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Abstract: Gastric cancer (GC) is one of the most common cancers, with high incidences in 

East Asia. microRNAs (miRNAs) play essential roles in the carcinogenesis of GC. miR-20a 

was elevated in GC, while the potential function of miR-20a was poorly understood. 

miR-20a expression was examined in GC tissues and cell lines. The effects of miR-20a on 

the growth, migration, invasion, and chemoresistance of GC cells were examined. 

Luciferase reporter assay and Western blot were used to screen the target of miR-20a. 

miR-20a was increased in GC tissues and cell lines. miR-20a promoted the growth, 

migration and invasion of GC cells, enhanced the chemoresistance of GC cells to cisplatin 

and docetaxel. Luciferase activity and Western blot confirmed that miR-20a negatively 

regulated EGR2 expression. Overexpression of EGR2 significantly attenuated the 

oncogenic effect of miR-20a. miR-20a was involved in the carcinogenesis of GC through 

modulation of the EGR2 signaling pathway. 
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1. Introduction 

Gastric cancer (GC) is one of the most common cancers and the second most common malignancy of 

cancer death worldwide, especially in East Asia [1]. Despite a steady decrease in GC incidence and 
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mortality during the last decade, GC still ranked second in global cancer mortality. The carcinogenesis 

of GC was complicated involving dysregualtion of oncogenes and tumor suppressors [2]. Recently, 

emerging evidence found that a new group of RNAs, known as microRNAs (miRNAs), regulated a large 

variety of genes, including both oncogenes and tumor suppressor genes [3]. 

miRNAs were a family of endogenous, non-coding small RNAs (approximately 20–25 nucleotides), 

which negatively regulated gene expression by inhibiting translation or inducing mRNA degradation via 

binding to the 3' untranslated region (3' UTR) of target mRNAs. miRNAs played critical roles in the 

development, proliferation, differentiation, metabolism, and apoptosis. In addition, aberrant expression 

of miRNAs was related to carcinogenesis [4]. Abnormal expression profiles of miRNAs had been 

reported in numerous cancers, including breast, colon, lung, prostate, and GC [5–8]. miRNAs functioned 

as oncogenes or tumor suppressors by regulating different target gene expression in different cancers. 

miR-9, miR-22, and miR-146a had all been shown to act as tumor suppressors [9–11], whereas miR-19, 

miR-23a, and miR-301a had been shown to function as oncogenes [12–14]. These studies suggested that 

dysregulation of miRNAs might be involved in carcinogenesis and cancer progression. 

miR-20a belonged to the miR-17-92 cluster, which were widely overexpressed oncogenes in diverse 

cancer subtypes [14]. Previous studies had shown that certain cancer suppressors, such as BH3-only 

protein (BIM), Phosphatase and tensin homolog (PTEN), were direct targets of the miR-17-92  

cluster [12,15]. In human cervical cancer cells, miR-20a was reported to promote cancer cell migration 

and invasion by targeting Tankyrase 2 (TNKS2) [16]. Similarly, in osteosarcoma, miR-20a increased 

the metastatic potential of osteosarcoma cells by targeting Fas, indicating an oncogenic function of 

miR-20a [17]. However, the role of miR-20a in the progression of GC and its underlying mechanism 

remained unclear.  

In this study, we explored the biological effects and the potential mechanisms of miR-20a in GC by 

detecting the expression of miR-20a in GC, validating previous finding that miR-20a was elevated in 

GC. Overexpression of miR-20a promoted the growth, migration, invasion, as well as chemoresistance 

of GC cells. By bioinformatics analysis, we predicted the tumor-suppressor, early growth response 2 

(EGR2), as a putative target of miR-20a. Subsequent luciferase activity assay and Western blot 

confirmed that miR-20a repressed the expression of EGR2 by inducing EGR2 mRNA decay. 

Overexpression of EGR2 significantly attenuated the oncogenic effect of miR-20a. 

