a machine-like
behavior) would modulate participants’ individual bias in
adopting the intentional or the design stance (assessed with
the IST) and 2) explore whether this modulation would be
reflected in participants’ pupil dilation, which is considered as
a measure of cognitive effort. More specifically, we explored
whether observing a humanoid robot behaving either
congruently or incongruently with respect to participants’
individual tendency to adopt the intentional stance would lead
them to experience different levels of cognitive effort in the
InStance Test. That is because we expected participants to
experience an increase in cognitive effort due to the
dissonance between their individual tendency in interpreting
the behavior of a humanoid robot and the need for integrating
the representation of the observed behavior manifested by the
embodied robot.

MATERIALS AND METHODS

Participants
Forty-two participants were recruited from a mailing list for this
experiment (mean age: 24.05, SD: 3.73, females: 24) in return for a
payment of 15€. All participants self-reported normal or
corrected-to-normal vision. The study was approved by the
local Ethical Committee (Comitato Etico Regione Liguria) and
was conducted in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Each
participant provided written informed consent before taking
part in the experiment. All participants were naïve to the
purpose of this experiment and were debriefed upon
completion. Five participants were excluded from data
analysis, due to technical problems occurring during the
recording phase. Three participants were excluded due to
insufficient amount of valid pupil data (<60%). A total of 34
participants were included in the data analysis.

Pupil-Recording Apparatus, Materials, and
Procedure
In a within-subject design, participants first attended, in a dimly
lit room, the robot observation session, where they were
positioned in front of the embodied iCub and observed it
exhibiting a humanlike or a machine-like behavior. Right after
this session, the participants were led to a different room (dimly
lit) where they were instructed to sit down and position their head
on a chinrest. They were then presented with the IST. The
procedure would then be repeated for the second behavior of
the robot. Choosing a within-participants design, and exposing
participants to both behaviors of the robot, allows for a higher
control of their previous knowledge and experience related to the
iCub robot.

Items from the IST were presented on a 22-″ LCD screen
(resolution: 1,680 × 1,050). A chinrest was mounted at the edge of
the table, at a horizontal distance of 62 cm from the screen. The
monocular (left eye) pupil signal was recorded using a screen-
mounted SMI RED500 eyetracker (sampling rate of 500 Hz). The
dim illumination of the room was kept constant through the
whole duration of the experimental sessions. The IST items were
displayed through Opensesame 3.2.8 (Mathôt et al., 2012).

Robot Behavior
Before taking part in the IST, the participants were asked to
observe the embodied iCub robot, which was programmed to
behave as if it was playing a solitaire card game on a laptop
positioned in front of it. From time to time, the robot was turning
its head toward a second monitor, located on its left side, in the
periphery. On this lateral monitor, a sequence of videos was
played for the entire duration of this session. The behaviors
displayed by the robot, in terms of eye and head movements, were
manipulated between two experimental conditions. One
condition involved the robot displaying a humanlike behavior,
which was a replica of the behavior recorded in a previous
attentional capture experiment from a human participant
(detailed description of the robot behaviors is beyond the
scope of this article; for details, see Ghiglino et al., 2018). It is
important to point out that the behavior displayed by the robot in
this condition fully embodied the variability and the
unpredictability of the behavior displayed by the human when
the recording was first made. As a contrast condition, we
programmed the robot to display another behavior, which was
extremely stereotypical and predictable, defined as “machine-
like” behavior. While the “humanlike” behavior consisted of
several patterns of neck and eye movements, the “machine-
like” behavior consisted of just one pattern of neck and eye
movements. In other words, the “machine-like” behavior was
generated in order to display no variability at all. The order of
presentation of these two behaviors was counterbalanced across
participants.

