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Abstract

The complete nucleotide sequence of a tetracycline-resistance gene (tetK)-carrying plasmid

from a Staphylococcus saprophyticus isolate from jeotgal, a Korean high-salt-fermented

seafood, was determined. The plasmid, designated pSSTET1, was 4439 bp in length and

encoded typical elements found in plasmids that replicate via a rolling-circle mechanism,

including the replication protein gene (rep), a double-stranded origin of replication, a single-

stranded origin of replication, and a counter-transcribed RNA sequence. Additionally, the

plasmid recombination enzyme gene (pre), which may be involved in inter-plasmid recombi-

nation and conjugation, was found. Each gene exhibited >94% sequence identity with those

harbored in other Staphylococcus species. pSSTET1 was conditionally transferred to

Staphylococcus species in a host-dependent manner and transferred to an Enterococcus

faecalis strain in vitro. Antibiotic susceptibility of the transconjugants was host-dependent

and transconjugants maintained a tetracycline-resistant phenotype in the absence of selec-

tive pressure over 100 generations.

Introduction

For decades, antibiotic resistance studies of bacteria have mainly focused on clinically-impor-

tant species that are directly exposed to antibiotics; however, antibiotic-resistant bacteria are

found in diverse niches including soil, water, foods, and the gastrointestinal tract. Recently,

many studies have speculated that commensal bacteria may act as reservoirs of antibiotic resis-

tance genes that can be transferred to other resident intestinal bacteria or transient bacteria

that pass through [1]. The intestinal microflora is a potential source of antibiotic-resistant

pathogens and the food chain is considered as one of the possible transfer routes of antibiotic

resistance from animal and environment-associated antibiotic-resistant bacteria into the

human gastrointestinal tract where these genes may be transferred to pathogenic and opportu-

nistic bacteria [2, 3]. In this context, fermented and raw foods harboring large numbers of
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living bacteria have received increasing attention as potential vehicles of antibiotic resistance

determinants [4], which can be transferred to the gut microbiota.

In our cultivable bacterial community analysis of two types of jeotgal, a Korean high-salt-

fermented seafood, coagulase-negative staphylococci (CNS) was identified as a predominant

bacterial group [5]. The following safety and technological property assessments of CNS iso-

lates to select safe and efficient starter candidates, a number of isolates exhibiting resistance to

one or more antibiotics were identified [6, 7]. Among the antibiotic-resistant CNS isolates, a

Staphylococcus saprophyticus strain KM1053 exhibited resistance to penicillin G and tetracy-

cline [6, 7]. A known tetK-specific PCR primer set successfully amplified a partial tetracycline

efflux protein gene tetK from strain KM1053 [8]. The detection of tetracycline-resistant bacte-

ria in fermented food warrants special attention because tetracycline is the first-line treatment

for a number of infections in many parts of the world [9] and tetracycline resistance in most

bacteria is acquired through new genes, often associated with mobile elements such as plas-

mids [10, 11]. Food-originated bacteria harboring a mobile tetracycline resistance gene can

contribute to the spread of resistant genes to human microbiota and pose a risk to human

health.

Despite several reports on the advent of tetracycline-resistant bacteria in fermented foods,

studies on the transfer of tetracycline-resistant genes in food-associated bacteria, especially

CNS, have been rarely reported [12, 13]. We characterized the tetK-carrying plasmid of S.

saprophyticus strain KM1053 and illuminated its transferability between species involved in

food fermentation to demonstrate the possibility of horizontal antibiotic resistance gene trans-

fer within food matrices.

Materials and methods

Bacterial strains and cultures

CNS strains, S. saprophyticus KM1053, Staphylococcus equorum KM1031, and S. equorum
KS1039 isolated from jeotgal and stored in our stock cultures, were used in the current study

[5]. Strain KM1053 was used to characterize the tetK-encoded plasmid and to assess the tetK-

encoded plasmid transferability as a donor strain. S. saprophyticus KM1053 has been deposited

in the Korean Collection for Type Cultures under resource number KCTC 43017. Two S.

equorum strains KM1031 and KS1039 used as recipient strains for plasmid transfer experi-

ments have been deposited in the Korean Culture Center of Microorganisms under resource

numbers KCCM 43181 and KCCM 43182, respectively (Table 1). Staphylococcus aureus
USA300 LAC strain, a clinical isolate [14, 15], and Enterococcus faecalis OG1RF, a human

Table 1. Bacterial strains examined in this study and their corresponding MICs.

