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ABSTRACT New genotyping technologies have made large amounts of genotypic data available for plant
breeders to use in their efforts to accelerate the rate of genetic gain. Genomic selection (GS) techniques
allow breeders to use genotypic data to identify and select, for example, plants predicted to exhibit drought
tolerance, thereby saving expensive and limited field-testing resources relative to phenotyping all plants
within a population. A major limitation of existing GS approaches is the trade-off between short-term
genetic gain and long-term potential. Some approaches focus on achieving short-term genetic gain at the
cost of reduced genetic diversity necessary for long-term gains. In contrast, others compromise short-term
progress to preserve long-term potential without consideration of the time and resources required to
achieve it. Our contribution is to define a new “look-ahead” metric for assessing selection decisions, which
evaluates the probability of achieving high genetic gains by a specific time with limited resources. More-
over, we propose a heuristic algorithm to identify optimal selection decisions that maximize the look-ahead
metric. Simulation results demonstrate that look-ahead selection outperforms other published selection
methods.
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Feeding the world’s growing population remains a significant challenge.
Advances in plant breeding have been instrumental in improving ag-
ricultural output. Classical plant breeding programs rely on the phe-
notyping of progenies in field trials to identify superior individuals. The
number of individuals that can be phenotyped is resource limited
(Rincent et al. 2017), which limits genetic gain. Genomic selection
(GS) refers to using a set of markers distributed across the genome to
estimate the breeding value of selection candidates for quantitative
traits (Goddard 2009). GS makes it possible to predict the performance

of unphenotyped individuals from readily available genotyping data
(Rincent et al. 2017;Meuwissen et al. 2001). Genomic Estimated Breed-
ing Value (GEBV) of individual plants (or animals) has been widely
adopted as the selection criteria; it selects individuals based on the sum
of their estimated marker effects (Meuwissen et al. 2001). This ap-
proach has been widely adopted in GS practice due to its effectiveness
in achieving short-term genetic improvements. More recently, two
methods have been proposed to improve conventional GS (CGS): the
optimal haploid value (OHV) (Daetwyler et al. 2015) and the optimal
population value (OPV) (Goiffon et al. 2017). Simulation experiments
and some empirical studies have shown that CGS selection results in
rapid genetic gains (Hayes et al. 2009; Lorenzana and Bernardo 2009;
VanRaden et al. 2009; Jannink 2010). However, CGS focuses on one or
two cycles of selection and does not guarantee long-term gain
(Sonesson et al. 2012; Lin et al. 2017; Gorjanc et al. 2018; Akdemir
et al. 2019). The OHVmethod, calculates the GEBV of the best possible
doubled haploid (DH) derived from an individual (Daetwyler et al.
2015). This method focuses selection on haplotypes and optimizes
the breeding program toward the end goal of generating an elite fixed
line (Daetwyler et al. 2015). Simulation studies have shown that OHV
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selection results in more genetic gain and diversity as compared to CGS
(Daetwyler et al. 2015). CGS and OHV are truncation selection ap-
proaches in that they rank individuals and select the top fraction of the
population. In contrast, OPV is a group-based selection strategy. Spe-
cifically, OPV selects the best group of individuals based on their in-
teractive effects and calculates the GEBV of the best possible progeny
from this group produced after an unlimited number of generations,
which may require a large amount of time and resources to achieve
(Goiffon et al. 2017). In this paper, we extend OPV by again selecting
groups of individuals as a unit, but propose an innovative method for
selecting groups, “look-ahead selection” (LAS). This new selection
method can improve genetic gain by maximizing the expected GEBV
of the best offspring in the terminal generation. It makes the optimal
trade-off between short-term gain and long-term potential to achieve
the highest genetic gain within a specified time.

MATERIALS AND METHODS

Generic formulation for GS methods
In this section,wepresent a generic formulation for existingGSmethods
namely, CGS, OHV, OPV, and the new selection method, LAS. Equa-
tions (1), (2), and (3) show this genetic optimization formulation.

maxx f ðxÞ (1)

      such  that
PN
n¼1

xn ¼ S (2)

xn 2 f0; 1g; n 2 f1; . . . ;Ng (3)

Here,

• N is the number of individuals in the population.
• xn is a binary decision variable that shows whether individual n is

selected (xn ¼ 1) or not (xn ¼ 0).
• S is the number of individuals that are to be selected out of the

current population.