InStance Test Stimuli and Task
After the observation session, the participants performed a 9-
point calibration, and they were then presented with the IST
(Bossi et al., 2020; Marchesi et al., 2019; Figure 1). The
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instructions in each trial were as follows: (i) first, look freely at the
baseline image (1,000 ms), (ii) freely explore the presented item
(5,000 ms), (iii) listen to the two sentences (5,000 ms Sentence A
and 5,000 ms Sentence B), and finally, (iv) choose the description
that you think better explains the presented scenario by moving a
cursor on a slider (until click) (Figure 2). The presentation order
of mechanistic and mentalistic sentences was counterbalanced.
Presentation of items was randomized. The IST was split into two
subsets1 of items, with half (one subset, 17 items) presented after
one observation session and the other half (17 items) after the
second observation session (the order of presentation of the
subsets was counterbalanced). An example of the mentalistic
sentences is “iCub pretends to be gardener”; an example of a
mechanistic sentence is “iCub adjusts the force to the weight of
the object” (Figure 2). The complete list of mechanistic and
mentalistic sentences, associated with the corresponding
scenarios, is reported in Marchesi et al. (2019) Supplementary
Materials.

To avoid eye movements related to the reading process, for
each scenario, the two descriptions were presented auditorily
through headphones (similarly to the procedure adapted for EEG,
Bossi et al., 2020). Moreover, to allow a reliable baseline
correction, we created a luminance-related baseline version of
each scenario using MATLAB function Randblock (https://it.
mathworks.com/matlabcentral/fileexchange/17981-randblock).
This function allowed us to create a scrambled version of each
item scenario with randomized blocks of pixel positions. The
scrambled items were used as specific baselines for each
corresponding scenario. This process was necessary to control
the different luminance levels of each item.

Pupil Data Preprocessing
All data were preprocessed (and analyzed) using R (version 3.4.0,
available at http://www.rproject.org) and an open-source
MATLAB (The Mathworks, Natick, MA, United States)
toolbox provided by Kret and Sjak-Shie (2019). To clean and
preprocess the data, we followed the pipeline proposed by Kret &
Sjak-Shie: 1) first, we converted the eyetracker data to the
standard format used by Kret & Sjak-Shie’s MATLAB toolbox.
Since we were interested in exploring how pupil dilation could
predict participants’ choice in the IST, we decided to take the
duration of each sentence as our time window of interest. Thus,

FIGURE 1 | Exemplification of the IST items with exemplification of Sentence A and Sentence B (Marchesi et al., 2019).

FIGURE 2 | Experimental time line.

1The two groups of items of the IST were created based on the results of Marchesi
et. al (2019), in such a way that the mean score and SD for both groups were
comparable (Group 1: M � 40.60, SD � 15.31; Group 2: M � 40.85, SD� 16.55,
t(34) � .82, p � .415).
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data were segmented and preprocessed separately for the selected
time windows. By applying this procedure, we reduced the
probability that the pupil dilation signal would be biased by
the preprocessing procedure (Procházka et al., 2010; Mathôt et al.,
2018). In this dataset, we included information relevant to the
pupil diameter, start/end time stamps of each segment, and
validity of the data point, in separate columns. 2) We filtered
dilation speed outliers, trend-deviation outliers, and samples that
were temporally isolated, applying the parameters described by
Kret and Sjak-Shie (2019). In greater detail, in order to mitigate
possible gaps due to nonuniform sampling, dilation speed data
were normalized following the formula below:

d′[i] � max(|d[i] − d[i − 1]|
|t[i] − t[i − 1]| ,

|d[i + 1] − d[i]|
|t[i + 1] − t[i]|). (1)

where d′[i] indicates the dilation speed at each sample, d[i]
indicates the pupil size series, and t[i] indicates the
corresponding time stamp. Dilation speed outliers were then
identified using the median absolute deviation (MAD, Leys
et al., 2013). MAD is a robust metric of dispersion, resilient to
outliers. Samples within 50 ms of gaps were rejected; contiguous
missing data sections larger than 75 ms were identified as gaps.
The MAD metric was applied to identify absolute trend-line
outliers. 3) We interpolated and smoothened the signal using a
zero-phase low-pass filter with a cutoff of 4Hz (Jackson et al.,
2009). After having applied the pipeline described above, data
were baseline-corrected by subtracting the mean pupil size during
the baseline phase from the mean pupil size in our time of interest
(ToI), and dividing by the mean pupil size during the baseline
(Preuschoff et al., 2011).

Mpupil size in ToI −Mbaseline pupil size

Mbaseline pupil size
. (2)

This process allows a clean comparison of the resulting
percentage of pupillary change relative to the baseline.

