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Abstract: Using next-generation sequencing to decipher methylome and transcriptome and
underlying molecular mechanisms contributing to rheumatoid arthritis (RA) for improving
future therapies, we performed methyl-seq and RNA-seq on peripheral blood mononuclear cells
(PBMCs) from RA subjects and normal donors. Principal component analysis and hierarchical
clustering revealed distinct methylation signatures in RA with methylation aberrations noted across
chromosomes. Methylation alterations varied with CpG features and genic characteristics. Typically,
CpG islands and CpG shores were hypermethylated and displayed the greatest methylation variance.
Promoters were hypermethylated and enhancers/gene bodies were hypomethylated, with methylation
variance associated with expression variance. RA genetically associated genes preferentially displayed
differential methylation and differential expression or interacted with differentially methylated
and differentially expressed genes. These differentially methylated and differentially expressed
genes were enriched with several signaling pathways and disease categories. 10 genes (CD86,
RAB20, XAF1, FOLR3, LTBR, KCNH8, DOK7, PDGFA, PITPNM2, CELSR1) with concomitantly
differential methylation in enhancers/promoters/gene bodies and differential expression in B cells
were validated. This integrated analysis of methylome and transcriptome identified novel epigenetic
signatures associated with RA and highlighted the interaction between genetics and epigenetics in
RA. These findings help our understanding of the pathogenesis of RA and advance epigenetic studies
in regards to the disease.
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1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease manifested by sustained chronic inflammation
resulting in joint damage and severe disability. Numerous therapies based on our knowledge of RA
were developed over the past two decades and helped improve outcomes for those suffering from the
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disease [1]. Despite the increasing number of treatment strategies, many patients are refractory to their
current treatments, some patients see their clinical response diminish, while others suffer from adverse
events from therapy. As such, there is a necessity to develop an improved strategy to treat RA [2].

Engrafting peripheral blood mononuclear cells (PBMCs) of RA patients into severe combined
immunodeficient (SCID) mice resulted in a reconstituted synovitis characteristic of human RA [3].
Additionally, these cells secreted numerous inflammatory cytokines, such as interleukin (IL)-6 and
tumor necrosis factor-alpha (TNF-α) [4,5] which orchestrated inflammation, radiographic progression of
RA and were, therefore, therapeutic targets of current RA management [6]. These findings highlight the
critical role of PBMCs in RA pathogenesis. Therefore, a more comprehensive understanding of PBMCs
in RA holds promise in unraveling the complexity of RA and identifying novel therapeutic targets.

In past decades, tremendous efforts have been devoted to exploring RA genetics. However,
in recent years, DNA methylation is emerging as one key pathogenic player of RA. DNA methylation
acts as a composite measure of environmental exposures [7], making it an intriguing candidate for
the investigation of diseases that involve environmental factors, such as RA. Traditionally, DNA
methylation has been thought of as being involved in gene silencing but recent work has shown a more
complex picture [8]. Most studies investigating the role of DNA methylation in RA utilized the Illumina
450K microarray for methylation profiling and focused on methylation alone. Studies integrating
DNA methylation with gene expression at a whole-genome manner to investigate the relationship
between methylation, expression and RA, the associations of genomic contexts and DNA methylation
and the interaction between differentially methylated genes and genetic at-risk loci in RA remain
somewhat limited.

To decipher the methylation signatures involved in RA PBMCs, we performed next generation
sequencing to compare the methylome and transcriptome landscape in PBMCs from RA patients and
healthy donors, detect changes to the methylome and transcriptome, elucidate the relationship between
methylation and expression and interaction between genetically associated genes and epigenetically
associated genes. These results offered a map to the PBMCs methylome and shed light on the
pathophysiology of RA.