It should be observed that the only difference among the three
previousmethods is in their objective functions as they aim tomaximize
different objectives. The objective function of the optimizationproblem,
f ðxÞ is formulated as f ðxÞCGS, f ðxÞOHV , and f ðxÞOPV in equations (4),
(5), and (6) respectively.

Conventional genomic selection: Meuwissen et al. (2001) proposed to
evaluate an individual as a breeding parent by its genomic estimated
breeding value (GEBV), which is the sumof all marker effects across the
entire genome, as defined in equation (4). The CGS method selects
individuals with the highest GEBVs.

f ðxÞCGS ¼
XN
n¼1

XL
l¼1

X2
m¼1

Gl;m;nblxn: (4)

Here, the notations are defined as follow:

• L: The number of marker loci.
• Gl;m;n 2 f0; 1g;"l 2 f1; 2; . . . ; Lg;"m 2 f1; 2g  and "n 2 f1; 2;

. . . ;Ng: The genotypic information of locus l from chromosomem
of individual n, with 1 and 0 representing the major and minor
allele, respectively.

• bl : The normalized effect of the major allele at locus l, with that for
the minor allele being 0.

• M: The ploidy of the plants. We use diploid species (M = 2) as an
example in this paper.

To maximize long-term response, the weighted genomic selection
(Goddard 2009; Jannink 2010) was proposed as a variation of the CGS
method by emphasizing the preservation of rare favorable alleles. It
replaced the allele effect bl in equation (4) with

blffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðwl ;1=NÞ

p , where
wl is the frequency of favorable alleles at locus l among all individuals in
the population. As such, this variation gives a higher weight to low-fre-
quency favorable alleles. Notice that the denominator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðwl; 1=NÞp

is
equal to

ffiffiffiffiffi
wl

p
except for wl ¼ 0 when Gl;m;n ¼ 0 for all m and n.

Optimal haploid value: More than a decade after the CGS metohd,
OHVwasproposed tocombine the creationofdoubledhaploidswithGS
methods and evaluates the potential of producing elite doubled haploids
(Daetwyler et al. 2015). Equation (5) shows the objective function for
OHV selection. Thismethod selects individuals with the highest OHVs.

f ðxÞOHV ¼ 2
XN
n¼1

XB
b¼1

max
m2f1;2g

X
l2HðbÞ

Gl;m;nblxn: (5)

Here, segments of adjacent markers are clustered into haplotypes,
which are defined as follows:

• B: The number of haplotype blocks per chromosome.
• HðbÞ;"b 2 f1; . . . ;Bg: The set of marker loci that belong to hap-

lotype block b.

The OHV of an individual is the GEBV of its best possible DH
progeny. Recombination events are assumed to be possible between
haplotypes but not within them. This assumption reduces the compu-
tational effort of the algorithm.

What also makes CGS and OHV computationally efficient is the fact
that they are both truncation selection methods, which assumes that the
contribution of breeding parents are separable and additive. Mathemat-
ically, the summation operator

PN
n¼1 in equation (4) and (5) suggests

that the maximization of the objective functions f ðxÞCGS or f ðxÞOHV can
be easily achieved by evaluating each individual n separately and setting
xn ¼ 1 for the ones with the highest GEBVs or OHVs. Compared with
CGS, OHV represents an important shift of the selection objective from
maximizing genetic achievement of the parents to that of their progeny.

Optimal population value: OPV selection is an extension to OHV
which evaluates the breeding merit of a set of individuals instead of
evaluating the breeding value of a single individual (Goiffon et al. 2017).
The OPV of breeding population S is the GEBV of the best possible
progeny produced after an unlimited number of generations. The ob-
jective function for the OPV method is defined as follows:

f ðxÞOPV ¼ 2
XB
b¼1

max
n2f1;...;Ng

max
m2f1;2g

X
l2HðbÞ

Gl;m;nblxn: (6)

OPV represents another important shift of the selection objective from
individual-based truncation selection to group-based selection. The
contribution of a breeding parent is evaluated based on not only the
favorable alleles that it carries but also the favorable alleles that it carries
butaremissing inother selectedbreedingparents.A limitationofOPVis
that the objective function f ðxÞOPV is a lot harder to optimize, since it is
no longer separable with respect to x. As a result, heuristic algorithms
were used to identify good but not necessarily optimal selections.