2. Results 

2.1. miR-20a Was Increased in GC Tissue Samples and Cell Lines  

To validate the expression levels of miR-20a, we conducted quantitative real time PCR (qRT-PCR) 

in 28 GC tissues and the corresponding normal tissues and 3 GC cell lines and a gastric epithelial cell 

line. Expression of miR-20a was significantly increased in GC tissues and cell lines (Figure 1A,B). The 

clinicopathological features of 28 patients with GC were shown in Table 1, and miR-20a was correlated 

with the metastasis of GC patients, while the miR-20a expression had no relationship with other 

clinicopathological parameters. Thus, it was suggested that elevation of miR-20a in GC might have 

essential roles in GC carcinogenesis. 
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Figure 1. miR-20a was increased in gastric cancer (GC) tissue samples and cell lines.  

(A) qRT-PCR for miR-20a was performed using 28 GC tissue samples and matched with 

adjacent non-tumour normal tissues; (B) qRT-PCR for miR-20a was performed using 3 GC 

cell lines and human gastric mucosa cell line GES-1. The data represented triplicate 

measurements. * p < 0.05, ** p < 0.01 compared with control. 

 

Table 1. Correlation of the expression of miR-20a with clinicopathologic features. 

Clinicopathologic features No. Relative expression of miR-20a a p-value b 

Gender   0.727 
Male 18 0.72 (0.51–1.33)  

Female 10 0.70 (0.52–1.02)  
Site of tumor   0.810 

Upper stomach 8 0.68 (0.52–1.00)  
Middle stomach 6 0.70 (0.51–1.22)  
Lower stomach 14 0.71 (0.51–1.32)  
Differentiation   0.655 

Poor 12 0.73 (0.59–1.33)  
Moderate 16 0.72 (0.52–1.12)  
Metastasis   0.003 

N0 4 0.55 (0.51–0.61)  
N1 5 0.62 (0.51–0.64)  
N2 9 0.74 (0.52–1.09)  
N3 9 0.92 (0.51–1.33)  

a Median of relative expression; b Mann-Whitney U test between two groups and Kruskall-Wallis test for three groups. 

2.2. miR-20a Promoted Growth of GC Cells 

As miR-20a was markedly increased in GC, it might function as a cancer promoter or suppressor. 

Therefore, we tested the role of miR-20a by gain- and loss- function experiments in SGC7901 and 

MKN45 cells. In a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, cells 

transfected with miR-20a precursor grew more rapidly than the control group, while miR-20a inhibitor 

inhibited the growth (Figure 2A,B). To further study the effect of miR-20a on the growth of GC cells, 

colony formation assay was performed. GC cells transfected with miR-20a precursor showed higher 

colony formation than cells transfected with control. However, cells transfected with miR-20a inhibitor 

showed lower colony formation than cells transfected with control (Figure 2C). We further used Flow 

cytometric analysis to determine the effect of miR-20a on apoptosis of GC cells; no significant 
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difference was detected between miR-20a precursor and the control in these cells (Figure 2D). Results 

from cell cycle assay indicated that overexpression of miR-20a precursor had less cells in G0/G1 phase. 

Furthermore, overexpression group had more cells in S and G2M phases (Figure 2E). Proliferation 

index (PI) = (S + G2M)/(G0 + GS + G2M). The PI was higher in the overexpression group than that in 

the control group. These data suggested that miR-20a might promote SGC7901 and MKN45 cell 

proliferation in vitro. The transfection efficiency was detected by qRT-PCR (Figure 2F). 

Figure 2. MiR-20a promoted growth of GC cell lines. SGC7901 or MKN45 cells were 

transfected with miR-20a precursor/inhibitor or the corresponding control, respectively.  

(A) At 24, 48, 36, 72, or 96 h after transfection, MTT assay was performed to examine 

SGC7901 proliferation; (B) MTT assay of MKN45 cells; (C) Representative results of 

colony formation assay in SGC7901 and MKN45 cells transfected with miR-20a 

precursor/inhibitor or the corresponding control, respectively; (D) The apoptosis of SGC7901 

and MKN45 cells after miR-20a precursor transfection; (E) The proliferation index of 

SGC7901 and MKN45 cells transfected with miR-20a precursor; (F) qRT-PCR for miR-20a 

was performed in SGC7901 and MKN45 cells transfected with miR-20a precursor/inhibitor 

or the corresponding control, respectively. The data represented at least four measurements. 