2. Methods

After adjusting for cell types and batch effects (Figure 1), methylome data went through principal
component analysis (PCA) and hierarchical clustering (HC) (Figure 1, Step 1), OmicCircos visualization
(Figure 1, Step 2), CpG features mapping (Figure 1, Step 3), genic characteristics annotation (Figure 1,
Step 4), integration with transcriptome for methylation-expression correlation (Figure 1, Step 5)
and identification of concomitantly differentially methylated (false discovery rate (FDR) <0.05) and
differentially expressed genes (FDR < 0.05) (Figure 1, Step 6–7). Genes with concomitantly differential
methylation and differential expression underwent genetic–epigenetic interaction investigation
(Figure 1, Step 8), Ingenuity Pathway Analysis (IPA) (Figure 1, Step 9), and upstream regulator
deduction (Figure 1, Step 10). GEO dataset were downloaded for further validation (Figure 1, Step 11).
For detailed methods, see Supplementary Files. The study was conducted in accordance with the
Helsinki Declaration and was approved by the ethics committee of the Kaohsiung Medical University
Hospital (KMUHIRB-G(II)-20180031). All subjects gave their informed consent for inclusion before
they participated in the study.
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Figure 1. Schematic representation of the next-generation sequencing data analytical workflow. After 
adjusting for cellular composition and batch effects, methyl-seq data first underwent Principal 
component analysis (PCA) and hierarchical clustering (HC) (Step 1), OmicCircos visualization (Step 2), 
CpG features mapping (Step 3), and genic characteristics annotation (Step 4). Methylation and expression 
profiles were then integrated for methylation-expression correlation (Step 5). Differentially methylated 
genes (FDR < 0.05) and differentially expressed genes (FDR < 0.05) were identified (Step 6a–6b) and 
intersected to yield genes with concomitant expression and methylation changes in 
enhancer/promoter/gene body (Step 7). These differentially methylated and differentially expressed genes 
underwent genetic–epigenetic interaction investigation (Step 8), IPA (Step 9), and upstream regulator 
deduction (Step 10). GEO dataset validation (Step 11) confirmed concomitant differential methylation and 
expression of 10 genes. 

Figure 1. Schematic representation of the next-generation sequencing data analytical workflow.
After adjusting for cellular composition and batch effects, methyl-seq data first underwent Principal
component analysis (PCA) and hierarchical clustering (HC) (Step 1), OmicCircos visualization (Step 2),
CpG features mapping (Step 3), and genic characteristics annotation (Step 4). Methylation and
expression profiles were then integrated for methylation-expression correlation (Step 5). Differentially
methylated genes (FDR < 0.05) and differentially expressed genes (FDR < 0.05) were identified
(Step 6a–6b) and intersected to yield genes with concomitant expression and methylation changes in
enhancer/promoter/gene body (Step 7). These differentially methylated and differentially expressed
genes underwent genetic–epigenetic interaction investigation (Step 8), IPA (Step 9), and upstream
regulator deduction (Step 10). GEO dataset validation (Step 11) confirmed concomitant differential
methylation and expression of 10 genes.
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3. Results

3.1. Differential Methylation of PBMCs in RA

After adjusting for cellular composition and batch effects, we first profiled DNA methylation
alterations between RA and healthy donors with PCA and HC (Figure 1, Step 1). As shown in
Figure S2a, RA samples were characterized by distinct methylation profiles compared with healthy
donors. We also performed molecular stratification of samples using HC of methylation profiles
(Figure S2b). Based on methylation profiles, two distinct groups were identified, with the results
reaffirming the classification of RA and healthy donors.

3.2. Distribution of Methylation According to Genome Locations

For a visual representation of the analysis results, the R package Omiccircos was used to draw the
circos-plot. Supplementary Figure S3 depicted the methylation differences between RA and healthy
donors according to chromosome locations. Generally, methylation alterations were scattered across
nuclear genomes. No clear concentration of methylation changes was identified.

3.3. CpG Features Mapping

Past studies suggest methylation alterations depended on CpG features [9]. However, whether
similar phenomena existed in RA remained unexplored. Traditionally, CpG sites are classified into
four classes according to their CpG features. CpG islands are genomic regions of >200 bp with a CG
content of >50% and an observed/expected CpG ratio of >60%. CpG shores are located within 2 kb
from CpG island). CpG shelves include regions 2–4 kb from CpG island. The remaining regions >4 kb
from CpG island are defined as open seas [10]. To clarify whether methylation variations differed with
respective CpG features, we classified CpG into CpG islands, CpG shores, CpG shelves, and open
seas adopting similar classification schemes (Figure 1, Step 3). On average, CpG islands and CpG
shores were hypermethylated in RA, and CpG shelves and open seas were hypomethylated in RA
and methylation difference differed with respect to CpG features (Figure 2a). Overall, the methylation
variance was most pronounced in CpG islands, CpG shores, followed by open seas and CpG shelves
(p < 0.001) (Figure 2b).

