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Differences in ligand-induced protein dynamics
extracted from an unsupervised deep learning
approach correlate with protein-ligand binding
affinities

Ikki Yasuda', Katsuhiro Endo’, Eiji Yamamoto 2 Yoshinori Hirano'? & Kenji Yasuoka =

Prediction of protein-ligand binding affinity is a major goal in drug discovery. Generally, free
energy gap is calculated between two states (e.g., ligand binding and unbinding). The energy
gap implicitly includes the effects of changes in protein dynamics induced by ligand binding.
However, the relationship between protein dynamics and binding affinity remains unclear.
Here, we propose a method that represents ligand-binding-induced protein behavioral change
with a simple feature that can be used to predict protein-ligand affinity. From unbiased
molecular simulation data, an unsupervised deep learning method measures the differences
in protein dynamics at a ligand-binding site depending on the bound ligands. A dimension
reduction method extracts a dynamic feature that strongly correlates to the binding affinities.
Moreover, the residues that play important roles in protein-ligand interactions are specified
based on their contribution to the differences. These results indicate the potential for binding
dynamics-based drug discovery.
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affinities between the target proteins and ligands is one of the

main goals. Various approaches have been proposed and
performed for both physics-based and data-driven methods. In
physics-based approaches, protein-ligand free energy calculations
have been widely conducted using free energy perturbation and
thermal integration methods, and the results agree well with
experimental datal=>. However, despite the high accuracy, the
high-calculation cost has prevented its practical use®. Data-driven
approaches, such as scoring functions for docking, quantitative
structure-activity relationship method with machine learning,
and deep learning methods have been studied over the past few
decades”8. Deep learning approaches can grasp important char-
acteristics automatically from the high-dimensional data of pro-
teins and ligands. The approaches for protein-ligand affinity
prediction have succeeded in finding relevant patterns in 3D
structures” 12 and protein and ligand sequences'®!* using
supervised learning with a sufficient amount of dataset. Although
there are widely used databases such as PDB-bind!> and DUD-
E!6 for protein-ligand-binding data, an efficient approach cannot
be determined if the available dataset is limited!”.

Protein dynamics play an important role in biological phe-
nomena. All-atom molecular dynamics (MD) simulations are
powerful tools that can generate a large amount of dynamic data
and analyze protein dynamics at the atomic level, along with
experimentation!$19 and coarse-grained simulations?0. MD data
analysis for protein dynamics has focused on protein fluctuations,
relaxation time, stability, and state transitions. The commonly
used methods are root mean square deviation, principal com-
ponent analysis, relaxation time analysis, decomposition cross-
correlation maps, and root mean square fluctuation (RMSF)21-24,
For protein and ligand systems, these methods have revealed that
protein dynamics changes before and after ligand binding?>-28.
Recently, machine learning has been combined with MD to utilize
the vast amount of MD data?®. In particular, several machine-
learning-assisted methods succeeded in extracting important
molecular dynamics30-33, and were applied to complex
biomolecules?#-3¢. For instance, VAMPnets>* demonstrated the
kinetics of metastable states of protein folding and unfolding by
Markov states models using deep neural networks (DNNs)
instead of traditional handcrafted procedures. Tsuchiya et al.
compared the time-series trajectories of a protein with or without
a bound ligand using an autoencoder to automatically detect the
allosteric dynamics?>.

Although the various methods for the MD data analysis could
identify changes in ligand-induced protein dynamics, the link
between dynamics and ligand affinity is not fully understood. It
has been experimentally investigated that the large conforma-
tional change at the binding pocket such as transition between
open and closed states of the binding pocket?”38, and ligand-
induced local secondary structure change?8, is related to the
ligand binding affinity. However, it is challenging to estimate the
ligand binding affinity from just the subtle change included by the
short-term MD trajectories®.