* p < 0.05, ** p < 0.01 compared with control. 
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2.3. miR-20a Promoted Migration and Invasion of GC Cells 

To investigate the role of miR-20a in GC metastasis, miR-20a precursor/inhibitor was transfected 

into SGC-7901 and MKN45 cells and in vitro migration and invasion assays were performed. Results 

showed that miR-20a significantly increased the in vitro migration ability of GC cells, while miR-20a 

inhibitor remarkably decreased the in vitro migration ability of GC cells (Figure 3A,C). Similar results 

were observed in in vitro invasion ability of GC cells (Figure 3B,D). Collectively, these data suggested 

that miR-20a promoted the migration and invasion abilities of GC cells. 

Figure 3. miR-20a promoted migration and invasion of GC cells. (A) In vitro migration 

assay of SGC7901 cells transfected with miR-20a precursor/inhibitor or the corresponding 

control, respectively; (B) In vitro invasion assay of SGC7901 cells transfected with miR-20a 

precursor/inhibitor or the corresponding control, respectively; (C) In vitro migration assay 

of MKN4 cells; (D) In vitro invasion assay of MKN4 cells. The data represented at least 

four measurements. * p < 0.05 compared with control. 

 

2.4. miR-20a Promoted Chemoresistance of GC Cells 

The effect of miR-20a on the sensitivity of GC cells to chemotherapeutic agents, cisplatin and 

docetaxel, was investigated. Transfection of miR-20a precursor increased the IC50 value of cisplatin, 

while inhibition of miR-20a decreased the IC50 value of cisplatin in SGC7901 and MKN45 cells 

compared with that in control group (Figure 4A,C). Similar results were obtained in docetaxel treated 

SGC7901 and MKN45 cells (Figure 4B,D). Our data suggested that miR-20a might promote 

chemoresistance of GC cells. 
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Figure 4. miR-20a promoted chemoresistance of GC cells. (A) Alteration of IC50 values 

(cisplatin) in SGC7901 cells transfected with miR-20a precursor/inhibitor, and the 

corresponding control was analyzed by MTT; (B) Alteration of IC50 values (docetaxel) in 

SGC7901 cells; (C) Alteration of IC50 values (cisplatin) in MKN45 cells; (D) Alteration of 

IC50 values (docetaxel) in MKN45 cells. The data represented at least four measurements.  

* p < 0.05, ** p < 0.01 compared with control. 

 

2.5. EGR2 Was a Direct Target of miR-20a 

To investigate the downstream target of miR-20a, Targetscan 6.2 was used to screen its target. Early 

growth response 2 (EGR2) was predicted to be a target of miR-20a. To confirm that, we amplified the 

EGR2 3' UTR containing the target sequences, or the mutants, into a luciferase reporter vector (Figure 5A). 

As shown in Figure 5B, miR-20a suppressed the luciferase activity of the wild type EGR2 3' UTR (WT), 

while mutation of the miR-20a binding sites (Mut) blocked this suppression in SGC7901 cells. Western 

blot demonstrated that transfection of miR-20a precursor in SGC7901 cells inhibited EGR2 expression 

while miR-20a inhibitor elevated EGR2 protein level (Figure 5C). qRT-PCR showed that miR-20a 

precursor decreased EGR2 mRNA level, while miR-20a inhibitor elevated EGR2 mRNA level  

(Figure 5D), indicating that miR-20a suppressed EGR2 expression post-transcriptionally. 

2.6. miR-20a Was inversely Correlated with EGR2 Expression 

qRT-PCR was performed to detect the mRNA levels of EGR2 in 28 GC and adjacent non-tumor 

normal tissue samples. EGR2 mRNA was significantly decreased in GC group (Figure 6A). 

Furthermore, EGR2 protein levels were also down-regulated in GC tissues compared with the 

non-tumor normal tissue samples (Figure 6B). Moreover, we correlated EGR2 mRNA level with 

miR-20a expression in the same GC tissues. EGR2 mRNA level was inversely correlated with miR-20a 

expression in GC tissues (Figure 6C). 
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Figure 5. Early growth response 2 (EGR2) was a direct target of miR-20a. (A) Wild type of 

the mutated sequences of EGR2 3' UTR (nucleotides 458-465); (B) SGC7901 cells were 

co-transfected with miR-20a precursor or negative control (miR-NC) with EGR2 3' UTR 

fragment with either the miR-20a target sequence (WT), or a mutant (Mut). Luciferase 

activity was detected; (C) EGR2 protein level was detected by Western blot in cells 

transfected with miR-20a precursor/inhibitor or the corresponding control; (D) expression  

of EGR2 mRNA was detected by qRT-PCR in cells transfected with miR-20a 

precursor/inhibitor or the corresponding control. GAPDH was used as an internal control. 