3.4. Genic Characteristics Annotation

In addition to CpG features, evidence suggested methylation alterations differed with respect
to genic characteristics [9]. To test these possibilities in RA, we annotated every CpG to enhancers,
promoters, gene bodies, and intergenic regions (Figure 1, Step 4). Generally, CpG in promoters were
hypermethylated and CpG in enhancers, gene bodies and intergenic regions were hypomethylated
in RA, with significant methylation differences between different genic characteristics (Figure 2c).
Furthermore, the methylation variance was most striking in enhancers, followed by promoters and
intergenic regions, decreased in gene bodies (p < 0.001) (Figure 2d). When we further stratified
CpG located in promoters according to their distance to transcription start sites, the results showed
preferential methylation alterations near the transcription start sites (Figure S4).
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Figure 2. Methylation differences according to CpG features and genic characteristics. The bar charts 
showed the methylation difference (rheumatoid arthritis (R) minus healthy donor (H)) in CpG island, 
CpG shore, CpG shelf, open sea (a) and variance of methylation according to respective CpG features (b). 
Methylation difference in intergenic region, enhancer, promoter, gene body (c) and variance of 
methylation in respective genic characteristics (d) were also presented. * p < 0.001 for methylation 
difference and variance of methylation between different CpG features and genic characteristics. 

Figure 2. Methylation differences according to CpG features and genic characteristics. The bar charts
showed the methylation difference (rheumatoid arthritis (R) minus healthy donor (H)) in CpG island,
CpG shore, CpG shelf, open sea (a) and variance of methylation according to respective CpG features
(b). Methylation difference in intergenic region, enhancer, promoter, gene body (c) and variance of
methylation in respective genic characteristics (d) were also presented. * p < 0.001 for methylation
difference and variance of methylation between different CpG features and genic characteristics.
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3.5. Methylation Variation Linked to Transcription Variation

Since transcription is regulated through epigenetic marks, we subsequently set upon determining
whether the presence of methylation alterations was linked to alterations in gene expression (Figure 1,
Step 5). We divided CpG into high variance (methylation variance above mean methylation variance)
and low variance (methylation variance below mean methylation variance). Enhancer CpG with high
methylation variance was associated with greater variation in transcript abundance compared with
enhancer CpG with low methylation variance (p < 0.001, Figure S5a,b). Promoter CpG with high
methylation variance was associated with greater variation in transcript abundance compared with
promoter CpG with low methylation variance (p < 0.001, Figure S5c,d). We next focused our analysis on
CpG located in gene bodies. Again, a higher variance of gene expression was significantly associated
with gene body CpG with higher methylation variance (p < 0.001, Supplementary Figure S5e,f).

3.6. Integration of Methylation and Expression Profiles

After confirming the association between methylation variation and expression variation,
we interrogated methylation and expression profiles to identify differentially methylated genes
and differentially expressed genes. We first identify genes with differentially-methylated regions
(FDR < 0.05) (Figure 1, Step 6a). In the same time, differentially expressed genes (FDR < 0.05) were
found (Figure 1, Step 6b). Since enhancer/promoter methylation was associated with decreased
gene expression and gene body methylation was associated with increased gene expression [8,11],
we intersected differentially methylated genes and differentially expressed genes to obtain genes
with concomitant expression and methylation changes in enhancer/promoter/gene body (Step 7) for
following analysis.

3.7. RA Genetically Associated Genes and Their Targets Preferentially Displaying Differential Methylation and
Differential Expression

A growing body of literature suggested interaction of genetic loci and differentially methylated
loci in phenotype determination [12]. To examine whether there was similar genetic–epigenetic
interaction in RA, we utilized GWAS results on RA and non-RA traits and protein-protein interaction
information from BioGRID to characterize genetic–epigenetic interaction in RA (Figure 1, Step 8;
Figure S1). RA genetically associated genes and their interacting targets are more likely to exhibit
differential methylation and differential expression than non-RA genetically associated genes and their
interacting targets (Figure S6). This finding highlighted interaction of genetically associated genes and
epigenetically associated genes in RA pathogenesis.