Sample Split and Dichotomization of the IST
Response
In line with Bossi et al. (2020), in order to investigate
individual biases, participants were grouped by their
average individual InStance Score (ISS, the overall score
across both robot behavior conditions): mentalistically
biased people (>0.5 SD over the mean score, N � 12,
average ISS for this group: 62.25, SD: 7.64) and
mechanistically biased people (<-0.5 SD below the mean
score, N � 9, average ISS for this group: 28.23, SD: 5.66).
People who were not clearly over or under the cutoff value
(−0.5 < score < 0.5 SD, N � 13, average ISS for this group:
44.90, SD: 4) were considered as the “unbiased” group.
Moreover, to be able to investigate participants’ stance in
the IST (mentalistic vs. mechanistic), we considered the type
of selected sentence (by considering as mechanistic a score
<50 and mentalistic a score >50) as the attributed explanation
to the item (from here on, defined as “Attribution”), leading to
a binomial distribution. Although this practice could lead to a

considerable loss of information, it allowed for a higher
control of the interindividual variability present in the raw
IST scores that could bias the overall mean score.

Data Analysis: Pipeline Applied for
(Generalized) Linear Mixed-Effects Models
Data analysis was conducted on the mean pupil size (baseline-
corrected) for the time windows of interest (Sentence A and
Sentence B time periods) using linear (or generalized linear where
needed) mixed-effects models (Bates et al., 2015). When it comes
to linear mixed-effects models (LMMs) or generalized linear
mixed-effects models (GLMMs), it is important to specify the
pipeline that was followed to create the models. (i) First, we
included all the fixed effects that allowed the model to converge.
(ii) We included random effects that presented a low correlation
value (|r| < 0.80) with other random effects, to avoid overfitting.
In all our models, Participant was included as a random effect.
(iii) The significance level of the effects for the LMM was
estimated using the Satterthwaite approximation for degrees of
freedom, while for the GLMM, we performed a comparison with
the corresponding null model (likelihood ratio tests, LRTs). Since
time series analyses were not planned, autocorrelation of factors
was not modeled. Detailed parameters for each model are
reported in the Supplementary Materials.

RESULTS

In line with Marchesi et al. (2019), the score in the InStance Test
was calculated ranging on a scale from 0 (extreme mechanistic
value) to 100 (extreme mentalistic value). In order to obtain the
average InStance Score (ISS) per participant, the scores across
single scenarios were averaged. Before performing any
preprocessing, the overall average score at the InStance Test
after observing the mechanistic behavior was 43.80, with SD:
17.69, and the overall average score after observing the humanlike
behavior was 43.44, with SD: 18.03 [t(65.97) � –0.08, p � 0.934];
thus, the type of robot behavior that participants observed did not
modulate the ISS. The overall sample average score at the
InStance Test was 43.62, SD: 17.26.

As in the study by Bossi et al. (2020), given that our focus was
the individual bias at the IST, in the present section, we will report
the results from the mechanistically and mentalistically biased
participants, leading to an overall total sample of N � 21
participants. Results on the very same models involving
unbiased participants as well are reported in the
Supplementary Materials (overall N � 34 participants).

InStance Test Individual Attribution and
Pupil Size
The first model (GLMM) aimed at investigating the relationship
between pupil size and participants’ attribution at the IST. Our
fixed effects were as follows: 1) the mean pupil size, 2) robot
behavior previously observed, and 3) participants’ general bias at
the IST, while we considered the selected attribution as the
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dependent variable. Because of this, the distribution of the
GLMM is binomial.

The main effect of RobotBehavior emerged as statistically
significant (b � −0.537, model comparison: χ2 (1) � 24.286,
p � <0.001). Results showed that participants chose more
often an attribution congruent with the behavior previously
observed on the robot (more mechanistic attribution after
watching machine-like behavior and vice versa) (Figure 3).