In this study, we propose a method to predict binding energies
from subtle change in proteins dynamics upon ligand binding,
using a deep learning approach for MD data analysis®!. In con-
trast to general approaches using descriptors and supervised
machine learning3%40, our method uses raw MD trajectories of a
ligand binding site with different kinds of ligands, and quanti-
tatively measures the differences in the dynamics using unsu-
pervised learning. The method performs (1) dimension reduction
for the dynamics feature and, (2) detection of the residues whose
dynamics significantly changed due to interaction with the
ligands. We verified the method in two systems, bromodomain 4
(BRD4)41:42 and protein tyrosine phosphatase 1B (PTP1B)43:44

I n computational drug discovery, the estimation of binding

systems, which have been used for benchmark of free energy
calculation in previous studies!=>. We indicate a strong correla-
tion between the extracted feature and binding energies and
suggest that the feature relevant to dynamics can work as a
predictor of binding energy. In addition, the significant dynamics
change in the detected residues dictate potential binding between
the residues and the ligand.

Results

Unsupervised learning for ligand-induced dynamics. Here, we
present unsupervised learning procedures to extract features of
protein dynamics and detect residues whose dynamics is highly
influenced by ligand binding (see details in the Method section).
Firstly, to represent protein dynamics, we use local dynamics
ensemble (LDE) that is obtained from MD simulations (Fig. 1a,
b)31. The LDE is defined as an ensemble of short-term trajectories
x of particles of interest, i.e., the binding site residues. We assume
that the local dynamics is affected by ligand interactions, there-
fore it is related to the ligand affinities. Then, the differences in
the LDE distributions between ligand-binding or ligand-free
systems (Fig. 1c) are measured based on Wasserstein
distance*>+49,

W, =B, 0] - By 0] M

where [ is expectation over the probability distribution, the lower
indexes i, j are the systems and y; is the probability distribution of
the LDE of system i. We approximate the optimal function f j; by
DNNs.

The Wasserstein distance is calculated for all pairs of N ligand
systems, resulting in a distance matrix of (N,N) (Fig. 1c). The
high dimension of the distance matrix makes it difficult to extract
simple features based on understanding the global differences in
systems. Therefore, the distance matrix is embedded into low-
dimensional N vectors that represent the systems using a non-
linear dimension reduction. Then, the first and second principal
components are extracted using principal component analysis.
We evaluate the extracted variables by referring to their
correlation to ligand-binding affinities (Fig. 1d and Supplemen-
tary Fig. 1 for the workflow).

In the other branch, we interpret the differences of protein
dynamics using a function g;;(x,),

&%) = B, [1x) - £, )

that shows how each short-term trajectory in system i differs
from the average dynamics of system j (Fig. 1c and Supplemen-
tary Fig. 2). Since g;i(x;) is obtained for short-term trajectory that
includes multiple residues, we could further specify the residues
which are highly related to the Wasserstein distance (Fig. le).
According to g;(x;), we classify the short-term trajectories of
system i into system-i-characteristic and system-j-similar groups,

ng ifggﬁgij(xi)
R (x)<g
ij? gijxi)—gtj

X; are the system-i-characteristic and system-j-similar

(€)

where X g,

groups, and gg, gfj are the higher and lower thresholds. Here, we
set the gg and gfj to the boundaries of the highest and lowest 10%
of all the sampled gj(x;). To clarify the specific dynamics
contributing to the W;;, we examine the residues included in the
LDE by comparing the Xg, XZ groups, i.e., characteristic or non-
characteristic dynamics of system i. We introduce a physical
property to represent short-term trajectories and verify the

property’s correspondence to the distinction of Xg, ij groups.
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Fig. 1 Workflow to detect differences in ligand-induced protein dynamics. a Molecular dynamics (MD) simulations for ligand-free (apoprotein) and
ligand-bound (holoprotein) systems. b Ligand-induced protein dynamics is represented by local dynamics ensemble (LDE), which is an ensemble of short-
term trajectories x of the center of mass of n binding-site residues. ¢ The difference of the LDEs between system i and j is calculated based on Wasserstein
distance W;; using deep neural networks (DNNs) f;. The Wasserstein distances are calculated for all pairs of systems and the distance matrix is obtained. In
addition, each short-term trajectory in system i is represented by the output of the DNNs which is denoted as a function g;(x;). In histogram bottom, high
gii(x)) (green) and low g;(x;) (blue) indicate that the short-term trajectories are characteristic to system i and similar to system j, e.g., characteristic to
apoprotein and similar to holoprotein, respectively. d The matrix of Wasserstein distances is embedded into points in a lower-dimensional space, and
principle component analysis is performed to the embedded points. The first principal component (PC1) is compared to ligand-binding energies. e The
difference detected by g;(x;) is interpreted, and the residues whose dynamics are changed by ligand interactions are examined. For the characteristic and
non-characteristic trajectories, short-term mean square displacement (RMSD) dj is calculated per residue. If the large gaps of d;; are observed between the
characteristic and non-characteristic trajectories, the residues are highly influenced by the ligand.