3.8. Ingenuity Pathway Analysis

To identify pathways and diseases associated with the differential methylation and differential
expression in RA compared with healthy donors, we performed a pathway analysis using IPA. Dendritic
cell maturation, inflammasome pathway, iNOS signaling, LPS/IL-1 mediated inhibition of RXR function,
neuroinflammation signaling pathway, NF-κB signaling, PPAR signaling, Toll-like receptor signaling,
TREM1 signaling and type 1 diabetes mellitus signaling were identified as enriched pathways (Figure S7,
Table S3). Differentially methylated and differentially expressed genes were enriched for genes of
atherosclerosis, atopic dermatitis, hematopoietic neoplasm, inflammation of joint, juvenile rheumatoid
arthritis, polyarticular juvenile rheumatoid arthritis, rheumatic disease, rheumatoid arthritis, systemic
autoimmune syndrome and viral infection as disease annotation (Figure S8, Table S4).
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3.9. Upstream Regulator Deduction

Since altered DNA methylation in differentially methylated regions may contribute to
transcriptional dysregulation through altered transcription factor binding [13], to gain insight into
involved transcription factors, a network of transcription factors and their targets was constructed using
iRegulon (Figure 1, Step 10). iRegulon revealed 13 transcription factors (CEBPA, CEBPB, ETS2, FOS,
FOSL2, FOXM1, HLCS, NAP1L1, NFIC, NFKBI, NXPH3, RXRA, SNAI1) with significant enrichment
of target genes in the network of genes with concomitant differential methylation and differential
expression (Figure 3). These transcription factors had well-established roles in inflammation and
immune cells development (Table S5).
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monocyte unavailable). The magnitude of methylation aberrations across all validated genes was 
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hypomethylation and expression upregulation (Figure 4), one (KCNH8) with promoter 
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hypomethylation and expression upregulation (Figure 5), and four (DOK7, PDGFA, PITPNM2, 
CELSR1) with gene body hypomethylation and expression downregulation (Figure 6). 

Figure 3. Transcription factors identified through iRegulon analysis. The bubble chart showed the
transcription factors associated with differentially methylated and differentially expressed genes
identified by iRegulon. Y-axis label represented normalized enrichment score. The sizes of the bubbles
were proportional to the number of regulated genes with concomitant differential methylation and
differential expression for each transcription factor.

3.10. Validation of Differential Methylation and Differential Expression in RA

To validate the results from next-generation sequencing, we retrieved previously reported
methylation and expression patterns of RA CD4 T cells and B cells, both of which were major cellular
subsets of PBMCs, from GEO (Figure 1, Step 11) (methylation and expression profiles of CD8 and
monocyte unavailable). The magnitude of methylation aberrations across all validated genes was similar
to previous studies [14] (Figures 4–6). 10 genes with methylation alteration and expression deregulation
were validated in B cells, including three (CD86, RAB20, XAF1) with enhancer hypomethylation and
expression upregulation (Figure 4), one (KCNH8) with promoter hypermethylation and expression
downregulation, two (FOLR3, LTBR) with promoter hypomethylation and expression upregulation
(Figure 5), and four (DOK7, PDGFA, PITPNM2, CELSR1) with gene body hypomethylation and
expression downregulation (Figure 6).
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Figure 4. Validation of genes with differential methylation in enhancer and differential expression. 
(a) The results of methylation and expression obtained from next-generation sequencing (NGS meth, 
NGS exp), the cell subsets of validation dataset (Cell), the dataset of validation (Meth dataset, Exp 
dataset), and the probes of validation dataset (CpG probe, Exp probe). (b) Visualization of the 
methylation levels obtained from NGS in rheumatoid arthritis (RA) and healthy donors (HD) and 
location of validated CpG probe and enhancers. (c) Volcano plot of the −log10(false discovery rate) on 
the Y-axis versus expression change (log2ratio) on the X-axis. Of validated genes, (d) Methylation and 
(e) Expression levels of corresponding probes in the validation dataset. 

