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ABSTRACT
Motor unit synchronization is the tendency of motor neurons and their associated
muscle fibers to discharge near-simultaneously. It has been theorized as a control
mechanism for force generation by common excitatory inputs to these motor neurons.
Magnitude of synchronization is calculated from peaks in cross-correlation histograms
between motor unit discharge trains. However, there are many different methods for
detecting these peaks and even more indices for calculating synchronization from
them. Methodology is diverse, typically laboratory-specific and requires expensive
software, likeMatlab or LabView. This lack of standardizationmakes it difficult to draw
definitive conclusions about motor unit synchronization. A free, open-source toolbox,
‘‘motoRneuron’’, for the R programming language, has been developed which contains
functions for calculating time domain synchronization using different methods found
in the literature. The objective of this paper is to detail the toolbox’s functionality and
present a case study showing how the same synchronization index can differ when
different methods are used to compute it. A pair of motor unit action potential trains
were collected from the forearm during a isometric finger flexion task using fine wire
electromyography. ThemotoRneuron packagewas used to analyze the discharge time of
the motor units for time-domain synchronization. The primary function ‘‘mu_synch’’
automatically performed the cross-correlation analysis using three different peak
detection methods, the cumulative sum method, the z-score method, and a subjective
visual method. As function parameters defined by the user, only first order recurrence
intervals were calculated and a 1 ms bin width was used to create the cross correlation
histogram. Output from the function were six common synchronization indices, the
common input strength (CIS), k ′, k ′−1, E, S, and Synch Index. In general, there was
a high degree of synchronization between the two motor units. However, there was
a varying degree of synchronization between methods. For example, the widely used
CIS index, which represents a rate of synchronized discharges, shows a 45% difference
between the visual and z-scoremethods. This singular example demonstrates how a lack
of consensus in motor unit synchronization methodologies may lead to substantially
differing results between studies. The motoRneuron toolbox provides researchers with
a standard interface and software to examine time-domainmotor unit synchronization.

Subjects Neuroscience, Kinesiology, Statistics
Keywords Synchronization, Motor neuron, Motor unit, Open-source, R package, Common
input, Cross-correlogram, Motor control, Recurrence intervals

How to cite this article Tweedell AJ, Tenan MS. 2019. motoRneuron: an open-source R toolbox for time-domain motor unit analyses.
PeerJ 7:e7907 http://doi.org/10.7717/peerj.7907

https://peerj.com
mailto:andrew.j.tweedell.civ@mail.mil
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7907
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7907


INTRODUCTION
Motor unit synchronization is the tendency of separate motor units (i.e., motor neurons
and their associated muscle fibers) to discharge near-simultaneously (within 1–5 ms of
each other) more often than would be expected by chance (Farmer et al., 1997; Semmler,
2002). Similar to a frequency-domain coherence analysis, these time-domain analyses
are often interpreted as indicators of functional connectivity between motor neurons
through common excitatory post-synaptic potentials (Sears & Stagg, 1976). Typically,
cross-correlation analyses are employed, whereby the discharge times of one motor unit
are correlated against those of another concurrently active motor unit (Fig. 1) and a
histogram is created based on these recurrence intervals. Peaks in the histogram represent
a higher probability of a discharge from the response motor unit around that latency of the
reference motor unit discharge (seen in Fig. 2B). Various indices are calculated from these
peaks and their magnitude indicates the level of synchronization (for review see Farmer
et al., 1997; Semmler, 2002; Farina & Negro, 2015), which appear to be a critical factor in
force modulation. For example, synchronous activation of muscle fibers produce longer
and greater twitch forces than if they were activated asynchronously (Merton, 1954). In
practice, this phenomenon is evidenced in strength-trained individuals, who display higher
motor unit synchrony than untrained individuals do (Semmler & Nordstrom, 1998; Fling,
Christie & Kamen, 2009). Although beneficial for producing high forces, synchronization
has been shown to be detrimental to force steadiness (Yao, Fuglevand & Enoka, 2000).
Thus, understanding motor unit synchronization seems to be important for modeling
neuromuscular performance.