The interaction effect between RobotBehaviour * mean pupil
size was statistically significant as well (b � −9.291, model
comparison: χ2 (1) � 9.355, p � 0.002). Although the three-
way interaction between RobotBehaviour*mean pupil size *
individual bias was significant only when taking into account
the Unbiased group (see Supplementary Materials), our main a
priori hypotheses aimed at exploring differences due to
participants’ individual bias in the IST. Therefore, we
performed a planned comparison GLMM for each bias group
(Tucker, 1990; Kuehne, 1993; Ruxton and Beuchamp, 2008) to
test the interaction between RobotBehaviour * mean pupil size:
mechanistic group (model comparison: χ2 (1) � 7.701 p � 0.005);

mentalistic group (model comparison: χ2 (1) � 3.001, p �0 .083).
These results show that mechanistically biased participants
showed a greater pupil dilation for attributions congruent with
the robot behavior (b � −9.28, z � −2.757, p �0.005, Figure 4)
when attributing a mechanistic description after the observation
of the robot behaving in a machine-like way and when attributing
a mentalistic score after the observation of the robot behaving in a
humanlike way. On the other hand, mentalistically biased
participants showed a tendency, although statistically not
significant, toward greater pupil sizes for mentalistic
attributions, relative to mechanistic attributions, regardless of
the robot behavior (b � −4.45, z � −1.73, p � 0.083, Figure 4).

Behavioral Data Analysis
In order to investigate the relationship between behavioral data and
participants’ response times, we tested the quadratic effect of the
z-transformed IST score (included as the fixed factor) on log-
transformed response times (our dependent variable), as we
expected them to be smaller in the extremes of the score
distribution of the IST. Results showed a statistically significant

FIGURE 3 | GLMM: boxplot showing the statistically significant effect of RobotBehaviour * Bias on attribution, with extreme values as predicted by the model.
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FIGURE4 |GLMMon themechanistic group (N � 9) and thementalistic group (N � 12). Themechanistic bias group shows the interaction effect between attribution
and mean pupil size. No statistically significant effect on attribution and pupil size in the mentalistic bias group.

FIGURE 5 | LMM: statistically significant quadratic effect of the IST-z score on log-transformed response time showing faster RTs for extreme scores.
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quadratic effect of the IST score [b � −0.146, t (1,419.99) � −9.737,
p � <0.001] (Figure 5). These results show that participants were
overall faster when scoring on the extremes of the IST scale.

DISCUSSION

In the present study, we investigated whether adopting the
intentional/design stance could be predicted by changes in pupil
dilation and how both effects are modulated by participants’
individual bias in adopting the intentional stance and by a
behavior of a robot observed prior to the test. To address these
aims, we conducted an experiment in which participants first
observed the embodied humanoid robot iCub, programmed to
behave as if it was playing solitaire on a laptop positioned in front
of it. From time to time, the robot was programmed to turn its head
toward a second monitor on its left periphery, where a sequence of
videos was being played. The behaviors exhibited by the robot were
manipulated in a within-subjects design: in one condition, the
robot exhibited a humanlike behavior, and in the second condition,
the robot exhibited a machine-like behavior. After each session
with the robot, participants’ pupil data were recorded while they
completed the InStance Test. Participants were then divided into
two groups, based on the bias showed by their IST score: a
mentalistically biased group and a mechanistically biased group.

We found that both mechanistically and mentalistically biased
participants leaned more towardmentalistic attributions in the IST
after observing the robot’s humanlike behavior, as compared to the
mechanistic behavior. This shows that participants had some
sensitivity to the subtle differences in the robot behavior,
thereby attributing more “humanness” to the humanlike
behavior, independently of their initial bias (Ghiglino et al., 2020b).

We also explored the relationship between the individual bias
and the changes in pupil dilation as a function of the behaviors
displayed by the robot. We found that the two groups showed
different patterns. On the one hand, for mechanistically biased
people, pupil dilation was greater when they chose descriptions of
the robot behavior in terms that were “congruent” with the
previously observed robot behavior: a mentalistic attribution
after the humanlike behavior and a mechanistic attribution
after the machine-like behavior. We argue that this is due to
the engagement of additional cognitive resources, caused by the
cognitive effort in integrating the representation of the observed
behavior into the judgment (Kool et al., 2010; Kool and Botvinick,
2014). In other words, these participants might have had enough
sensitivity to detect the “human-likeness” or “machine-likeness”
in the behavior of the robot. We argue that the integration of this
piece of evidence into the judgment in the IST might have
required additional cognitive resources.