Here, short-term root-mean-square displacement (RMSD) was
calculated for each residue included in the LDE,
1 1 T

dz](n) = nglg(v T — TO A;o ”rn(t + A) - rn(t)” ) (4)

where 7 is the index for the resides in LDE, Nj; is the number of
short-term trajectories in Xj, T is the time of LDE, T is time
when the short-term RMSD converged to plateau (Supplementary
Fig. 3), r(t) is the first frame of x; on the time f in MD
simulations. If the short-term RMSDs between Xg and XS- are

distinct, i.e., dc(n) < d (n) or d (n) > d (n) the dynamlcs of
the residues contrlbute to Wi

LDE of protein-ligand systems. We performed a total of 13.2-us
all-atom MD simulations [10 ligand-bound (holo) protein and
one ligand-unbound (apo) protein system] to obtain trajectories
of the BRD4 systems (Fig. 2). Three 400 ns independent pro-
duction runs were executed with different initial velocities for
each system. The initial structures of the complexes and the
stability of simulations are shown in the Supplementary material
(Supplementary Figs. 4-6).

The features of protein dynamics from the MD simulation data
were represented using the LDE. The LDE should have an
appropriate selection of particles and time to contain important
dynamics of interest. For the particle selection, we assume that
the behavior of amino acids is sensitive to the presence of a
ligand, i.e., the binding site shows representative dynamics that
are induced by ligand interactions. We note that this selection

includes no information on the bound ligand, making it possible
to directly compare the behavior of the ligand-binding sites
between systems. As for the time, we selected a very short time
frame (128 ps). Interestingly, the protein dynamics in this short
scale varied depending on the species of the binding ligand
(Supplementary Fig. 7). This time scale typically corresponds to
local dynamics of side-chains.

The properties of the LDE with the selection were analyzed
using the function g(x). The g(x) were distributed similarly
regardless of the initial conditions (Supplementary Fig. 8).
Moreover, the local dynamics were distributed evenly throughout
the MD simulations (Supplementary Fig. 9), showing that they
were not influenced by the slow fluctuations. These results
indicated that the local dynamics were robust with respect to the
differences in the initial conditions and long-term dynamics.

Feature for protein dynamics correlates with binding affinity.
The differences of ligand-induced dynamics in the systems were
calculated based on the Wasserstein distances of the LDEs (see
Eq. (1)). The distance matrix indicates that apoprotein system S,
is separated by a relatively larger distance from the holoprotein
system than that between the holoprotein and another holopro-
tein system (Fig. 3a). The distance embedding demonstrates clear
differences in protein’s short-term dynamics in the systems
(Fig. 3b). As shown in the distance matrix, the apoprotein system
So is separated from the holoproteins. Moreover, systems with
lower-affinity ligands tend to position near apoprotein compared
to systems with higher affinity ligands. The link between the first
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principal component (PC1) and binding affinities was quantita-
tively evaluated by comparing it to the binding energies calculated
in a previous study?. Pearson’s product moment correlation
coefficient between PCl and the binding energies was 0.88
(Fig. 3¢).