Over the last few decades, it has become much easier and cheaper to collect motor unit
action potentials with either intramuscular or decomposed surface electromyography.
Researchers have gone from examining synchronization in 2–3 motor units to 15+ in
a single contraction (Schmied & Descarreaux, 2010; Defreitas et al., 2014). Unfortunately,
while data collection technology has improved and multiplied, so have the options for
synchronization analysis. Reconciling results from different types of analyses remains
difficult. Concerning the cross-correlation analysis, there are numerous ways in which to
determine the size and location of peaks present in histograms. Methodology is largely
laboratory specific, with some groups using automated methods like the z-score method
or the cumulative sum method. Before automated methods were developed, subjective,
visual analysis was used. Within these methods, parameters such as the number of orders of
recurrence intervals used and histogram bin size are likely to vary as well. Additionally, there
are a number of indices available to characterize synchronization magnitude. Common
input strength (CIS) and k ′ (‘‘k prime’’) are most often reported; however, the Synch
Index (SI) and others are available. The lack of standardization with respect to motor
unit synchronization hinders our ability to make definitive conclusions. Therefore, we
have developed the open-source toolbox ‘‘motoRneuron’’ in the statistical programming
language R (henceforth referred to as R) for the calculation of time-domain synchronization
using various peak determination methods. This toolbox provides a list of functions to
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Figure 1 Recurrence Intervals Diagram. Schematic representation of the recurrence intervals between
two concurrently active motor units. Each discharge from one motor unit is used as a reference point to
determine forward and backward latencies to the discharges of the second motor unit. The first order in-
tervals are the latencies to the first forward and backward discharges (noted in red). The second order are
the second forward and backward discharges (noted in purple).

Full-size DOI: 10.7717/peerj.7907/fig-1

calculate recurrence intervals, create and plot cross-correlation histograms, and ultimately,
calculate synchronization indices.

R has quickly risen in popularity recently because of its very active user/developer base
that rapidly iterates to improve the functionality of the language. Typically, programs
that perform synchronization analyses are handed down through laboratories using paid
software like Matlab and LabView. Meanwhile, R and our toolbox are freely available.
Source code for all R functions are available to the user. MotoRneuron was created as a
free, open-source platformwith which users can perform all necessary functions to calculate
synchronization, or alter to suit their unique needs. With the numerous ways to calculate
synchronization, it is unlikely all methods will yield the same results. This toolbox allows
for better standardization of techniques and for more comprehensive data mining in the
motor control community. The primary objective of this paper is to detail the functionality
and demonstrate the use of the motoRneuron toolbox for investigating motor unit
time-domain synchronization. The secondary objective is to present a case study showing
how much the same synchronization index can differ when different methods are used to
compute it.

METHODS
Participant
The example motor unit discharge data included in the R package and subsequently
analyzed for this paper was selected from a single participant during a previous
study investigating finger flexion during a simulated trigger pull task. For the study,
participants had no known neurological or metabolic disease and provided informed
consent in accordance with the United States Army Research Laboratory Institutional
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Figure 2 Cumulative Sum and Histogram. (A) Example of cumulative sum graph of bin counts. (B)
Cross-correlation histogram rendered in RStudio using the ‘‘ggplot’’ package. Peak boundaries (blue lines)
were determined by visual analysis of the cumulative sum graph, where a peak is seen as a deflection near
time 0. Synchronization indices are calculated based on the relationship between the counts of the his-
togram expected due to chance (in red) and the counts that are in excess of what is expected (in blue). In
most cases, this threshold for determination (red line) is the baseline mean count of the histogram.

Full-size DOI: 10.7717/peerj.7907/fig-2

Review Board (approval number ARL 16-099). Data collection methods are briefly
described here.