The data represented at least four measurements. * p < 0.05 compared with control. 

 

Figure 6. miR-20a was inversely correlated with EGR2 expression. (A) EGR2 mRNA levels 

in GC tissues were analyzed by qPCR; (B) EGR2 protein levels in GC tissues were analyzed 

by Western blot; (C) Correlation of miR-20a expression and EGR2 mRNA level was 

analyzed. The data represented triplicate measurements. * p < 0.05, ** p < 0.01 compared 

with control. 

 

2.7. miR-20a Promoted GC Progression by Targeting EGR2 

Since EGR2 was found to be a target of miR-20a, we further investigated whether overexpression 

of EGR2 could attenuate the oncogenic effect of miR-20a. MTT assay (Figure 7A), colony formation 



Int. J. Mol. Sci. 2013, 14 16233 

 

assay (Figure 7B), cell migration (Figure 7C) and invasion (Figure 7D) all showed that supplement of 

EGR2 by an EGR2 overexpression plasmid could significantly attenuate the oncogenic effect of miR-20a. 

The effect of EGR2 plasmid was validated by qRT-PCR (Figure 7E) and Western blot (Figure 7F). 

These data suggested that miR-20a promoted GC progression partially by targeting EGR2. 

Figure 7. miR-20a promoted GC progression by targeting EGR2. (A) SGC7901 cells were 

co-transfected with miR-20a precursor and EGR2 overexpression plasmid or the control, at 

24, 48, 36, 72, or 96 h after transfection, MTT assay was performed to examine SGC7901 

proliferation; (B) Representative results of colony formation assay in SGC7901 cells 

co-transfected with miR-20a precursor and EGR2 overexpression plasmid or the control; 

(C) In vitro migration assay of SGC7901 cells transfected with miR-20a precursor and 

EGR2 overexpression plasmid or the control; (D) In vitro invasion assay of SGC7901 cells 

transfected with miR-20a precursor and EGR2 overexpression plasmid or the control;  

(E) qRT-PCR was used to detect the mRNA level of EGR2 in in cells transfected with 

EGR2 overexpression plasmid or the control; (F) EGR2 protein level was detected by 

Western blot in cells transfected with EGR2 overexpression plasmid or the control. GAPDH 

was used as an internal control. The data represented at least four measurements. * p < 0.05, 

** p < 0.01 compared with control; # p < 0.05, compared with miR-20a precursor  

transfected group. 

 

3. Discussion 

Although numerous miRNAs had been identified in GC carcinogenesis, their underlying molecular 

mechanisms in GC development still remained poorly understood. Hence, exploring the function of 

miRNAs specifically involved in GC carcinogenesis would greatly help expand our understanding of 

GC and screening new targets for its diagnosis and therapy [18]. The aberrant expression of miR-20a in 

cervical cancer, colorectal cancer, GC, and prostate cancer had been found [16,19–21]. A recent study 



Int. J. Mol. Sci. 2013, 14 16234 

 

suggested that miR-20a overexpression in rheumatoid fibroblast-like synoviocytes decreased apoptosis 

signal-regulating kinase 1 (ASK1) activity, indicating an anti-apoptotic effect [22]. miR-20a was 

up-regulated in gallbladder carcinoma [23], but down-regulated in hepatocellular carcinoma [24].  

The difference indicated that dysregulation of miR-20a in different cancers depended on the  

cellular microenvironment. 

In this study, we validated that miR-20a was increased in a number of GC tissue samples and cell 

lines SGC7901, MKN45, and NUGC-3 cells compared to GES-1 cells. Ectopic expression of miR-20a 

promoted proliferation of GC cells, while suppression of miR-20a with inhibitor had the opposite effect. 

miR-20a was found to inhibit EGR2 expression partially by inducing mRNA decay. Similarly Wang M 

and colleagues reported that the levels of circulating miR-17-5p/20a might be a molecular marker for 

GC [20]. They found that overexpression of miR-17-5p/20a promoted GC cell cycle progression and 

inhibited apoptosis, whereas knockdown of miR-17-5p/20a resulted in cell cycle arrest and increased 

apoptosis in AGS cells and in vivo as well by targeting p21 and tumor protein p53-induced nuclear 

protein 1 (TP53INP1) [25]. In our study, overexpression of miR-20a promoted proliferation without 

effect on apoptosis in SGC7901 and MKN45 cell lines in vitro. The contradictory results might due to 

different cell lines, Wang M et al. used AGS cell line, and we used SGC7901 and MKN45 cells. 