Fig. 2 Bromodomain 4 (BRD4) system. Molecular surface of BRD4
(Protein Data Bank ID: 20SS) superimposed on ribbon diagram (left
column). The colored (green, red, and blue) meshed molecular surfaces
indicate the ligand binding site. The key residues (Pro81, Val87, and Leu92)
and not detected residue (Asn140) are shown in red and blue meshed
molecular surface on ball and stick models with labels, respectively.
Chemical structures of ligands L1-L10 (right column). The L1 to L10 labels

Residue-level interpretation on ligand-induced dynamics. Since
the feature of dynamic differences, i.e., PCI, indicates ligand
affinity, the interpretation of “difference of dynamics”, i.e.,
Wasserstein distance, provides insights into the mechanisms of
ligand binding, ligand interactions, and protein stabilization. We
examined the difference in dynamics in holo- and apoprotein
systems to find which amino acids were most influenced by the
ligand.

In particular, we compared the apoprotein system to the ligand
3 (RVX-OH) system. Since the ligand 3 system was most distant
on PCI in Fig. 3b, the dynamics difference is most clear in the
ligand 3 and apoprotein systems. Here, characteristic dynamics to
the apoprotein, i.e., apoprotein-like, were detected using g(x) (see
Eq. (2)) and characteristic groups of the trajectories, and the
characteristic behavior was clarified using short-term RMSD for
the residues (see Eq. (4)). Figure 3d compares flexibility for
residues between the three g(x) groups, X7/, X} and X}. Here, X}
is the middle of Xg and ij, i.e., the trajectories in Xf}/’ meet

giSj < glx) < gg The characteristic behavior in the apoprotein
system Xg demonstrated large movements in all amino acids,

indicating that the apoprotein was more flexible than the
holoprotein. The most distinct differences between the groups
are found in Trp81, Val87, and Leu92. Therefore, we concluded
that these residues are most influenced by the ligand, i.e., the key
residues in ligand binding. We estimate that the detected residues
whose dynamics vastly changed by ligand have important roles in
the ligand binding. To verify this, we refer to experimental and
other computational literature on BRD4. Ligand-induced
dynamics changes on Trp81 were observed by nuclear magnetic
resonance?’. This study showed the change in dynamics of Trp81
correlated to the ligand-binding affinity, in agreement with our
result. In addition to Trp81, our result suggests that the other two
resides, which have not been experimentally identified yet, have
important roles in the ligand-binding. Previous simulation studies
suggested that the residues at the binding site can make
hydrophobic interactions*®4° and are expected to contribute to

correspond to the ligands of the 1to 10 holoprotein systems. ligand binding. Although these two residues are not
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Fig. 3 Differences in the ligand-induced protein dynamics of the BRD4 systems. a Distance matrix of Wasserstein distances between probability
distributions of the LDEs from system 0-10. Sytem O is the apoprotein system and others are labeled according to the ligand. The large Wasserstein
distance (yellow) corresponds to a large difference in the protein dynamics. b Embedded points of the distance matrix. The points corresponds to the
systems which are colored according to the binding energies and the apoprotein system is in black. The binding energies were obtained from a previous
computational research?. ¢ Correlation between PC1 and the binding energies. d Characteristic dynamics to the apoprotein system was interpreted for the
binding-site residues, in comparison to ligand system 3. The short-term trajectories of the apoprotein system were classified into apo-characteristic (high),
holo-like (low), others (mid) groups, and short-term RMSD dj; was calculated.
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experimentally validated, we hope further experimental research
will demonstrate the contribution of these residues. On the other
hand, our deep learning approach could not clearly detect the
dynamic difference of N140, where hydrogen bonds were
probably made with the ligand®?. We assume that our approach
could not detect N140 because of the minor change in the
dynamics, considering that N140 is located in the interior side of
the binding pocket hence its movement can be restricted. This is
contrary to the detected residues (Trp81, Val87, and Leu92) that
are exposed to the solvent (Supplementary Fig. 4). From the
comparison to experimental literature, our methods can extract
the important residues that change their dynamics significantly,
e.g., residues exposed to the solvent. However, it is difficult to
detect the residues with minor dynamics change, e.g., residues
buried in the binding pocket.

Similarly to the comparison between apoprotein and ligand
3 systems (Fig. 3d) that were located in the extreme side of the
embedding map, we compared dynamics of apoprotein to four
other systems, in order to find a general trend that is observed in
accordance with PC1. Supplementary Fig. 10 shows that more
suppressed proteins were located with increasing PC1. This
suggests that, while our methods can address high-dimensional
data, the ligand-induced dynamics of BRD4 were largely
characterized by its flexibility.