Motor unit data collection
Motor unit discharge data was collected using fine wire electromyography (EMG) during
an isometric finger flexion task. The participant was fitted into an apparatus with a
handgrip, which maintains wrist supination, and a load cell embedded in it to obtain
flexion forces generated by the first phalange (pointer finger). After familiarization, three
maximal voluntary isometric contractions (MVIC) were performed to determine the
20% MVIC used for the isometric task. For more detail on the experimental set up,
please see the work by Haynes et al. (2018). Fine-wire electrodes (Natus R© Neurology,
Wisconsin, USA) were then inserted with the use of an ultrasound guide into the
flexor digitorum superficialis (FDS) muscle. Motor unit synchronization has been
shown to be higher in smaller, distal muscles compared to larger, proximal movement
muscles (Keen et al., 2012). A pre-gelled sticker electrode (B&L Engineering, Santa
Ana, California, USA) was placed on the first phalange metacarpal phalangeal joint
as a ground. Force data was sampled at 1 kHz while the EMG was sampled at 20
kHz. A ramp-and-hold isometric contraction paradigm was performed at 20% MVIC
for 30 s.
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Data reduction
Discharge data was only used for the steady force portion of the contraction and processed
offline, using Spike2 (Cambridge Electronic Design Limited, Cambridge, England, UK).
The raw EMG signal was decomposed into motor unit action potential trains using
a template matching technique (Cambridge Electronic Design Limited, 2018). Briefly,
a potential motor unit action potential was manually chosen from the beginning of
the contraction. The waveform was extracted and a new template was created with a
width of ±35% of the chosen waveform’s amplitude. A threshold was then set such
that whenever the signal crossed it (i.e., a potential motor unit action potential); the
waveform was compared against the current template. Spikes match a template if more
than 60% of the points in a spike fall within the template. The motor unit action
potential spike trains were subsequently manually checked for accuracy. Time series
of discharge times of two separate motor unit action potential trains were then down
sampled to 1 kHz.

Synchronization analysis
All synchronization analyses were performed with the custom R package ‘‘motoRneuron’’
in RStudio (v 1.1.453) using R (v 3.5.0) (R Core Team, 2015). The general steps to determine
time-domain synchronization are described in the introduction; however, more detail is
provided here. First, the discharge times of the paired motor units were cross-correlated.
The motor unit with fewer discharges was called the reference unit, while the other was
referred to as the event unit. The time differences between each action potential of the
reference unit and the nearest forward and nearest backward action potential of the event
unit were calculated and are referred to as recurrence intervals (see Fig. 1 for an illustrative
example). The first order intervals refer to the latencies of the first forward and backward
discharges (noted in red in Fig. 1). The second order intervals are the second forward
and backward discharges (noted in purple in Fig. 1), and so on. Only first order intervals
were used for the current investigation. Multi-order recurrence intervals can be calculated;
however, some researchers argue that only first order intervals should be used for analysis,
as the presence of harmonics within the cross-correlation may cause non-physiological
peaks to appear in the long latency portions of the histogram (De Luca, Roy & Erim,
1993). These intervals were discretized into 1-ms bins for a cross-correlation histogram
(Fig. 2B).

Peak determination
The three methods employed in this toolbox reflect the three broad classes of cross-
correlation histogram peak determination in the current motor unit synchronization
literature. These methods comes from the notion that if motor unit action potential
trains are independent, then there is no relationship between the firing of one motor
unit and the firing of the other and each latency or recurrence interval (e.g., −2 ms,
+1 ms, or +6 ms) has an equal probability of occurring within plus or minus the
mean inter-spike interval for the slower motor unit (De Luca, Roy & Erim, 1993). If
the intervals are sufficiently random, a resulting cross correlation histogram represents
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a discrete uniform probability distribution where the probability of an interval
falling within a bin is constant across the histogram. It should appear flat with small
variations in individual bin count. The intent of the methods is to find the bins in the
experimental histograms that are significantly greater than what is expected by this random
chance.

The oldest method for finding these boundary bins is through visual determination
(Datta & Stephens, 1990; Nordstrom, Fuglevand & Enoka, 1992; Schmied & Descarreaux,
2010). Only bins from the −100 to +100 ms region of the histogram were used in
analysis. First, the baseline bin count was calculated as the mean bin count of the
region less than −60 and more than 60 ms (i.e., bins from −100 to −60 ms and 60
to 100 ms). This baseline bin count was subsequently subtracted from each original
bin count. Then, the new bin counts were progressively summed across the histogram.
Each bin in this cumulative sum was then divided by the baseline mean count of the
original histogram to produce a ‘‘normalized’’ cumulative sum graph (Ellaway, 1978).
Large increases or decreases in bin counts are seen as deflections in the graph. Large,
positive inflects near time 0 may indicate greater synchronization and are judged by an
investigator. An example of this plot is shown in Fig. 2A, with boundaries chosen by a
user highlighted.