Potential improvements
The success ofCGShas beendemonstrated innumerous simulation and
field experiments, especially in achieving short-term genetic gains in
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both plant and animal breeding (Meuwissen 1997; Rosvall 1999; Hayes
et al. 2002; Ullrich 2007; Hayes et al. 2009; Lorenzana and Bernardo
2009; VanRaden et al. 2009; Jannink et al. 2010; Mujibi et al. 2011;
Nakaya and Isobe 2012; Hallatschek and Geyrhofer 2015). OHV and
OPVwere proposed as extensions of CGS to improve long-term genetic
gains, which have been shown to be effective in simulation studies.
Herein, we identify three areas in genomic selection that can be made
more efficient and present a new genomic selection method that at-
tempts to address each of these three areas.

First, time management. For a given population of individuals, the
optimal selectiondecision should dependonwhether the deadlineof the
breeding project is in the near future or far down the road. However,
none of the aforementioned three methods take deadlines into
consideration.

Second, mating strategy. All three methods focus on selecting
breedingparentswithout explicitly indicatinghow they shouldbemated
inpairs, but several studieshave observed thatdifferentmatingdecisions
may affect genetic gain (Toro and Varona 2010; Kinghorn 2011; Sun
et al. 2013; Akdemir and Sánchez 2016; Liu et al. 2017; Wang et al.
2018).

Third, resource allocation. Intuitively, making more crosses and
producing more progenies leads to a higher chance of creating out-
standing individuals from the progeny population, but this also requires
more resources. Allocating a fixed total budget over a period of time to
achieve the bestfinal outcome is therefore a strategic decision that needs
to be optimized (Lorenz 2013).

Look-ahead selection
The cornerstone of the LAS method is a new definition of the objective
function, f LASðx; y; r;T2 tÞ, that reflects what truly matters in geno-
mic selection. The input of this function includes selected breeding
parents (x), mating decisions (y), recombination frequencies (r), and
remaining number of generations (T2 t, the difference between the
current generation number t and the deadlineT). The former two input
terms are decision variables that need to be optimized by the model,
whereas the latter two are parameters that the model needs to take into
account when searching for the optimal solution.We define f LAS as the
expected GEBV of the best offspring in the terminal generation. In com-
parison, f CGS can be interpreted as the genetic achievement of the
breeding parents measured in terms of GEBV; and f OHV and f OPV

represent the best possible progeny that can be produced by, respec-
tively, self pollination and cross pollination, both assuming unlimited
time and resources. The models for these three methods only differ in
the objective functions but share the same constraints (2) and (3),
whereas the LAS model requires additional constraints. The LAS
method can be formulated as follows.

max
x;y

f LASðx; y; r;T2 tÞ (7)

such  that  Constraints  ð2Þ  and  ð3Þ (8)

xn ¼
XN

j¼1
yn;j "n 2 f1; . . . ;Ng (9)

yi;j 2 f0; 1g "i; j 2 f1; . . . ;Ng (10)

The new variables and parameters are defined as follows.

• yi;j: A binary variable that shows whether individual i is mated with
individual j (yi;j ¼ 1) or not (yi;j ¼ 0).

• r 2 ½0; 0:5�L21: The recombination frequency vector.

The remainder of this section will explain how to numerically
evaluate the objective function f LASðx; y; r;T2 tÞ for any given so-
lution ðx; yÞ, how to search for the optimal (or close to optimal)
solution ðx�; y�Þ that achieves the maximal value in the objective
function, and how to allocate resources to improve the rate of ge-
netic gains.

Evaluation of the objective function f LAS: The exact evaluation of
the objective function f LAS is challenging both computationally and
analytically due to uncertain recombination events over T2 t gen-
erations as well as the selection, mating, and resource allocation
decisions that will be made therein. To overcome this challenge, we
designed a novel simulation method that provides a computation-
ally tractable yet reasonable approximation of the true objective
function. Figure 1 illustrates the look-ahead simulation that is
based on two simplifying assumptions.