If dynamics is represented by the amplitude of fluctuation, the
difference of dynamics is distinguished using RMSF equally to
our deep learning approach. We attempted to characterize the
dynamics with RMSF values and performed principal component
analysis. Supplementary Fig. 11 shows that the PCl1 obtained
from RMSF calculation strongly correlated to the binding
energies, which is comparable to our deep learning approach.
However, for the other tested protein (see Discussion), the feature
obtained from the RMSF-based dimension reduction correlated
weakly to the binding energies. Therefore, we presume our deep
learning approach is more generally applicable than the RMSF
based method. This might be because the LDE can express more
information such as the direction and temporal trend of the
movements.

Discussion

In this study, we have presented a deep learning approach that
can determine the differences in protein behavior associated with
the binding of different ligands. MD simulation data of apo and
holoprotein systems were reduced to short-term LDE trajectories.
Then, Wasserstein distances were calculated using DNN. Finally,
the variables were extracted using dimension reduction methods
for comparison of binding energies. For the BRD4 systems, there
is a strong correlation between the ligand-induced dynamics and
binding energies. Moreover, the characteristic short-term trajec-
tories in the system were determined using g(x) for the detection
of key residues, which were also validated in experimental lit-
erature. To evaluate the generality of our approach, we also
investigated systems of another protein, tyrosine phosphatase 1 B
(PTP1B, Fig. 4a). Figure 4b illustrates clear separation of apo-
protein systems from the cluster of holoproteins. This means that
the ligand-induced dynamics are very different from the holo-
proteins but is similar among ligand-bound systems. The reason
for the clustering of holoproteins could be that all the ligands with
high affinity (more than 7.5kcal/mol) interacted in a similar
manner to PTP1B. In addition to just the separation, i.e., protein
dynamics with high affinity ligand or no ligand, the PC1 corre-
lated to the binding affinity with Pearson’s coefficient 0.70
(Fig. 4c). This suggests that the PC1 distinguishes significantly
favorable ligands from the others even within favorable ligand
groups. We note that comparison with a broader range of

affinities would provide more apparent differences in protein
dynamics and thus be more desirable for our method. For the two
apoprotein systems, they were separated from each other. This
might be because the pesudo-apo systems were not sufficiently
relaxed in the simulations.

The strong correlation between the PC1 and binding energies
in both BRD4 and PTP1B systems suggests that the relationship is
somewhat general for other proteins and ligands. Firstly, the
relation could not be restricted to specific types of proteins, as the
natures of binding pockets in the BRD4 and PTP1B are different.
The binding pocket is mainly hydrophobic in BRD448-0, while
that is hydrophilic in PTP1B#34451, Secondly, the relation can
hold true for both major and minor differences in tested ligands.
The tested ligands in BRD4 are diverse in the mainframes, while
those in PTP1B share the same frames but their terminals are
different.

The main hyperparameters in our method are involved in MD
simulations and LDE selection. First, MD simulations are
required to be sufficiently long to sample the LDE. The number of
data points exponentially reduced the error in the Wasserstein
distances (Supplementary Fig. 12). Interestingly, a comparable
result was obtained only from the fast 200 ns of simulation data
(Supplementary Fig. 13), which suggests that sufficient LDE
equilibrium can be obtained in the short simulations and minor
differences in Wasserstein distances are removed in the embed-
ding process. Second, the LDE time should be selected so that the
resulting feature corresponds to a property of interest. In the case
of binding affinity, the appropriate length was suggested to be
that for the side-chain movement, although the results from
different LDE time indicates robustness to the time selection
(Supplementary Fig. 14). Thirdly, the selection of binding sites
might be addressed by repeating the process multiple times. In
the initial analysis, the input residues can be determined based on
the distances to the ligand atoms. The proposed method can
detect potentially important residues. In subsequent run, the
extracted residues can be used to obtain a feature of the important
protein dynamics. Finally, to interpret differences in dynamics,
characteristic dynamics detected by g(x) need to be expressed by
the appropriate measurements. In the BRD4 systems, the char-
acteristic behavior largely corresponded to the short-term RMSD.
Depending on target proteins, the other measurements can be
useful to explain characteristic behavior, such as the direction and
temporal trend of movement.