Figure 4. Validation of genes with differential methylation in enhancer and differential expression.
(a) The results of methylation and expression obtained from next-generation sequencing (NGS meth,
NGS exp), the cell subsets of validation dataset (Cell), the dataset of validation (Meth dataset, Exp
dataset), and the probes of validation dataset (CpG probe, Exp probe). (b) Visualization of the
methylation levels obtained from NGS in rheumatoid arthritis (RA) and healthy donors (HD) and
location of validated CpG probe and enhancers. (c) Volcano plot of the −log10(false discovery rate) on
the Y-axis versus expression change (log2ratio) on the X-axis. Of validated genes, (d) Methylation and
(e) Expression levels of corresponding probes in the validation dataset.
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dataset), and the probes of validation dataset (CpG probe, Exp probe). (b) Visualization of the 
methylation levels obtained from NGS in RA and healthy donors (HD) and location of validated 
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Figure 5. Validation of genes with differential methylation in promoter and differential expression.
(a) The results of methylation and expression obtained from next-generation sequencing (NGS meth,
NGS exp), the cell subsets of validation dataset (Cell), the dataset of validation (Meth dataset, Exp
dataset), and the probes of validation dataset (CpG probe, Exp probe). (b) Visualization of the
methylation levels obtained from NGS in RA and healthy donors (HD) and location of validated CpG
probe superposed onto the genomic locations of genes. (c) Volcano plot of the -log10(false discovery rate)
on the Y-axis versus expression change (log2ratio) on the X-axis. Of validated genes, (d) Methylation
and (e) Expression levels of corresponding probes in the validation dataset.
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Figure 6. Validation of genes with differential methylation in gene body and differential expression.
(a) The results of methylation and expression obtained from next-generation sequencing (NGS meth,
NGS exp), the cell subsets of validation dataset (Cell), the dataset of validation (Meth dataset, Exp
dataset), and the probes of validation dataset (CpG probe, Exp probe). (b) Visualization of the
methylation levels obtained from NGS in RA and healthy donors (HD) and location of validated CpG
probe superposed onto the genomic locations of genes. (c) Volcano plot of the -log10(false discovery rate)
on the Y-axis versus expression change (log2ratio) on the X-axis. Of validated genes, (d) Methylation
and (e) Expression levels of corresponding probes in the validation dataset.
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4. Discussion

Here we reported a comprehensive analysis of methylome and transcriptome in RA. By combining
methyl-seq and RNA-seq data, this study provided a global map of the methylation profile in RA.
Methylation alterations occurred across human genomes (Figure S3), varied with CpG features and
genic characteristics (Figure 2) and associated with gene expression (Figure S5). RA genetically
associated genes and their interacting targets preferentially displayed differential methylation and
differential expression compared with non-RA genetically associated genes (Supplementary Figure S6).
These methylation and transcription aberration associated with several autoimmune and infectious
diseases (Figure S8, Table S4). Additionally, we identified several transcription factors as potential
regulators (Figure 3). Moreover, 10 genes (CD86, RAB20, XAF1, KCNH8, FOLR3, LTBR, DOK7, PDGFA,
PITPNM2, and CELSR1) with concomitant methylation and expression alterations in B cells were
validated (Figures 4–6). These results highlighted potential roles played by these genes in RA.

The scale of methylation differences across all validated genes was not large, similar to those
reported in previous studies [14–16]. Studies suggested that traits-associated methylation changes
were predominantly of small magnitude [16,17], tended to be subtle and long-lasting, with stronger
but short-lived gene expression alterations [15]. Accumulating evidence further suggested functional
consequences of such subtle methylation changes, with halving or doubling of gene transcription
accompanying every 1% change in methylation [17]. These collectively supported the biological
relevance of methylation alterations validated in this study.

Generally, PCA and HC based on the methylation levels revealed a clear phenotype-driven
distinction between RA and healthy donors (Figure S2a,b), supportive of the potential of methylation as
diagnostic marker. Similar conclusions were made in other autoimmune diseases, including SLE [18].
However, difference of methylation profiles between RA patients was also noted (Figure S2a), suggesting
epigenetic heterogeneity of RA patients. Epigenetic alteration varies with different manifestations of
autoimmune disease [18]. Evidence suggests genetic and clinical heterogeneity of RA [19], though it has
not been fully defined and warrants further study. Since different serology status implied contrasting
genetic architecture and transcriptome changes [20,21], it is tempting to speculate on the roles of
autoantibodies in the difference of methylome, as one of patients was positive for anti-citrullinated
protein antibodies (ACPA) and the other negative for ACPA. Large scales of studies combining clinical
status, immunopathology, methylomics and transcriptomics analysis from ACPA+ vs ACPA- patients
will provide valuable insight into the relationship between autoantibodies and epigenetic subsets of
RA. This needed to be explored in future studies.