Assumption 1: The selected pairs of breeding parents will each
produce one progeny in generation t þ 1.

Assumption 2: All progenies from generation t þ 1 to T2 1 were
crossed with each other (including selfing) in the same genera-
tion, each producing one progeny.

As such, the objective function f LAS can be approximated by
taking a random sample of the population in generation T of the
look-ahead simulation and calculating the highest GEBV of all
individuals.

The followingtheoremdefines thedistributionof theprogenies in the
final generation T, which allows efficient evaluation of the approxi-
mated objective function.

Theorem 1. Let G 2 f0; 1gL·2·S denote the genotype of a popula-
tion in generation t with an even number, S, of individuals.
Suppose all individuals with odd indices, f1; 3; . . . ; S2 1g, are
respectively mated with the next individuals, f2; 4; . . . ; Sg.
These individuals are mated according to Assumptions 1 and
2. Let g 2 f0; 1gL denote a random gamete produced by breed-
ing parents in meiosis of the ðT2 1Þst generation. The distri-
bution of g can be described by the following equations (11)
and (12)

P
�
g1 ¼ G1;m;i

� ¼ 1
2S
;"i 2 f1; 2; . . . ; Sg;"m 2 f1; 2g: (11)

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
�

(12)

¼

8>>>>>>>>><
>>>>>>>>>:

ð12rlþ1Þ2ð12Rlþ1Þ; if   i0 ¼ i1   and m0 ¼ m1

rlþ1ð12 rlþ1Þð12Rlþ1Þ; if   i0 ¼ i1   and m0 6¼ m1

1
2
  rlþ1ð12Rlþ1Þ; if   Ø i

0

2ø ¼ Ø i
1

2ø
Rlþ1

2ðS2 2Þ; if   Ø i
0

2ø 6¼ Ø i
1

2ø

;

"l 2 f1; . . . ; L2 1g;  "i0; i1 2 f1; 2; . . . ; Sg;  "m0;m1 2 f1; 2g:

Here, r 2 ½0; 0:5�L21 is the given vector of recombination frequen-
cies and Rl is the recombination frequency between allele l and allele
l þ 1 between generations t þ 2 andT for all l 2 f1; . . . ; L2 1g, which
can be derived as:

Volume 9 July 2019 | Optimizing Selection and Mating | 2125



Rl ¼
ðS2 2Þ

h
12 ð12rlÞT2t

i
S

: (13)

The proof for equation (13) is provided in the appendix.

Optimization of the objective function f LAS: Unlike truncation
selection methods CGS and OHV, which are easy to optimize due
to separable objective functions with respect to the selection decision
x, the OPV and LAS methods require the optimization of the se-
lected breeding parents’ synergistic contribution. A heuristic algo-
rithm was designed to optimize f OPV in Goiffon et al. (2017), where
a randomly selected set of breeding parents is iteratively updated to
maximize the f OPV function through pairwise swaps between a se-
lected individual and every other unselected one. A similar heuristic
can also be applied to optimize the f LAS function with two minor
points of caution. First, OPV only selects individuals, while in con-
trast, LAS also pairs them up, so the orders of the selected individ-
uals in generation tmust be preserved to reflect the mating strategy.
Second, constraint (2) ensures fair comparison between the four
methods by specifying the number of selected individuals. This
constraint helps CGS and OHV by maintaining genetic diversity.
On the other hand, maintaining genetic diversity is a built-in feature
in OPV and LAS methods. Hence, the decision maker can choose to
relax constraint (2) on OPV or LAS methods in cases that selfing or
polygamous crosses are beneficial.