Strain Origin Phenotype MIC (mg/l) against antibiotics Reference

Tet Chl Ery Lin

S. saprophyticus KM1053 Myeolchi-jeotgal TetR, PenR 32 <0.5 <0.5 <0.5 [6]

S. equorum KM1031 Myeolchi-jeotgal EryR, ChlR, LinR, PenR <0.5 128 32 1024 [36]

S. equorum KS1039 Saeu-jeotgal <0.5 <0.5 <0.5 <0.5 [7, 50]

S. aureus USA300 LAC Human AmpR, EryR 2 8 64 0.5 [14, 15]

E. faecalis OG1RF Human LinR <0.5 4 2 256 [16]

Strain KM1053 has been deposited in the Korean Collection for Type Cultures under resource number KCTC 43017. Strains KM1031 and KS1039 have been deposited

in the Korean Culture Center of Microorganisms under resource numbers KCCM 43181 and KCCM 43182, respectively.

Abbreviations: Amp, ampicillin; Chl, chloramphenicol; Ery, erythromycin; Lin, lincomycin; Pen, penicillin G; Tet, tetracycline.

https://doi.org/10.1371/journal.pone.0213289.t001
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isolate [16], were adopted as recipients for plasmid transfer experiments. All strains except E.

faecalis OG1RF were primarily cultured in tryptic soy agar (TSA; BD Diagnostic Systems,

Sparks, MD, USA) and tryptic soy broth (TSB; BD Diagnostic Systems) at 30 ˚C for 24 h to

maintain their phenotypic traits. E. faecalis OG1RF traits were maintained in De Man-Rogosa-

Sharpe (MRS; BD Diagnostic Systems) media at 30 ˚C for 24 h.

Identification and sequence analysis of the tetK-carrying plasmid

Plasmid DNAs were extracted from strain KM1053 with a plasmid mini prep kit (Inclone Bio-

tech, Daejeon, Korea) after lysostaphin (40 μg/ml) treatment at 37 ˚C for 30 min to lyse the cell

walls. The plasmid DNAs were then used as templates for the PCR amplification of the tetK-

carrying plasmid by gene walking. PCR primers complementary to the partially determined

tetK gene were used to amplify its flanking regions and the full plasmid sequence was deter-

mined by PCR walking. PCR amplification was conducted over 30 cycles which included dena-

turing at 95 ˚C for 1 min, annealing at 58 ˚C for 1.5 min, and extending at 72 ˚C for 1 min

with Ex Taq polymerase (Takara, Kyoto, Japan) using a T3000 Thermocycler (Biometra, Got-

tingen, Germany). PCR products were purified using a gel and PCR purification kit (Inclone

Biotech). DNA sequences were determined by a custom service provided by Bionics (Seoul,

Korea). DNA and amino acid sequence data analyses were performed using the Lasergene

sequence analysis software package (Dnastar, Madison, USA). Sequence similarities were iden-

tified using the BLASTX program at the National Center for Biotechnology Information web-

site (http://blast.ncbi.nlm.nih.gov/).

Plasmid transfer experiment

To determine the transferability of the tetK-carrying plasmid, the S. saprophyticus KM1053

strain was mated with different recipient strains using the broth mating method [17]. Recipi-

ent strains were tetracycline sensitive and conferred specific antibiotic resistance to facilitate

transconjugant selection. Logarithmic phase donor cells cultured in Mueller—Hinton (MH)

broth (BD Diagnostic Systems) were mixed with logarithmic phase recipient cells cultured in

MH broth at a 1:10 ratio and incubated at 30 ˚C for 3 h. The mixture was spread onto the sur-

face of TSA plates supplemented with 10 mg/l tetracycline and other appropriate antibiotics.

Other antibiotics were used at the following concentrations: erythromycin, 10 mg/l; and linco-

mycin, 30 mg/l. Transconjugants were selected after incubation at 30 ˚C for 24 h, and were

confirmed by colony PCR with primers corresponding to tetK [7, 18]. Recipient traits of trans-

conjugants were confirmed by 16S rRNA gene sequence analysis.