Secondly, different molecules were involved in the two studies. 

The MTT and colony formation assays in GC cells all suggested that forced miR-20a overexpression 

promoted carcinogenesis and proliferation of GC cells. Down-regulation of miR-20a expression by 

miR-20a inhibitor decreased these effects. Similar effects were obtained from in vitro migration and 

invasion assays. Our study suggested that miR-20a overexpression might act as an oncogene in GC. 

Drug resistance remained a major obstacle for conventional chemotherapeutic agents. miRNAs had 

been shown to regulate drug resistance in numerous cancers [26–28]. In the present study, we found that 

miR-20a overexpression could significantly elevate the IC50 values of two clinical drugs, cisplatin and 

docetaxel, promoting the chemoresistance of GC cells. 

To determine how miR-20a acted as an oncogene, we screened potential target using bioinformatics 

analysis, Targetscan 6.2. As a tumor suppressor, EGR2 was down-regulated in GC. Luciferase activity 

assay suggested direct targeting of EGR2 by miR-20a. EGR2 mRNA level was reversely correlated with 

miR-20a in GC patients. More importantly, supplement of EGR2 by an EGR2 overexpression plasmid 

could remarkably attenuate the effect of miR-20a on GC progression. EGR2 belongs to a multi-gene 

family encoding C2H2-type zinc-finger proteins and plays a role in the regulation of cellular 

proliferation [29]. Recently, some reports suggested an essential role of EGR2 in apoptosis  

regulation [30]. EGR2 was a target of the p53 family, and overexpression of EGR2 led to apoptosis, 

while down-regulation of EGR2 attenuated p53-mediated apoptosis [31]. EGR2 could be also regulated 

by other miRNAs. Wu Q et al. has reported that miR-150 could promote GC proliferation by 

negatively regulating EGR2 expression [32]. Our study shed new light on the regulation of EGR2. 

In summary, our study validated that miR-20a was dramatically increased in GC tissues and cell lines 

and that ectopic expression of miR-20a promoted proliferation, migration, invasion and chemoresistance 

of GC cells. Moreover, down-regulation of miR-20a had the opposite effect on GC cells by targeting 

EGR2. Further studies for the functional and clinical implications of miR-20a and its target EGR2 might 

contribute to the early diagnosis and treatment of GC. 



Int. J. Mol. Sci. 2013, 14 16235 

 

4. Materials and Methods 

4.1. Cell lines and Tissue Samples 

Human GC cell lines SGC7901, MKN45, NUGC-3, and human gastric mucosa cell line GES-1 were 

from the Chinese Academy of Sciences (Shanghai, China). Cells were grown in Dulbecco’s modified 

Eagle medium supplemented with 10% fetal bovine serum at 37 °C with 5% CO2. Twenty eight paired 

tissues of GC and matched normal tissues (located >5 cm away from the tumor) were collected from our 

department. Informed consent was obtained from each patient and this work was approved by the Ethics 

Committee of Third Military Medical University. 

4.2. Plasmids and Transfection 

miR-20a precursor (Catalog# HmiR0202-MR01, shown as miR-20a in figures) and inhibitor 

(Catalog# HmiR-AN0312-AM01, shown as anti-miR-20a) constructs were purchased from 

GeneCopoeia (City, MD, USA). pEGFP-N1-EGR2 plasmid was generated by using the following 

primers, sense 5'-CCCTCGAGATCCCAGGCTCAGTCCAACC-3', antisense 5'-CCAAGCTTAG 

GTGTCCGGGTCCGAGA-3'. The amplified sequences were inserted into pEGFP-N1 within 

XhoI/HindIII sites. Transfection was performed using Lipofectamine 2000 reagent (Invitrogen, 

Carlsbad, CA, USA). Transfected cells were harvested after 24 h for migration and invasion assays and 

after 48 h for RNA isolation and Western blot. 