When we characterized methylation variation according to CpG features, CpG islands displayed
the highest methylation variation compared with other CpG features (Figure 2b). Since CpG islands
had the most pronounced correlation with gene expression level [22], this suggested that despite small
methylation differences, there may be more biologically relevant regions of the genome.

In this study, we observed differential enhancer, promoter and gene body methylation between
RA and healthy donors (Figure 2c). On average, promoter hypermethylation and enhancer and
gene body hypomethylation were noted. Promoter hypermethylation has also been demonstrated
in other autoimmune diseases, such psoriasis [23]. Interestingly, promoter hypermethylation was
often correlated with gene downregulation [8]. These changes in promoter and gene body DNA
methylation might be related to inadequate immune regulation [24] and exemplified by polycyclic
forms of RA-asymptomatic during interepisodic period but flare-up intermittently [25].

With regards to methylation variation within promoters, increased methylation variation was
noted in the vicinity of transcription start site (Figure S4). Since transcription factor binding sites were
enriched in transcription start site [26], the presence of more dynamic DNA methylation in the vicinity
of transcription start site provided higher flexibility for different transcription factor bindings under
different conditions and thus transcription plasticity.

Our study highlighted that RA genetically associated genes and their interacting targets are more
likely to exhibit differential methylation and differential expression than non-RA genetically associated
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genes (Figure S6). Although evidence of genetic–epigenetic interaction existed in past literature [12],
interaction of genetically associated genes and epigenetically associated genes in autoimmune diseases
such as RA was largely uncharacterized. Furthermore, interaction of genetically associated genes and
epigenetically associated genes in RA raised the possibility of cooperation of these two interacting
systems to facilitate gene regulation in RA pathogenesis. It is possible that both methylation and
genetic alterations were necessary for RA development and altered DNA methylation may be a second
hit contributing to penetrance as demonstrated by complex multifactorial traits [27] and supported by
past studies of autoimmune diseases [28].

Pathway analysis of methylation and expression alterations suggested significantly multiple
upregulated inflammatory pathway (including TREM1 signaling) and one downregulated pathway
(PPAR signaling) (Figure S7). TREM1 was expressed in monocyte and amplified production of IL-6
and TNF-α, both critical players in RA pathogenesis [29]. With regards to PPAR, PPAR activation
downregulated NF-κB signaling, primed monocytes into anti-inflammatory properties, and exerted
therapeutic effects on RA [30–32]. These findings support the importance of DNA methylation on the
regulation of implicated pathways in RA.

In the diseasome analysis, genes with significantly different DNA methylation and expression
alterations were associated with several diseases, including atherosclerosis, atopic dermatitis,
hematopoietic neoplasm, inflammation of joint, juvenile rheumatoid arthritis, polyarticular juvenile
rheumatoid arthritis, rheumatic disease, rheumatoid arthritis, systemic autoimmune syndrome and
viral infection (Figure S8). Numerous reports linked RA with juvenile idiopathic arthritis, atopic
dermatitis, atherosclerosis and lymphoma [33–36]. Viral infection also associated with RA in past
epidemiology study [37]. However, it is previously unknown whether these diseases are also linked to
RA epigenetically. This study was the first to suggest an epigenetic relationship between these diseases
and RA.

When we applied iRegulon to decipher potential upstream regulator, several transcription factors
were singled out (Figure 3). All these transcription factors were involved in various aspects of
immunological responses (Table S5). Thus, it was conceivable that they participated in regulation of
differentially methylated and differentially expressed genes in RA.