Minimum inhibitory concentration (MIC) determination

Antibiotic MICs were determined by the broth microdilution method as described previously

[19]. Each antibiotic was prepared with serial two-fold working dilutions in deionized water

and the final concentration of each antibiotic in one 96-microwell plate ranged between 0.5

and 4096 mg/l. Bacterial strains were cultured twice in TSB and matched a McFarland 0.5 tur-

bidity standard (bioMérieux, March L’Etoile, France). Each suspension was diluted a further

1:100 in cation-adjusted MH broth to achieve an adequate inoculum concentration. The final

inoculum density was 5 × 105 colony-forming units (cfu)/ml per well on 96-microwell plates.

The MIC of each antibiotic was recorded as the lowest concentration where no growth was

observed in the wells after incubation for 18 h or 24 h. MIC results were confirmed by at least

three independently performed tests.
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Evaluation of plasmid stability

The segregational stability of the tetK-encoded plasmid in S. saprophyticus KM1053 and trans-

conjugants was determined as described previously [20]. Briefly, a single colony was inoculated

into selection-pressure-free TSB and cultured at 30 ˚C for 24 h. The saturated culture was

diluted to 10˗3 in fresh TSB, and this same dilution was repeated into fresh TSB every 24 h.

Each culture sample was spread on TSA plates following serial dilution and incubated over-

night at 30 ˚C. Individual colonies were picked and streaked onto TSA plates containing 10

mg/l tetracycline to check for tetracycline resistance. Additionally, possession of pSSTET1 was

confirmed by colony PCR with primers (P126: 5'- GTCACCTCAAGTAAAGAGG-3' and

P190: 5'- CAGAGGGAACAGGTATAGC-3'), which can amplify the plasmid, and sequence

analysis of the amplicon.

Results

Nucleotide sequence of the plasmid carrying tetK
The sequence of partially amplified tetK from tetracycline-resistant S. saprophyticus strain

KM1053 was identical to that of the previously characterized tetK on pPM1 of S. aureus strain

PM1 [21]. We successfully amplified and confirmed a plasmid of 4439 bp in size carrying tetK
by PCR gene walking and designated it as pSSTET1.

Sequence analysis revealed that pSSTET1 contains elements that are typical of plasmids that

replicate via a rolling-circle mechanism: the entire replication protein gene (rep), a double-

stranded origin of replication (dso), a single-stranded origin of replication (sso), and an origin

of transfer (oriT), together with tetK and a plasmid recombination enzyme gene (pre) (Fig 1).

pSSTET1 had two nucleotides that differed from S. aureus USA300_FPR3757 pUSA02. One

polymorphic site (G1417A) resulted in an amino acid difference in the TetK protein from the

two organisms (S1 Fig). The other site (G3276A) may not cause a functional difference

between the two plasmids. The nucleotide sequence of pSSTET1 has been deposited in the

GenBank database under accession number MF445422.

Characterization of pSSTET1

pSSTET1 contains three open reading frames corresponding to tetK, pre, and rep, which are

transcribed in the same direction (Fig 1). The putative tetK gene encoded on pSSTET1 pro-

duces a protein of 430 amino acids, which exhibits 99.8% and 61.2% sequence identity with

TetK from S. aureus USA300_FPR3757 pUSA02 [22] and TetL from Lactobacillus sakei (acces-

sion number: WP_012290101.1), respectively. TetK is recognized as an efflux protein that

extrudes tetracycline. The tetK gene of pSSTET1 might confer tetracycline resistance to strain

KM1053.

The pre gene of pSSTET1 encodes a putative plasmid recombination enzyme of 413 amino

acids. Pre has been detected in Gram-positive bacteria where it has been shown to mediate

recombination with a co-resident plasmid and conjugative plasmid transfer through the

interaction of Pre and oriT, which contains the recombination site A (RSA) [23, 24]. RSA is a

recognition site of Pre and harbors a nick site in the sequence (50-AAATAAGTCTAGTGTGTT
AGACTT-30). pSSTET1 has a RSA site at nucleotides 1548–1571 within its oriT and the same

structure has been identified from other staphylococcal plasmids (Fig 1 and S1 Fig). We

assume that the gene organization in Staphylococcus lentus 44 pSTE2 and S. aureus M1282

might be generated by recombination events at RSA sites (Fig 1). The heterologous cointegrates

found in S. lentus 44 pSTE2 and S. aureus M1282 have been suggested to function as interme-

diates in the evolution of larger plasmids carrying multiple antibiotic resistance genes [25].
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The emergence of multiple antibiotic-resistant plasmids as well as tetK-integrated chromo-

somes is expected.