Heuristic strategy for resource allocation: There are two dimensions
of resource allocation in genomic selection (beyond genomic pre-
diction of allele effects): allocation of total budget across a number of
generations and allocation of the given budget for a specific gener-
ation overmultiple crosses. In this paper, we assumed equal temporal
allocation of the total budget over the breeding duration and hence a
fixed number of crosses and population size for each generation. The
proposed heuristic strategy attempted to accelerate the rate of genetic

gain by strategically varying the numbers of progenies produced from
different crosses based on the genetic diversity of the breeding
parents. Let n1 and n2 be the indices of the two breeding parents
(that have been selected and paired according to the LAS method) in
the current generation with G representing its genotype, then the
genetic diversity is defined as

X
l

max
n2fn1;n2g
m2f1;2g

Gl;m;nbl 2 min
n2fn1;n2g
m2f1;2g

Gl;m;nbl

0
BBB@

1
CCCA; (14)

which is the aggregated range of GEBVs over all haplotype blocks.
Given a fixed budget for the current generation, the numbers of
progenies produced from multiple crosses are set to be pro-
portional to the genetic diversity measures of the breeding
parents. The rationale for this heuristic is to spend more re-
sources on those crosses that have wider predicted phenotypic
distributions and thus higher probabilities of producing out-
standing progenies.

Data availability
All data including phased single nucleotide polymorphisms (SNPs) for
maize inbred lines fromtheShootApicalMeristem(SAM)DiversityPanel
and genetic maps are available at Figshare: https://iastate.figshare.com/s/
374176500b04fd6f3729.

RESULTS

Simulation setting
In this paper, the genotypic data (Gl;m;n), marker effects (bl) and re-
combination rates (rl) are based onGoiffon et al. (2017). The genotypic
data contains genotypes of 369 maize inbred lines consisting of
L ¼ 1; 406; 757 SNPs distributed across ten maize chromosomes.
Marker effects were estimated on the basis of 369 shoot apical meristem

Figure 1 The look-ahead simulation.
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phenotypes (Leiboff et al. 2015) using the BayesB model (Meuwissen
et al. 2001). Similar to Goiffon et al. (2017), we assumed that marker
effects were known and that errors in marker effects have an equal
effect on all selection methods. The genetic map developed from maize
nested association mapping (NAM) population is used for estimating
recombination rates (Yu et al. 2008). To facilitate comparisons, genetic
data were scaled such that the maximum potential of the initial breed-
ing population is 100.

The same simulation process (shown in Figure 2) as (Goiffon et al.
2017) was used to compare the four methods in our study. Each of the
components in Figure 2 is explained as follows:

• The initial population start point: In plant breeding, the genomic
selection process starts with an initial population of individu-
als. The genotypes and marker effects are given at this point. In
each simulation run, 200 individuals were selected randomly
from the 369 maize inbred lines to make the initial population.
Furthermore, the same set of 200 individuals were used as
the initial population for all methods to make comparisons
consistent.

• The selection step: All four methods were used to make selection
decisions in this step, including mating strategies, number of
crosses to make (nc) and number of progenies per cross (np).
In particular,
For CGS: S ¼ 20 individuals with the highest GEBVs were selected

and randomly mated to make nc ¼ 10 crosses, each producing
np ¼ 20 progenies, maintaining a constant population size of 200.

For OHV: S ¼ 20 individuals with the highest OHVs were
selected and randomly mated to make nc ¼ 10 crosses,
each producing np ¼ 20 progenies, maintaining a constant

population size of 200. The same values of B ¼ 12 and
F ¼ 70% as Goiffon et al. (2017) were used in our simula-
tion where F is the percentage of individuals with the low-
est GEBVs removed before optimizing the selected
population.

For OPV: S ¼ 20 individuals with the highest OPVs were
selected and randomly mated to make nc ¼ 10 crosses,
each producing np ¼ 20 progenies, maintaining a con-
stant population size of 200. The same values of B ¼ 1
and F ¼ 40% as Goiffon et al. (2017) were used in our
simulation.

For LAS: S ¼ 20 individuals were selected and mated accord-
ing to the look-ahead algorithm to make nc ¼ 10 crosses.
The number of progenies for each cross was determined
by the heuristic strategy described in Section 2.3.3 with
the constraint that the total number of progenies remains
200.