In machine learning particularly for supervised learning, the
required volume of training dataset and the calculation cost are
the main concerns. In these points, our approach to extract
principal components and predict ligand affinity is distinct from
general supervised learning approaches. Our unsupervised learn-
ing approach essentially performs a dimension reduction method
that reduces MD data from multiple systems to the principal
components in a few dimensional space. This process does not use
prior information on affinity. In contrast, with supervised learn-
ing, the algorithm learns patterns between input (e.g., sequence or
coordinates) and output (e.g., affinity of ligand) from training
data, thus requiring a known dataset whose amount matches the
complexity of the training model. Recent machine learning models
for affinity prediction are trained on the datasets that include at
least thousands of protein-ligand complexes®~14, With regard to
calculation cost, our approach involves a relatively expensive
calculation of MD simulations and the DNNs that need to be
calculated for a pair of systems. In contrast, supervised learning
approaches provide output instantaneously once the model
parameters are optimized. We could conclude that our approaches
need more calculation and less known datasets compared to
other machine learning methods. For the accuracy of prediction,
our approach showed strong correlations in both target
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Fig. 4 Ligand-induced dynamics in the phosphatase 1 B (PTP1B) systems. a Molecular surface of PTP1B (Protein Data Bank ID: TOEM) superimposed on
ribbon diagram (left column). The green and red meshed molecular surfaces indicate the ligand binding site. The key residues (Tyr46 and Phel82, see
Supplementary Fig. 19) are shown in red meshed molecular surfaces on ball and stick models with labels, respectively. These two residues were identified
in experimental literature for the change of dynamics or the effect on the catalysis function38:6465 Chemical structure of ligands (right column).

b Embedded points of the distance matrix. The holoprotein systems are colored according to the binding energies, and the crystal and pseudo apoprotein
systems were colored in green and black, respectively. The binding energies were obtained from a previous computational research?. The inset shows the

cluster of holoproteins. ¢ Correlation between PC1 and the binding energies.

proteins, which is comparable to the other machine learning
methods.

While our test cases were relatively rigid proteins that are
widely used as benchmarks for free energy calculation, flexible
proteins are interesting targets for further investigation. Dynamic
properties may play a more important role in these systems. For a
type of flexible protein, ligand-induced flexibility contributes to
entropy gain in ligand binding, thus leading to higher affinity and
longer residence of the ligands?8. In fact, this was also seen in our
cases in BRD4 with lig 4 (RVX-208) (Supplementary Fig. 10),
where the binding is driven by entropy gain®. Furthermore, a
similar approach could be used to study other protein-ligand
binding events. For instance, it is interesting to evaluate the
relationship between allosteric dynamics and ligand function, as
has been done in a few previous studies?2-3°, Another potential
application would be predicting the effects of protein mutations
from the dynamics of the ligand. In this case, the relationship
between the protein and ligand would be analyzed in a manner
opposite to that employed in the present case, i.e., identical
particles of the ligand would be used for LDE, while the protein
molecules would vary slightly because of the mutation. We
believe that the understanding of protein dynamics using ligand
interactions will provide deeper insight into the function of
ligands, and dynamics-based approaches would contribute to
further developments in computational drug discovery.