The putative rep product comprises 314 amino acids and exhibits 100%, 99.7%, and 99.4%

sequence identity with the Rep_trans proteins encoded on S. aureus USA300_FPR3757

pUSA02 [22], Staphylococcus epidermidis ATCC 12228 pSE-12228-01 [26], and Staphylococcus
haemolyticus NW19A 5C2&5c cassette [27], respectively (Fig 1). Rep_trans protein, a replica-

tion initiation factor involved in rolling-circle replication, has been detected in various Gram-

negative and positive bacterial plasmids and has several conserved protein motifs [28, 29]. Car

and colleagues [30] suggested that the conserved motifs of the Rep_trans protein were: R140,

D142, A144, D146, R212, and E214. The same active sites were found in the putative Rep_trans

protein of pSSTET1 and two additional conserved motifs (G262 and T270) generally found in

the Rep protein were also detected in the pSSTET1 Rep_trans protein (S1 Fig). Typically, the

Rep protein including the Rep_trans protein is reported to recognize the dso-containing nick

site [31] and pSSTET1 possesses a dso site (positions: 3456–3479) within the open reading

frame of rep (positions: 3388–4332). Also, pSSTET1 possesses a recombination site B sequence

(RSB) at nucleotides 2870–2884 (50-TTTATGCCGAGAAAA-30) and a 6-bp consensus

sequence (CS-6) at nucleotides 2923–2928 (50-TAGCGA-30), which are the typical conserved

sequences of sso [32]. The sso gene is known to have several inverted repeats that can generate

stem-loop structures, which are known to be important in lagging strand initiation [33]. We

detected two putative hairpin structures at positions 2857–2934, when an RNA secondary

structure prediction program was employed (http://rna.urmc.rochester.edu). We observed a

counter-transcribed RNA (ctRNA) sequence in pSSTET1 (3289–3418) that was located

upstream of rep and was transcribed in the opposite direction. The ctRNA from the ctRNA

Fig 1. tetK genes and their flanking regions found in Staphylococcus species. Shaded boxed regions possess over 99% nucleotide sequence identity with pSSTET1.

All sequences of dso, sso containing RSB, and oriT containing RSA identified in this study are indicated with red vertical lines. Abbreviations: oriT, origin of transfer;

sso, single-stranded origin of replication; dso, double-stranded origin of replication; tetK, tetracycline resistance gene; lnuA, lincomycin resistance gene; ermC,

erythromycin resistance gene; pre, plasmid recombination enzyme gene; rep, replication protein gene; repC, truncated replication protein gene; rep_1, replication

protein gene; repL, plasmid replication protein gene; tnp, IS431 transposase gene; IS6, IS6 family transposase gene; and HP, hypothetical protein gene.

https://doi.org/10.1371/journal.pone.0213289.g001
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sequence may regulate rep transcription by binding to its paired sequence within the promoter

sequence of rep [34]. A putative promoter for ctRNA that consists of a ˗35 region (50-TTGAAT-

30, 3413–3418) and a ˗10 region (50-TATACA-30, 3389–3394) is also present.

Horizontal transfer of pSSTET1 by conjugation

Interspecific transfer of pSSTET1 was investigated by mating strains S. saprophyticus KM1053

and S. equorum KM1031, and by selecting for lincomycin resistance conferred by lnuA. Trans-

conjugants showing phenotypic lincomycin and tetracycline resistance were detected at a fre-

quency of 2.8 × 10−6 (Table 2). The plasmid was also successfully transferred to E. faecalis
OG1RF, at frequencies of 1.2 × 10−5. However, pSSTET1 was not transferred into S. equorum
KS1039 and S. aureus USA300 LAC.