The next method, demonstrated by Keen & Fuglevand (2004) and Keen et al. (2012), also
uses the same initial cumulative sum (cumsum) technique across the bins from −100 to
+100ms. However, peak boundaries were determined algorithmically. First, the maximum
and minimum bin count values of the cumulative sum graph were found and subtracted
to calculate the range in values. Peak boundaries were considered the bins in the histogram
that corresponded to 10 and 90% of this range. As a caveat, this method assumes that
the baseline sections of the histogram (i.e., the non-peak regions on the outside) remain
relatively stable or flat. If there is considerable variability in bin count of the baseline region,
the 10 and 90% bins may not fall within the expected deflection near time 0 and may cause
an unreasonably large peak width. The peak was considered significant if its mean bin count
exceeds the sum of the mean and 1.96 times the standard deviation of the baseline bins
(again considered as−100 to−60ms and 60 to 100ms). If no significant peak was detected,
synchronization indices were calculated from the ±5 ms region of the histogram. When
analyzingmultiple pairs for synchronization, it is recommended that users use cautionwhen
interpreting peak location andwidth as this±5ms defaultmay obscure the actual peakwhen
aggregated together.

The third peak determination method included is the z-score technique (Contessa,
Adam & De Luca, 2009; Defreitas et al., 2014). In this method, a 95% confidence interval
is calculated from a ‘‘shuffled’’ version of the experimental histogram. This shuffled
histogram represents the correlation of the two motor unit trains if they were independent.
The parameters taken from the experimental histogram to create this new histogram are the
range (taken as ± mean interspike interval (ISI)) and the number of recurrence intervals
(or total counts in the histogram). Then, a random sample equal in size to the number of
recurrence intervals from the experimental histogram is taken from between ± mean ISI.
This sample is drawn from a uniform distribution where each value between ± mean ISI

Tweedell and Tenan (2019), PeerJ, DOI 10.7717/peerj.7907 6/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.7907


has an equal probability of being picked. The resulting sample is then binned just like the
original data to create this ‘‘shuffled’’ histogram. Because it is randomly sampled, there
is still variability in the bin counts. The technique essentially redistributes the recurrence
intervals evenly across the entire histogram. The justification for reshuffling is that it
keeps the probabilistic nature of the data (i.e., variation in bin count) but removes the
interdependence of the point processes so as to test the null hypothesis that the distribution
is uniform (De Luca, Roy & Erim, 1993). Because of this assumption, we consider each
bin count a Bernoulli event with a binomial distribution and each bin can be assessed
against the same confidence interval. The mean and standard deviation of bin counts of
this shuffled histogram is used to calculate this 95% confidence interval (Eq. (1)).

Significance Threshold= x+

1.96×

√∑
(x−x)2

n

. (1)

Any bins in the experimental histogram within ±10 ms of 0 above this threshold were
considered to be significantly greater than expected due to chance and subsequently
used for analysis. If no peak was detected, synchronization indices were returned
as 0. Because the z-score method tests each bin between ±10 ms individually, peak
bins are not necessarily adjacent. In addition, the peak location and duration will be
constant.

Synchronization indices
Once the boundaries for each peak determination method were established, six commonly
used synchronization indices were calculated (Nordstrom, Fuglevand & Enoka, 1992; De
Luca, Roy & Erim, 1993; Kamen & Roy, 2000). The peak of the histogram consisted of
two different regions; the region of counts that are expected due to chance and the
region containing ‘‘extra’’ counts more than what is expected due to chance (Fig. 2B).
These extra counts are the number of counts in the peak bins over a certain threshold.
In the Z -score method, this is the significance threshold calculated from the shuffled
histogram. In the Visual method, the threshold is the baseline mean bin count. The
total counts in peak consists of the summation of the regions. Synchronization indices
quantify the relationship between these different regions. The CIS index is commonly used
because it allows for normalization with respect to trial duration. Nordstrom, Fuglevand
& Enoka (1992) developed the CIS because most other indices available at that time were
influenced by discharge rate. The k ′ index represents the ratio of all counts in the peak
to the expected counts, often calculated as the baseline mean. The k ′−1 is similar but
only includes the counts considered extra, or more than expected due to chance. The
E and S indices represent the ratio of the extra counts in the peak and the number of
discharges from the reference unit and both units, respectively. The Synch Index (SI) is
very similar to the E index; however, it is the ratio of the extra counts in the peak to half
the total counts in the histogram. Their specific equations are listed below. The larger
the magnitude of the indices, the higher the chances that the motor units are firing in
synchronization.
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CIS=
extra counts in peak
duration of trial (s)