During validation with B cell microarray profiles, upregulated CD86, RAB20, XAF1, FOLR3, LTBR
and downregulated KCNH8, DOK7, PDGFA, PITPNM2, CELSR1 with corresponding methylation changes
in enhancers/promoters/gene bodies were identified (Figures 4–6). CD86 activated B cell proliferation
and immunoglobulin secretion [38]. Moreover, CD86 was increased in RA B cells and correlated
with disease activity [39,40]. Thus, upregulated CD86 may contribute to immune activation in RA
(Figure S9). Considering RAB20, RAB20 was upregulated by Crohn’s disease-associated polymorphism
and vaccination and increases during B cell transformation (Table S3 of [41], Supplementary material S1
of [42,43]). It may be possible that increased RAB20 contributes to B cell activation and facilitates RA
development (Figure S9). Regarding XAF1, XAF1 was one risk gene of sarcoidosis which implicated
dysregulated immune responses [44]. Moreover, XAF1 was downregulated during lymphocyte
immortalization and sensitized lymphocyte to apoptosis [45,46]. As a result, XAF1 has the potential to
be involved in RA pathogenesis (Figure S9).

KCNH8 was almost exclusively expressed in B cells [47] and KCNH8 region was associated with
susceptibility to autoimmune diseases, including Crohn’s disease and psoriasis [48]. However, its
function in B cells remained unexplored. FOLR3 was a member of folate receptor family. FOLR3 was
associated with hepatitis C virus clearance [49] and folate receptor-mediated STAT3 activation [50].
Therefore, upregulated FOLR3 may contribute to immune activation (Figure S9). With regards to LTBR,
LTBR activated NFkB and blockade of LTBR impaired humoral immune response and ameliorated
arthritis in the animal model [51–53]. Thus, upregulated LTBR potentially activates humoral immunity
and facilitated arthritis development (Figure S9).

DOK7 belonged to a family of docking protein and DOK7 inhibited malignant cell proliferation
and increased leukemia patient survival [54,55]. DOK7 downregulation may lead to increased B cell
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proliferation and aggravated RA (Figure S9). PDGFA was part of PDGF family and PDGF family
members stimulated B cell growth [56]. Whether downregulated PDGFA represents one mechanism to
counteract excessive inflammation is unknown (Figure S9). PITPNM2 was implicated as a risk locus of
multiple sclerosis [57] and allergic diseases [58] which were all linked to RA [34,59]. Furthermore, risk
protective alleles of allergic disease and drug with anti-inflammatory effects in autoimmune diseases
both increased PITPNM2 expression (Supplementary Table 27 of [58,60]). As a result, decreased
PITPNM2 might enhance RA pathogenesis (Figure S9). CELSR1 was part of the apoptosis network [61],
inhibited proliferation of neural progenitor [62] and decreased in non-nodal mantle cell lymphoma [63].
Therefore, decreased CELSR1 might facilitate B cell proliferation and therefore sustain immune
responses in RA (Figure S9).

In this study, we detected methylation and transcription perturbations in CD86. Notably, abatacept,
one approved treatment option for RA, decreased CD86 expression in B cells [64]. It was possible that
genes with differential methylation and differential expression identified in this study hold therapeutic
promises for RA in the future. These should be addressed by further studies.

Limitations of this work include the relatively small sample size due to the high cost of
next-generation sequencing and failure to validate methylation results in CD4 T cells. This may
be a result of potentially more aberrant methylation of B cells than CD4 T cells, as demonstrated in
another autoimmune disease, Sjogren’s syndrome [65]. Future work was needed to fully characterize
additional RA samples by next-generation sequencing with additional cell types.

In past decades, progress in understanding the molecular bases of disease pathogenesis and
the application of new technologies greatly transformed our treatment of diseases [1]. Integration
with multiomic data identified several novel genes and pathways as potential relevant therapeutic
avenues that may be important dysregulated mediators at the interface of genetics, epigenetics, and
RA pathogenesis. These results may be useful for the development of new, more effective biomarkers
and therapeutics. With that goal in mind, future studies are necessary in order to characterize precisely
the molecular mechanisms, the functional consequences, and the interactions between differential
methylation and genetic risk factors in RA pathogenesis.
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blood mononuclear cells, Table S2: HACER source cells utilized in enhancer annotation, Table S3: Top ten
pathways identified by Ingenuity Pathway Analysis from differentially methylated and differentially expressed
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