4.3. Quantitative Real Time PCR 

Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA) then reverse-transcribed 

into cDNA with a TaqMan MicroRNA Reverse-Transcription Kit (Applied Biosystems, Foster City, 

CA, USA). PCR reactions were performed using the ABI Stepone plus Detection System (Applied 

Biosystems, Foster City, CA, USA). The relative expression of miRNA was normalized with U6. 

Samples were compared by using the relative CT method. The fold change was determined relative to a 

control after normalizing to a housekeeping gene by using 2−ΔΔCT, where ACT is (gene of interest CT) 

minus (GAPDH CT), and ΔΔCT is (ΔCT cancer) minus (ΔCT control). The relative expression of EGR2 

was normalized with GAPDH. All experiments were carried out at least in triplicate. 

4.4. In Vitro Cell Proliferation Assay 

Forty eight hours after transfection, cells were seeded into 96-well plates at 6 × 103 cells/well. The 

MTT assay was used to measure cell viability. Optical densities at 490 nm were measured. 

4.5. Colony Formation Assay 

Cells transfected with miR-20a precursor/inhibitor or the corresponding control were seeded in a  

10 cm dish and maintained in complete culture medium. After 21 days, SGC7901 cells were fixed with 

methanol and then stained with 0.1% crystal violet. Colonies were manually counted. 
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4.6. In Vitro Migration and Invasion Assay 

In vitro migration assay was performed using 8 μm pore size Transwell plates (Millipore, Billerica, 

MA, USA). After transfection, the cells (1 × 105 cells/100 μL serum-free medium) were added to the 

upper chamber. RPMI 1640 containing 10% FCS was added to the bottom chamber as a 

chemoattractant. After 24 h, cells on the upper surface were removed, while cells attached on the bottom 

were fixed and stained with 0.1% crystal violet. The images of invaded cells were counted with a 

photomicroscope (Olympus, Tokyo, Japan). For the in vitro invasion assay, the plates were coated with 

matrigel (BD Biosciences, San Jose, CA, USA) diluted in serum-free medium and performed the same 

as migration assay. 

4.7. Luciferase Reporter Assay 

The 3' UTR of human EGR2 was PCR-amplified and cloned into psiCHECK-2 vector. These 

constructs (1 μg) were co-transfected with 1 μg of control or miR-20a precursor into SGC7901 cell. 

Luciferase activity was assayed 48 h after transfection by using the Dual-luciferase activity assay system 

(Promega, Madison, WI, USA). All the experiments were performed at least in four times. 

4.8. Western Blot 

Cells were harvested 48 h after transfection, and then proteins were extracted and separated by 10% 

SDS-PAGE. Gels were transferred to nitrocellulose filter membrane and probed with anti-EGR2 or 

anti-GAPDH. Horseradish peroxidase-conjugated secondary antibodies were applied and detected by 

enhanced chemiluminescence (Thermo Scientific, Rockford, IL, USA). 

4.9. Flow Cytometric Analysis of Apoptosis 

Cells were harvested at the above indicated time points, at least 5 × 105 cells were recovered by 

centrifugation for evaluation of apoptotic cells with the use of double staining with annexin V-fluoresein 

isothiocyanate (annexin V-FITC) and propidium iodide (PI) (BioVision, St. Pete Beach, FL, USA) 

according to the manufacturer’s instructions, followed by flow cytometric analysis with the use of Cell 

Quest software (Version 5.1, Becton, Rutherford, NJ, USA). 

4.10. Cell Cycle Analysis by Flow Cytometry 

Cells were harvested 48 h after transfection and fixed in 75% ethanol. Then, cells were treated with 

RNase A and PI (50 μg/mL) and incubated for 30 min. Cell cycle analysis was performed by  

Flow cytometry. 

4.11. Statistical Analysis 

All experiments were repeated independently at least in triplicate, and the results were expressed as 

the mean ± SD. The results were assessed by a one-way ANOVA, or Student t test. A value of p < 0.05 

was accepted to indicate statistical significance. 
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5. Conclusions 

Our work demonstrated that miR-20a was involved in the carcinogenesis of GC through modulation 

of the EGR2 signaling pathway. 

Conflicts of Interest 

The authors have no conflict of interest. 

References 

1. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics.  