Method

System setup and MD simulations. For the BRD4 systems, the initial structures
and topologies for proteins and ligands were considered according to a previous
study?. The protein structures with and without ligands were solvated in a TIP3P>2
cubic box with a minimum distance of 1.0 nm. The systems were neutralized by
adding Na™ or CI~ ions. All-atom MD simulations of the systems were performed
using GROMACS 2019.6°3. The particle mesh Ewald method® was used to eval-
uate the electrostatic interactions with a cut-off radius of 1.2 nm, and van der
Waals interactions were switched between 1.0 and 1.2 nm. The bonds with H atoms
were constrained with LINCS># in the order of 4. For the prepared systems, energy
minimization was carried out until the maximum force reduced to less than 10.0 k]
mol !, using the steepest descent method. Then restrained MD simulation was
performed in a NVT ensemble at 300 K for 100 ps and subsequently in an NPT
constant simulation at 1 bar for 100 ps. During both equilibration processes,
position restraints were executed on the heavy atoms of the ligand and protein

atoms. The temperature and pressure were regulated using the velocity-rescaling
method® and Berendsen methods®®, respectively. Finally, three individual pro-
duction runs were performed for 400 ns in the NPT ensemble for each system with
a random initial velocity generated to simulate different initial conditions. In the
production runs, pressure was controled with Parrinello-Rahman pressure cou-
pling method>’. The trajectories were recorded every 2 ps.

For PTP1B systems, 12 complexes and two types of apoprotein systems were
prepared for MD simulations (Supplementary Fig. 15). Ten complexes and pseudo
apoprotein systems were constructed from the initial structures of PTP1B and the
ligand used in the previous study by ref. 3. In addition, another apoprotein was
modeled from the crystal structure of PTP1B with no ligand (PDB ID: 10EM) by
homology modeling. Missing atoms were complemented using MOE®8, where we
selected a structure without the a-helix. To distinguish between the two apoprotein
systems, we denoted the apoprotein from a study by Song et al. as a pseudo-apo,
which is originally complex and no ligand was added in our study. We called the
apoprotein created from the crystal structure of the apoprotein as a crystal
apoprotein. Proteins and water were parameterized by Amber ff14SB> and
TIP3P>2, respectively. The parameters for the ligand were generated using GAFF®°
and parameter files in the study conducted by Song et al. The systems were solvated
into a cubic box, with the thickness of the water shell set to 1.2 nm and neutralized
with Na®. MD simulations for PTP1B systems were performed similarly to the
BRD4 systems, except for a few points. Energy minimization was performed for
10,000 steps, and the equilibration process was continued for 200 ps in both the
NVT and NPT ensembles.

In the following analysis using machine learning, first 50 ns of trajectories were
removed in both BRD4 and PTP1B systems. MD simulations were converged
sufficiently in 50 ns (Supplementary Figs. 5, 6, 16, 17).

Selection of the LDE. Binding-site residues were mainly determined based on
activity ratio that showed residue-ligand interaction based on the distance. We
defined the activity ratio as #/N, where 7 is the number of the trajectory frames in
which the minimum heavy-atom distance between a residue and ligand is less than
0.5 nm, and N is the total number of trajectory frames. We regarded residues with
n/N>0.5 to be in contact to the ligand. The activity ratio was calculated for each
simulation in the first 200 ns, and residues were determined as the binding-site
residues if any of the simulations identifies the residue-ligand contact. For
BRD4 systems, we referred to the previous work by ref. 2 to further limit the
number of residues. As a result, binding-site residues of BRD4 were 14 residues
(Trp81, Pro82, Phe83, Val87, Leu92, Leu94, Tyr97, Cycl36, Tyr139, Asn140,
Aspl44, Aspl45, Ile146, and Met149). Likewise, binding-site residues of PTP1B
systems were 19 residues (Tyr46, Asp48, Val49, Lys120, Pro180, Asp181, Phel82,
Gly183, Cys215, Ser216, Ala217, Ile219, Gly220, Arg221, Arg254, Met258, Gly259,
GIn262, and GIn266). For the selection in PTP1B, we referred to the previous work
by ref.>L.

From the trajectories of binding-site residues, rotation and translation were
removed by fitting the trajectories to an identical structure in the backbone atoms

6 COMMUNICATIONS BIOLOGY | (2022)5:481| https://doi.org/10.1038/s42003-022-03416-7 | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03416-7

ARTICLE

of the binding-site residues. This coordinate transformation is intended to best
match coordinate systems between different systems of ligands.