k ′=
total counts in peak

expected counts in peak

k ′−1=
extra counts in peak

expected counts in peak

E=
extra counts in peak

number of discharges from reference motor unit

S=
extra counts in peak

total number of discharges from both motor units

SI=
extra counts in peak

total counts
2

.

Along with the synchronization indices listed above, the peak significance, duration and
peak center were also calculated. These refer to the z-score of the peak, the width of the
peak and the bin location of the center of the peak, respectively, to help characterize the
latency of synchronization.

MotoRneuron package implementation
This section details the implementation of the motoRneuron package that was used
for synchronization analysis. MotoRneuron was configured on a Windows 10 computer
(Enterprise V. 1703. Intel R© Core TM 2.80 GHz, x64-based processor). The toolbox is under
theGNUGeneral Public License version 2. Example code is provided throughout to instruct
readers on its use. In addition, help files for specific details about their functions are included
within the package itself. It is highly recommended to download R and RStudio in order
to follow along with the sample scripts provided. Briefly, R uses command-line scripting
to perform functions on data within the working environment. Common data formats for
R are vectors, matrices, lists, and data frames, which can be imported into the working
environment from any number of formats, including text or csv files. MotoRneuron
leverages many functions not included in base R which are automatically incorporated by
downloading the following add-on packages from Github or the Comprehensive R Archive
Network (CRAN): ‘dplyr’, ‘ggplot2’, ‘dygraphs’, ‘magrittr’, and ‘tseries’ (Milton-Bache &
Wickham, 2014; Trapletti & Hornik, 2018; Vanderkam et al., 2018; Wickham et al., 2018a;
Wickham et al., 2018b).

To access motoRneuron through R and all the functions, sample data, and help files
wherein, the following functions are called in the console of RStudio. ‘‘install.packages’’
will automatically download the package from CRAN. ‘‘library ’’ will attach the packages
items to your working environment for use.

> install.packages(‘‘motoRneuron’’)

> library(motoRneuron)

The code repository can also be found in Github at the following URL: https:
//github.com/tweedell/motoRneuron.
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Motor unit data collected for this manuscript is automatically included in the package
and accessible with the following code.

> Sample_data <- motoRneuron::motor_unit_data

The data format is a data frame time series of two concurrently active motor units,
named motor_unit_1 and motor_unit_2. Here we provide the code to read in the data and
reduce into the constituent motor units discharge times for further use in the package.

> motor_unit_1 <- subset(Sample_data, select = Time, motor_unit_1 ==

1)

> motor_unit_1 <- as.vector(motor_unit_1$Time)

> motor_unit_2 <- as.vector(subset(Sample_data, select = Time,

motor_unit_2 ==1)

> motor_unit_2 <- as.vector(motor_unit_2$Time)

Below is the output from R for the two motor unit discharge vectors showing the first
six time points by calling the function head. For example, the first three discharge times for
motor_unit_1 are at 0.035, 0.115, and 0.183 s, while motor_unit_2 discharged at 0.1, 0.205,
and 0.298 s.