CA Cancer J. Clin. 2011, 61, 69–90. 

2. Ali, Z.; Deng, Y.; Ma, C. Progress of research in gastric cancer. J. Nanosci. Nanotechnol. 2012, 12, 

8241–8248. 

3. Link, A.; Kupcinskas, J.; Wex, T.; Malfertheiner, P. Macro-role of microRNA in gastric cancer. 

Dig. Dis. 2012, 30, 255–267. 

4. Song, J.H.; Meltzer, S.J. microRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal 

cancers. Gastroenterology 2012, 143, 35–47. 

5. Liu, H. microRNAs in breast cancer initiation and progression. Cell. Mol. Life Sci. 2012, 69, 

3587–3599. 

6. Rossi, S.; di Narzo, A.F.; Mestdagh, P.; Jacobs, B.; Bosman, F.T.; Gustavsson, B.; Majoie, B.; 

Roth, A.; Vandesompele, J.; Rigoutsos, I.; et al. microRNAs in colon cancer: A roadmap for 

discovery. FEBS Lett. 2012, 586, 3000–3007. 

7. Du, L.; Pertsemlidis, A. microRNA regulation of cell viability and drug sensitivity in lung cancer. 

Expert Opin. Biol. Ther. 2012, 12, 1221–1239. 

8. O'Kelly, F.; Marignol, L.; Meunier, A.; Lynch, T.H.; Perry, A.S.; Hollywood, D. microRNAs as 

putative mediators of treatment response in prostate cancer. Nat. Rev. Urol. 2012, 9, 397–407. 

9. Guo, M.M.; Hu, L.H.; Wang, Y.Q.; Chen, P.; Huang, J.G.; Lu, N.; He, J.H.; Liao, C.G. miR-22 is 

down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via 

targeting transcription factor Sp1. Med. Oncol. 2013, 30, 542. 

10. Yao, Q.; Cao, Z.; Tu, C.; Zhao, Y.; Liu, H.; Zhang, S. microRNA-146a acts as a metastasis 

suppressor in gastric cancer by targeting WASF2. Cancer Lett. 2013, 335, 219–224. 

11. Zheng, L.; Qi, T.; Yang, D.; Qi, M.; Li, D.; Xiang, X.; Huang, K.; Tong, Q. microRNA-9 

suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin 

D1 and Ets1. PLoS One 2013, 8, e55719. 

12. Wang, F.; Li, T.; Zhang, B.; Li, H.; Wu, Q.; Yang, L.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. 

microRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. 

Biochem. Biophys. Res. Commun. 2013, 434, 688–694. 

13. Wang, M.; Li, C.; Yu, B.; Su, L.; Li, J.; Ju, J.; Yu, Y.; Gu, Q.; Zhu, Z.; Liu, B. Overexpressed 

miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer.  

J. Gastroenterol. 2013, [Epub ahead of print]. 



Int. J. Mol. Sci. 2013, 14 16238 

 

14. An, J.; Pan, Y.; Yan, Z.; Li, W.; Cui, J.; Jiao, Y.; Tian, L.; Xing, R.; Lu, Y. miR-23a in Amplified 

19p13.13 loci targets metallothionein 2A and promotes growth in gastric cancer cells.  

J. Cell. Biochem.2013, 114, 2160–2169. 

15. Yan, H.J.; Liu, W.S.; Sun, W.H.; Wu, J.; Ji, M.; Wang, Q.; Zheng, X.; Jiang, J.T.; Wu, C.P. 

miR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in 

pancreatic cancer cells. Dig. Dis. Sci. 2012, 57, 3160–3167. 

16. Kang, H.W.; Wang, F.; Wei, Q.; Zhao, Y.F.; Liu, M.; Li, X.; Tang, H. miR-20a promotes migration 

and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett. 2012, 586, 897–904. 

17. Huang, G.; Nishimoto, K.; Zhou, Z.; Hughes, D.; Kleinerman, E.S. miR-20a encoded by the 

miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas 

expression. Cancer Res. 2012, 72, 908–916. 

18. Gigek, C.O.; Chen, E.S.; Calcagno, D.Q.; Wisnieski, F.; Burbano, R.R.; Smith, M.A. Epigenetic 

mechanisms in gastric cancer. Epigenomics 2012, 4, 279–294. 