On the other hand, mentalistically biased participants showed a
tendency for greater pupil dilation when choosing the mentalistic
description, independent of the observed robot behavior. Perhaps
this group of participants showed engagement of additional
cognitive resources when they were choosing descriptions that
were in line with their initial bias (Christie and Schrater, 2015).
Adherence to the “mentalistic” descriptions, independent of
observed behavior, indicates, on the one hand, lower cognitive

flexibility than the mechanistically oriented participants and, on
the other hand, might be related to the general individual
characteristic to structure and make the external world
reasonable. This tendency to structure the external environment
and engage in cognitive effortful tasks is defined as “need for
cognition” (Cacioppo and Petty, 1982; Cohen et al., 1955; Epley
et al., 2007). Mentalistically biased participants might have a lower
need for cognition, and therefore pay less attention to all the subtle
behavioral cues exhibited by the agent and stick to their original
bias. Therefore, we may argue that this group is less prone to
changing the stance adopted to interpret an agent’s behavior.

One last (and interesting) finding of our study was that RTs were
faster on the extremes of the IST score distribution. This suggests
that perhaps once participants made a clear decision toward
mentalistic or mechanistic description, it was easier and more
straightforward for them to indicate the extreme poles of the
slider. On the other hand, when they were not convinced about
which alternative to choose, they indicated this through keeping the
cursor close to the middle and longer (more hesitant) responses.

Overall, it seems plausible that the general mechanistic bias leads
to allocating a higher amount of attentional resources toward
observation of the robot (Ghiglino et al., 2020a), resulting in
paying more attention to the details of the observed behavior (in
line also with Ghiglino et al., 2020b; see also Marchesi et al., 2020).
This, in turn, might influence the subsequent evaluation of robot
behavior descriptions. On the other hand, a mentalistic bias might
lead participants to stick to their spontaneous first impression
(Spatola et al., 2019) and a lower need for cognition (Cacioppo
and Petty, 1982; Cohen et al., 1955; Epley et al., 2007). Commonly,
individual differences and expectations shape the first impression
about a humanoid robot (Ray et al., 2008, Bossi et al., 2020, Horstmann
and Krä mer, 2019; Marchesi et al., 2021). Perez-Osorio et al. (2019b)
showed that people with higher expectations about robots tend to
explain the robot behavior with reference to mental states. This
might indicate that our participants with a mentalistic bias were
predominantly influenced by their expectations about the abilities
of the robot and, therefore, paid less attention to the mechanistic
behaviors of the robot. To conclude, we interpret the results in light
of the influence of individual differences in the allocation of
cognitive resources that might differ between people who are
prone to adopting the intentional stance toward humanoid
robots and people who, by default, adopt the design stance
(Bossi et al., 2020; Marchesi et al., 2021).

LIMITATIONS OF THE CURRENT STUDY
AND FUTURE WORK

In the present study, we opted for a within-subjects design to
reduce the influence of interindividual differences related to prior
knowledge/experience with the iCub robot. Nevertheless, we
cannot rule out the fact that our approach was indeed too
conservative, leading to a null effect of the robot behavior
manipulation on the raw IST scores due to a carry-over effect.
Future research should consider adapting similar paradigms to a
between-subjects design, since this option will allow for
controlling possible carry-over effects.
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CONCLUDING REMARKS

In conclusion, our present findings indicate that there might be
individual differences with respect to people’s sensitivity to
subtle hints regarding human-likeness of the robot and the
likelihood of integrating the representation of the observed
behavior into the judgment about the robot’s intentionality.
Whether these individual differences are the result of personal
traits, attitudes specific to robots, or a particular state at a given
moment of measurement remains to be answered in future
research. However, it is important to keep such biases in mind
(and their interplay with engagement of cognitive resources)
when evaluating the quality of human–robot interaction. The
evidence for different biases in interpreting the behavior of a
humanoid robot might translate into the design of socially
attuned humanoid robots capable of understanding the needs
of the users, targeting their biases to facilitate the integration of
artificial agents into our social environment.
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