Using the fitted trajectories, LDEs were generated. The LDE particles were the
center of mass of the binding-site residues without hydrogen atoms, and the LDE
time was 128 ps. We assume that the local dynamics ignores the average structure
of binding-site residues by defining it as time-series displacements from a time
step,

x = [r(ty + &) — r(ty), ... 1ty + 8) — r(ty)] (5)

where #(t) is the positions of LDE particles at time ¢ in MD simulation, A is the
time of LDE, and § is the time interval of MD output. The local dynamics is
implemented as a tensor in (#, A, d) dimension.

Wasserstein distance between LDEs. The Wasserstein distance between two
probability distributions of LDEs is expressed as

where i,j are the indexes for the systems, supremum is over all the 1-Lipschitz
function f, x is the short-term trajectory of the LDE, and y; is the LDE of system i.
The advantages of Wasserstein distance over other measurements are (1) its
applicability to high-dimensional data with affordable computation cost using
DNN, (2) mathematical properties as a distance, which does not hold to diver-
gence, and (3) no need for the prior assumption about the distribution®.

To approximate the function f; we used the DNN that was largely employed
from the previous study by ref. 3. The DNN was built using fully connected layers
(Supplementary Fig. 18). The short-term trajectories x were flatted and used as
input for the DNN. The DNN had three hidden layers, whose number of output
node was 2048. All the hidden layers used bias term and activation function of
leaky rectified linear unit (LReLU). The output layer had one node without bias
and activation function. The initial values of parameters were sampled from
uniform distributions (mean = 0, deviation =1/ k), where k is the number of the
input features of each layer. The networks were implemented in pytorch®l.

In the optimization process, the loss function with gradient penalty®? was
minimized (see Supplementary Material for details). For each learning iteration,
short-term trajectories were selected randomly by deciding the number of
simulation and the initial step of the time sections. Model parameters were updated
using Adam optimizer®® (learning rate = le-4, beta 1 = 0.5, beta 2 = 0.9). The size
of the minibatch was 64. The optimization process was performed for up to
500,000 steps per model, when the moving averages of DNN output over
10,000 steps converged. The mean value of the last 10,000 steps were used as the
Wasserstein distances.

Embedding of Wasserstein distances. A Wasserstein distance matrix was
embedded into vectors in low-dimensional space to satisfy the following equation,

Py Py o Py =AY man(WU — llp; _Pj”)z )
PosPryPn ST

where p; is an n-dimensional vector that corresponds to system i. The number of
dimensions #n was set to three. The embedded vectors were optimized using
simulated annealing and gradient descent (see Supplementary Material for details).
Simulated annealing was employed to explore the global minimum and gradient
descent for fast convergence. We iterated the embedding for multiple times and
selected the best embedding with the minimum distance loss. Subsequently,
principal component analysis was performed to the embedded vectors to obtain
PC1 and PC2.

Characteristic behavior analysis. A function g(x;)3! represents the contribution
of one short-term trajectory to the overall differences between two systems. For a
LDE trajectory of system i with referenced system j, the function g(x) is defined as
Eq. (2), and the equation is equivalent to

Wy = Eo[g,00)]- ®)

The g(x) quantitatively measures the uniqueness of one short-term trajectory as
compared to the average dynamics of the other system. For instance, if a short-term
trajectory in system i has a small g(x) when system j is referenced, the short-term
trajectory of system i is similar to the average molecular behavior seen in system j,
and basically vice versa. The g(x;) was calculated as the output of optimized DNNs
when the inputs are the specific short-term trajectory from system i, and the
average local dynamics of the other system j in a pair (Supplementary Fig. 2). The
g(x) was sampled in every 64 ps of the MD trajectories.

Statistics and reproducibility. To obtain unbiased LDEs, MD simulations were
performed three times with different initial velocities for each system. Because each
simulation continued for 400 ns and the trajectories were recorded in every 2 ps,
LDEs for 64 ps consisted of approximately 600,000 short-term trajectories for each
system. We repeated calculations of Wasserstein distances several times and con-
firmed that they sufficiently converge regardless of the initial parameters of the

DNNG. Distance embedding was performed multiple times starting from randomly
positioned embedded points. The sample size of short-term trajectories for g(x) was
9375 for each ligand system.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
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