19. Li, X.; Pan, J.H.; Song, B.; Xiong, E.Q.; Chen, Z.W.; Zhou, Z.S.; Su, Y.P. Suppression of CX43 

expression by miR-20a in the progression of human prostate cancer. Cancer Biol. Ther. 2012, 13, 

890–898. 

20. Wang, M.; Gu, H.; Wang, S.; Qian, H.; Zhu, W.; Zhang, L.; Zhao, C.; Tao, Y.; Xu, W. Circulating 

miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep. 2012, 5, 

1514–1520. 

21. Chai, H.; Liu, M.; Tian, R.; Li, X.; Tang, H. miR-20a targets BNIP2 and contributes 

chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines.  

Acta Biochim. Biophys. Sin. 2011, 43, 217–225. 

22. Philippe, L.; Alsaleh, G.; Pichot, A.; Ostermann, E.; Zuber, G.; Frisch, B.; Sibilia, J.; Pfeffer, S.; 

Bahram, S.; Wachsmann, D.; et al. miR-20a regulates ASK1 expression and TLR4-dependent 

cytokine release in rheumatoid fibroblast-like synoviocytes. Annu. Rheum. Dis. 2013, 72, 

1071–1079. 

23. Chang, Y.; Liu, C.; Yang, J.; Liu, G.; Feng, F.; Tang, J.; Hu, L.; Li, L.; Jiang, F.;  

Chen, C.; et al. miR-20a triggers metastasis of gallbladder carcinoma. J. Hepatol. 2013, 

doi:10.1016/j.jhep.2013.04.034. 

24. Fan, M.Q.; Huang, C.B.; Gu, Y.; Xiao, Y.; Sheng, J.X.; Zhong, L. Decrease expression of 

microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular 

carcinoma. J. Exp. Clin. Cancer Res. 2013, 32, 21. 

25. Wang, M.; Gu, H.; Qian, H.; Zhu, W.; Zhao, C.; Zhang, X.; Tao, Y.; Zhang, L.; Xu, W. 

miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in 

their functional regulation. Eur. J. Cancer 2013, 49, 2010–2021. 

26. Wang, F.; Song, X.; Li, X.; Xin, J.; Wang, S.; Yang, W.; Wang, J.; Wu, K.; Chen, X.;  

Liang, J.; et al. Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer 

using a dual reporter gene imaging system. PLoS One 2013, 8, e61792. 

27. Tekiner, T.A.; Basaga, H. Role of microRNA deregulation in breast cancer cell chemoresistance 

and stemness. Curr. Med. Chem. 2013, [Epub ahead of print]. 



Int. J. Mol. Sci. 2013, 14 16239 

 

28. Wang, Y.Q.; Guo, R.D.; Guo, R.M.; Sheng, W.; Yin, L.R. microRNA-182 promotes cell growth, 

invasion, and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian 

carcinomas. J. Cell. Biochem. 2013, 114, 1464–1473. 

29. Joseph, L.J.; le Beau, M.M.; Jamieson, G.A., Jr.; Acharya, S.; Shows, T.B.; Rowley, J.D.; 

Sukhatme, V.P. Molecular cloning, sequencing, and mapping of EGR2, a human early growth 

response gene encoding a protein with “zinc-binding finger” structure. Proc. Natl. Acad. Sci. USA 

1988, 85, 7164–7168. 

30. Dzialo-Hatton, R.; Milbrandt, J.; Hockett, R.D., Jr.; Weaver, C.T. Differential expression of Fas 

ligand in Th1 and Th2 cells is regulated by early growth response gene and NF-AT family 

members. J. Immunol. 2001, 166, 4534–4542. 

31. Yokota, I.; Sasaki, Y.; Kashima, L.; Idogawa, M.; Tokino, T. Identification and characterization of 

early growth response 2, a zinc-finger transcription factor, as a p53-regulated proapoptotic gene. 

Int. J. Oncol. 2010, 37, 1407–1416. 

32. Wu, Q.; Jin, H.; Yang, Z.; Luo, G.; Lu, Y.; Li, K.; Ren, G.; Su, T.; Pan, Y.; Feng, B.; et al. miR-150 

promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. 

Biochem. Biophys. Res. Commun. 2010, 392, 340–345. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