• The reproduction step: The selected individuals were crossed to
make the breeding population for the next generation. A random
progeny inherits the genetic information from its breeding parents
according to inheritance distribution defined in Han et al. (2017).
Let P 2 f0; 1gL·2 denote the genotype of a random progeny pro-
duced from crossing individuals n1 and n2. Then P is determined as
follow:

Pi;j ¼ Gi;Jjiþ1;nj
;"i 2 f1; . . . ; Lg; j 2 f1; 2g;

where

J1 ¼
�
0; w:p: 0:5
1; w:p: 0:5

; (15)

Ji ¼ Ji21 w:p: 12 ri21

12 Ji21 w:p: ri21
;"i 2 f2; . . . ; Lg: (16)

Here, “w.p.” stands for “with probability”.

• The t. ¼ T? condition: The breeding cycle repeats itself until
generation T, a predetermined deadline.

Figure 2 The simulation diagram, adopted from Goiffon et al. (2017).

Figure 3 Cumulative genetic gains over 10 generations for four GS
methods.
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• The final population end point: After the terminal generation, the
population will be assessed to determine its genetic improvement
over the initial population.

Simulation results
One thousand independent simulation repetitions were performed for
each of the four selection approaches. Simulationswere conducted on a
computer with 256GB RAM and a processor with the following
specifications: Intel(R) Xeon(R) CPU E5-4650 0 @2.70GHz 2.70GHz
(2 processors). The computation time required for one simulation
(including 4methods) was 6248 sec. Hence, it takes almost 1735Hours
(72 days) to conduct 1000 simulations. Ten different simulations have
ran in parallel to reduce the CPU calender time to 7 days. The LAS
method is modestly more computationally intensive. LAS requires
approximately two times more computational time than the other
three methods. Major results are summarized as follows.

Genetic gains over ten generations: Figure 3 shows the average cumu-
lative genetic gains over ten generations.We define the cumulative genetic
gain as the difference between the mean GEBV of the current population
and that of the initial population. Because this figure shows genetic gains
for each of the four methods averaged across 1,000 simulation repetitions,
the comparison reflects their different performances in general. CGS
achieved a high rate of genetic gain in the first three generations before
gradually reaching a plateau. OHV maintained a relatively high rate of
genetic gain throughout ten generations due to its emphasis on the prog-
enies rather than the parents. OPV managed to achieve an even higher
genetic gain by the terminal generation at the cost of lower rate of genetic
gains in early generations, which is attribute to its group-based selection
strategy that aims to achieve long-term genetic gains by combining de-
sirable alleles from multiple breeding parents. LAS demonstrated a dead-
line-conscious strategy that patiently stays as an underdog in early
generations while accumulating desirable alleles but ultimately surpasses
all othermethods in the final generation. These results suggested that LAS
is capable ofmaking a trade-off between achieving short-term genetic gain
and preserving long-term growth potential.

Genetic diversity over ten generations: Figure 4 displays the average
genetic diversity (defined in equation (14)) over ten generations. The

genetic diversity of the two truncation selection methods, CGS and
OHV, dropped to about 35% of its initial value in the first two gener-
ations, which further deteriorated to about 15% in generation ten. In
contrast, the two group-based selectionmethods, OPV and LAS, main-
tained genetic diversity at about 65% and 40% in generations two and
ten, respectively. These results demonstrated the advantages of group-
based selection methods over truncation-based methods in terms of
preserving long-term genetic diversity.

Genetic gains with varying deadlines: LAS is the only method that
adjusts selection decisions based on the user-defined deadline. Figure 5
shows the performance of LAS with varying deadlines from T ¼ 1 to
T ¼ 10. In all ten cases, LAS used a similar strategy to patiently accumu-
late desirable alleles in early generations and make big leaps in the final
two generations. As a result, LAS outperformed all other methods for all
tested deadlines. The other three methods make the same selection deci-
sions and thus result in the same performance under different deadlines.

Variable performance across different simulation repetitions: The
average values and standard deviations (among the 1,000 simulation
repetitions) for populationminimum, mean, and maximum in the 10th

generation are summarized in Table 1.
Figure 6 compares the cumulative distribution functions (CDFs) of

the population maximum in generation 10. Here, the horizontal axis
shows the GEBV of an individual (representing genetic gains) whereas
the vertical axis is the percentile of the simulation repetitions. By def-
inition, the 1st percentile is one of the worst performances within the
1,000 simulation repetitions, the 99th percentile is one of the best, and
the 50th percentile is the median value. As such, the further toward the
right and bottom directions of the figure a CDF curves, the better
performance a method has. The figure shows the improvements of
different methods from CGS to LAS. In particular, LAS-X is a reduced
version of LAS using the same resource allocation strategy with all
previousmethods (producing the same number of progenies from each
cross), rather than using the heuristic strategy for resource allocation
described in Section 2.3.3. These results demonstrated the effectiveness
of LAS in making selection, mating, and resource allocation decisions.