> head(motor_unit_1)

## [1] 0.035 0.115 0.183 0.250 0.306 0.377 ...

> head(motor_unit_2)

## [1] 0.100 0.205 0.298 0.377 0.471 0.577 ...

The primary function of motoRneuron to analyze these motor units ismu_synch, which
completes all the steps previously described above. The function’s syntax and six formal
arguments are:

mu_synch(motor_unit_1, motor_unit_2, method, order, binwidth, plot)
Motor_unit_1 and motor_unit_2 arguments are the vectors of the discharge times of

two motor unit action potential trains. The distinction between the reference and event
unit is made automatically within the function and is output as a part of the motor unit
characteristics.Method indicates which method(s) of cross-correlation peak determination
is to be used, while order and binwidth specifies how many orders of recurrence intervals to
calculate and the size of the bins for the histogram, respectively. The default argument of
order is set at 1, indicating only first order intervals are to be used; however, the function is
flexible enough to handle any order input by the user. Additionally, the binwidth argument
is set at a default of 0.001 s or 1 ms. This allows for appropriate resolution in short-term
synchronization measurements. The following R scripts was used to call the mu_synch
function to perform all three methods for first order recurrence intervals with a bin size of
1 ms.

> Results <- mu_synch(motor_unit_1, motor_unit_2, method = c(‘‘Visual’’,

‘‘Zscore’’, ‘‘Cumsum’’), order = 1, binwidth = 0.001, plot = FALSE)

Each individual method can also be called separately with their own respective
functions. Visual_mu_synch, Cumsum_mu_synch, and Zscore_mu_synch use the same
formal arguments as mu_synch, except for method. What is returned from these functions
is a list of individual motor unit characteristic data along with a list of all synchronization
indices. Characteristics for each motor unit included are the number of discharges, the
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Figure 3 RStudio Graphical User Interface. R integrated development environment RStudio’s graphical
user interface. The interface is made up of four panels: (A) R script panel, (B) Console, (C) Global Envi-
ronment, (D) plot panel depicting an example cross-correlation histogram.

Full-size DOI: 10.7717/peerj.7907/fig-3

mean interspike interval (ISI), all ISI’s, and the intervals for each specified recurrence order.
The plot argument takes a TRUE or FALSE to indicate whether the resulting histogram
will be displayed or not.

Recurrence_intervals and bin are support functions used within the synchronization
functions to compute the recurrence intervals and discretize the data for the histogram, but
they can also be called separately for individual use. A plot_bins function is also available
that will display the associated histogram in the Plot window of RStudio (Fig. 3D). This
is useful for visually checking data for abnormalities prior to calculating synchronization.
The code below creates an R list named ‘first_order_intervals’ that contains the motor unit
characteristic data along with the first order recurrence intervals.

> first_order_intervals <- recurrence_intervals(motor_unit_1,

motor_unit_2, order = 1)

To access just the intervals, use the ‘$’ operator to index them. Below, the head function
is used again just to view the first six elements of the first order intervals.

> head(first_order_intervals$‘1‘)

## [1] -0.065 0.015 -0.022 0.045 -0.048 0.008 ...

Now these intervals are input to the bin function, along with the user-defined bin width,
to discretize the intervals into bins for the detection peaks. A data frame ‘binned_data’ is
created with the code using a bin width of 1 ms. The resulting data frame contains a column
depicting the bin, or the amount of time in second before (negative) or after (positive) the
reference motor unit discharge, and the frequency of occurrence at that interval. This data
frame can be put directly into the plot_bins function to display the histogram (such as in
Fig. 3D).
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Table 1 Motor unit synchronization indices from the flexor digitorumsuperficialis. Time-domain syn-
chronization indices calculated from a pair of motor unit action potential trains collected from the flexor
digitorum superficialis during a 20% isometric finger flexion task.

Synchronization index Visual Cumsum Z -score

CIS (impulses/s) 2.70 2.16 1.71
k ′ 4.64 3.80 4.29
k ′−1 3.64 2.80 3.29
E 0.26 0.21 0.17
S 0.11 0.09 0.07
SI (%) 0.26 0.21 0.17
Peak Duration (s) 0.010 0.010 0.011
Peak Center (s) −0.004 0 0

> binned_data <- bin(first_order_intervals$‘1‘, binwidth = 0.001)

> head(binned_data)

## Bin Freq

1 -0.101 1

2 -0.100 0

3 -0.099 0

4 -0.098 0

5 -0.097 0

6 -0.096 0

> plot_bins(binned_data)

RESULTS
The pair of flexor digitorum superficialis motor units tested for synchronization were
concurrently active for 29.9 of the 30-second isometric, trigger-finger flexion task.
According to the results of the mu_synch function, the first motor unit discharged 443
times, with a mean ISI of 0.068 s. The secondmotor unit discharged 307 times, with a mean
ISI of 0.098 s. Synchronization indices and peak characteristics are displayed in Table 1.