The MIC for tetracycline of the donor strain S. saprophyticus KM1053 harboring pSSTET1

was 32 mg/l (Table 1). The S. equorum KM1031 and E. faecalis OG1RF transconjugants exhib-

ited similar MICs to tetracycline (Table 2). Transconjugants exhibited lincomycin resistance,

while the value was not the same as that of the recipients. The same phenomenon has been

reported in previous studies that showed variation in the antibiotic susceptibility of transcon-

jugants [35, 36]. Antibiotic susceptibility as well as the plasmid transfer ratio might be recipient

strain-dependent characteristics.

Segregational and structural stability of pSSTET1

The segregational and structural stability of pSSTET1 in donor and transconjugant strains was

examined to validate the stability of the pSSTET1 replication system in wild-type hosts. The

donor stain and transconjugant strains of S. equorum KM1031 and E. faecalis OG1RF exhib-

ited tetracycline resistance after 100 generations in the absence of tetracycline. Importantly,

the plasmid profile of the donor strain after 100 generations was the same as the original pro-

file, without any obvious alterations in size for any of the plasmids examined and pSSTET1

was amplified from the donor and transconjugant strains (S2 Fig).

Discussion

In the current study, plasmid pSSTET1 carrying the tetK gene was identified from S. saprophy-
ticus isolated from fermented seafood. The plasmid harbors three genes, in the order tetK, pre,

and rep, and the same gene organization is also identified in Staphylococcus spp. of human and

animal origin (Fig 1). Before our identification of pSSTET1, the same gene organization has

been identified from coagulase-positive S. aureus as well as CNS including S. epidermidis,

Table 2. In vitro transfer of the tetK gene from S. saprophyticus to Gram-positive recipient strains.

Mating organism Cell count (cfu/ml) Transfer rate (T/R) MIC of

transconjugant

Donor strain Recipient strain Donor Recipient Transconjuganta Tet Lin

S. saprophyticus KM1053 S. equorum KM1031 5.2 × 108 3.4 × 108 9.5 × 102 2.8 × 10−6 >32 >512

S. saprophyticus KM1053 S. equorum KS1039 2.5 × 109 9.4 × 107 –

S. saprophyticus KM1053 S. aureus USA300 LAC 1.6 × 109 7.3 × 108 –

S. saprophyticus KM1053 E. faecalis OG1RF 5.0 × 108 1.4 × 108 5.8 × 103 1.2 × 10−5 >32 >128

Cell counts were repeated three times independently and the mean values of the replicates are presented.
a Transconjugants were confirmed by phenotypic resistance and 16S rRNA gene sequence analysis.

R, recipient; T, transconjugant.

https://doi.org/10.1371/journal.pone.0213289.t002
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Staphylococcus hemolyticus, and S. lentus. Although CNS are ubiquitously distributed in a vast

array of natural origin, these CNS species have been mainly detected in skin and mucous

membranes of mammals [37–40]. Among the three species, S. epidermidis and S. haemolyticus
represent the major nosocomial pathogens as typical opportunists. While, S. saprophyticus has

been frequently identified from fermented foods together with S. equorum, Staphylococcus suc-
cinus, and Staphylococcus xylosus [41]. In this context, CNS species of human and animal ori-

gin have higher potential chances to be exposed to antibiotics than those from foods. The

advent of a food-originated S. saprophyticus harboring pSSTET1 insinuates the plasmid can be

transferred in the absence of tetracycline exposure and our conjugal transfer experiment

proved it.

The advent of three genes in pSSTET1 is not restricted to plasmids (Fig 1). S. aureus PM1

pPM1 and the S. haemolyticus NW19A 5C2&5c cassette have the same genetic organization of

pSSTET1 being located within two transposases possessing the insertion sequence IS431.

IS431, a well-known mobile genetic element found in S. aureus, is 782 bp long (IS431mec) and

contains a putative transposase gene and 14- to 22-bp terminal inverted repeats [42, 43]. IS431

was reported to transfer a gene(s) or entire plasmid into other replicons or chromosomes. It

has been reported to contribute to the insertion of antibiotic resistance genes into chromo-

somal DNA, as well as the deletion of antibiotic resistance genes from chromosomal DNA

[44]. In addition, Liu and coworkers suggested that IS431 may facilitate the dissemination of

antibiotic resistance genes [45]. The advent of a large plasmid pPM1 and chromosomal DNA

possessing the three genes of pSSTET1 together with transposases raised a question about the

origin of pSSTET1 in strain KM1053. We performed PCR using primer sets that can amplify

IS431 and tetK simultaneously to detect IS431-mediated tetK genes in the chromosome of

strain KM1053; however, the PCR amplicon was not obtained. Strain KM1053 might acquire

pSSTET1 by an encounter with a donor under specific environmental pressure and can trans-

fer pSSTET1 into other bacteria. Considering that S. aureus USA300_FPR3757 harboring

pUSA02, a plasmid with the same structure as pSSTET1, was isolated from the USA, which is

geographically distant, indicates that small plasmids with a similar structure to pSSTET1 are

widely distributed and may be transferred into other bacteria.

In vitro transfer of pSSTET1 into a S. equorum strain provided evidence of the spread of

plasmids with the pSSTET1 structure between Staphylococcus species in the same niche. How-

ever, unsuccessful transformation of S. equorum KS1039 and S. aureus USA300 LAC insinu-

ates that the horizontal transfer of pSSTET1 to Staphylococcus species is conditional. Clinical

S. aureus isolates are reputedly difficult to manipulate genetically and horizontal gene transfer

is blocked by their restriction-modification system [46]. In the case of S. equorum KS1039, the

CRISPR/Cas system, that prevents the uptake of foreign DNA, was identified in its genome

[47]. Our plasmid transfer results confirmed the limited gene transfer to pathogenic S. aureus.
This may ease concerns over the spread of antibiotic resistance from food fermentation starter

cultures to pathogenic bacteria and confirms that the presence of transferable genes is not

always linked with transferability. Notably, plasmids with a pSSTET1-type structure have only

been found in staphylococci, while the possession of tetK in Lactobacillus fermentum and Ped-
iococcus pentosaceus isolates from fermented foods has been reported [48]. The successful

transfer of pSSTET1 into E. faecalis OG1RF further confirms the detection of pSSTET1-type

plasmids in lactic acid bacteria. The transferability of pSSTET1 into lactic acid bacteria high-

lights the potential for further spread of tetracycline resistance from food to humans and the

associated risk to human health. Thus, a better understanding of the molecular basis underly-

ing this gene transfer mechanism is required in successive research to prevent the spread of

pSSTET1-type plasmid. As of yet, the exact mechanism underlying pSSTET1 transfer remains

unknown and it cannot be explained by plasmid sequence analysis, as conjugative transfer
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elements such as the relaxase gene have not been found. While, the pre gene detected on

pSSTET1 was reported to encode a protein with a relaxase function involved in mobilization

through the identification of RSA in oriT [49]. In this context, we assume that the pre gene

could be involved in the transfer of antibiotic resistance genes into other strains.

The emergence of antibiotic-resistant bacteria in fermented foods is a global concern. Fur-

ther studies are required to fully understand the mechanisms responsible for the transfer of

antibiotic resistance genes between bacteria. This study is the first to show the transfer of a

mobile tetracycline resistance plasmid from food-originated Staphylococcus species to Entero-
coccus species and highlights the potential for tetracycline resistance gene transfer from Staph-
ylococcus to the human commensal microbiota through food consumption. This study also

confirmed that an antibiotic resistance gene in a mobile element is one of the important crite-

ria in the selection and maintenance of starter cultures.
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S1 Fig. Nucleotide sequence of pSSTET1. All elements involved in the origin for transfer

(oriT), the double-stranded origin of replication (dso), and the single-stranded origin of repli-

cation (sso) region are shown in blue. The recombination site A sequence (RSA), recombina-

tion site B sequence (RSB), and a 6-bp consensus sequence (CS-6) are shown as black boxes.

The nick sites are indicated as blue vertical arrowheads. Putative promoter regions of the rep
and ctRNA genes are highlighted in red. The putative ctRNA stem-loop structure and inverted

repeat sequences are indicated as differently-colored horizontal arrows. The ribosome binding

sites are indicated in bold. The conserved amino acids of the putative Rep_trans protein, R, D,

A, D, R, E G and T, are shown in bold red letters.
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S2 Fig. PCR amplification of pSSTET1 in donor and transconjugant strains for 100 genera-

tions. Strains: 1, S. saprophyticus KM1053; 2, a transconjugant of S. equorum KM1031; a trans-

conjugant of E. faecalis OG1RF.
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