DISCUSSION
The example motor unit pair in the current study analyzed by the new motoRneuron R
package demonstrated a high level of synchronization overall. For comparison, Keen et
al. (2012) used the cumsum method for motor unit pairs in the FDS as well, and found
the mean CIS and k ′ indices (mean ± sd) to be 0.4 ± 0.21 impulse per second and 1.55
± 0.34, respectively. While differences in individual results from previous studies like
this are useful, these comparisons are difficult with such disparate methodologies and
indices. Indeed, results from the current study suggest different methods may produce
different interpretations about synchronization. For example, for the commonly cited
CIS, the Visual method indicated an increase of approximately 1 impulse per second
compared to the Z -score method. This 1 impulse per second difference represents 45%
difference between the visual and z-score methods of CIS in the FDS. This singular example
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demonstrates how a lack of consensus in MU synchronization methodologies may lead to
substantially differing results between studies.

There are, however, limitations to using motoRneuron and to interpreting motor
unit synchronization in general. The primary limitation is that the package is currently
only developed to analyze single pairs of motor units. Some researchers argue that the
notion that common input strength can be inferred from time-domain synchronization
is overreaching and that synchronization is just a product of firing rate characteristics
(Kline & De Luca, 2016). Still other researchers postulate that single motor unit analyses
are too narrow of a view, as a muscle can consist of hundreds of motor units. They argue a
population-based approach should be taken to look at the common drive within the motor
neuron pool as the primary determinate of force output (Farina & Negro, 2015). In the
future, the package can be expanded to address such questions about motor neuron pool
common drive with coherence analyses or frequency-domain characterization. The next
limitation is that the number of motor unit firing instances, and subsequently the number
of recurrence intervals, greatly affects the shape of the cross-correlation histogram. If there
are too few, an accurate picture of peak significant cannot be made. This can also been
seen in the current experimental data (Fig. 2). The number of recurrence intervals used to
generate histograms in previous studies has been reported in the range of approximately
300–3,000 (Schmied & Descarreaux, 2010; Defreitas et al., 2014; Schmied, Forget & Vedel,
2014). While no specific limit has been provided within the literature, it is recommended
that visual inspections of the histograms be made to ensure adequate data quality. Finally,
while the program and packages discussed in the paper are freely available, synchronization
analyses still requires the use of expensive hardware and software to collect and decompose
electromyography. As these technologies become cheaper, sources like R will likely play a
bigger role in facilitating better analyses.

MotoRneuron is written in the R programming language, which provides an open-
source platform to perform data and statistical analysis on motor unit data. The package
also allows for the visualization of these analyses through R’s powerful and flexible graphics
capabilities. An advantage to R, as alluded to before, is its robust statistical computing.
Using the R environment allows for direct access to many statistical packages. The ‘‘stats’’
package comes included in base R so many statistical tests are immediately available for
testing synchronization metrics. This eliminates the need for transforming and importing
data into 3rd party statistical software, such as SAS and SPSS. Simple tests such as t -tests
and ANOVAS are common, while more complex, multi-level models are available. Bugs
or errors in software are common in open-source software like R. As this is the first stable
version of the motoRneuron package, it is possible that users will notice performance
issues or errors stemming from R version fragmentation or other sources. Users are urged
to email any errors or issues found in motoRneuron to the package maintainer (Andrew
Tweedell andrew.j.tweedell.civ@mail.mil). Errors that can be fixed will be updated in new
versions of the package as they are found. As such, it is important to update the package
continually to guarantee efficient performance.
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CONCLUSION
MotoRneuron is a free R package containing a list of functions capable of performing many
different cross-correlation analyses for calculating time-domain synchronization metrics
for use in the motor control field. The detailed steps from this paper enables researchers to
easily examine the many options for calculating and reporting synchronization indices. The
example real-world motor unit data provided suggests these different methods contribute
to differences in measures of synchronization. With this package, new data can be quickly
reconciled with results from previous studies for better physiologic interpretation.

Citation
Researchers using motoRneuron in a published paper should cite this article and indicate
the used version of the package.
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