Figure 4 Genetic diversity over 10 generations for four GS methods. Figure 5 Genetic gains with varying deadlines from T ¼ 1 to T ¼ 10.
LAS adjusts selection decisions based on the user-defined deadline
whereas other three methods always make the same selection
decisions.
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Behavior of LAS in the final two generations: LAS has an interesting
behavior in the final two generations when it makes big leaps in
genetic gain (Figures 3 and 5). This happens because LAS accumu-
lates desirable alleles in the early generations to utilize in the final
generations.

Figure 7 presents histograms of population GEBVs over time for
one sample simulation using the LAS method. The yellow triangles
show the GEBV of selected breeding parents from the population in
each generation. This demonstrates how the breeding value rankings of
the individuals selected by LAS change by generation. Note that in the
last two generations LAS selects individuals with high GEBVs. This
explains the behavior of LAS in the final two generations.

CONCLUSIONS
Genomic selection has been instrumental in improving the efficiency of
plant breeding. In this study, we introduced a new selection method,
LAS, which has the potential to further improve the efficiency of
breeding given limited resources and specific user-defined project
duration.

Unlike previousmethodswhich try tomaximize the genetic achieve-
ment of breeding parents or the best possible progeny without consid-
ering time and resource constraints, LAS is maximizing what exactly
matters in aGSproblemby aiming at the right objective. Theobjectiveof
LAS is to maximize the expected GEBV of the best offspring in the
terminal generation given a limited amount of resources. As such, this
method is muchmore computationally challenging than previous ones,
due to multiple complex factors such as recombination frequencies,
mating strategy, time management, and resource allocation that are
explicitly accounted for. To deal with these challenges, we designed a
simulation optimization algorithm that estimates and maximizes the
LAS objective function by exploring the selection and mating solution
space efficiently.

LAS makes three major contributions to the literature on geno-
mic selection. First, LAS is deadline sensitive. Selection decisions
adjust to the project duration to make a trade-off between achieving
short-term genetic gains and maintaining genetic diversity long-
term. Second, LAS optimizes both selection andmating strategies. It
recognizes the importance of mating strategies and assigns selected
individuals into pairs of breeding parents to achieve further genetic
gains. Third, LAS involves resource allocation decisions. Rather
than producing the same number of progenies from each cross,
it allows breeding parents with higher genetic diversity to produce
more progenies to increase the chance of producing high
performers.

LAS was compared with previous genomic selection methods in a
comprehensive simulation studyusing empirical data fromapopulation
of inbredmaize lines.Computational results demonstrated the improve-
ments ofLASoverothermethods in threeperspectives: (1)LASachieved
the highest genetic gain by the deadline of the breeding project, which
varied from one generation to ten generations. (2) LAS preserved the

highest level of genetic diversity at the end of the breeding project. (3)
LASoutperformedall othermethods inalmostall percentiles in the1,000
simulation repetitions.

Future research is needed to address the limitations of the LAS
method. The first assumption described in Section 2.3.1 is allowing only
one progeny to be produced from the selected pairs of breeding parents
in generation t þ 1 and the second assumption is allowing the crosses
to be made within the same generation each producing one progeny
from generation t þ 1 to T2 1. These two assumptions were made to
simplify the computational requirement of estimating the objective
function, which inevitably reduced its accuracy. Moreover, future stud-
ies can explore more comprehensive comparisons by performing sim-
ulations by: 1. using other methods for estimating marker effects
such as GBLUP and ridge regression; 2. considering populations with

n Table 1 Average values and standard deviations (among the
1,000 simulation repetitions) for population minimum, mean, and
maximum in the 10th generation for four selection methods

Method Min Mean Max

CGS 54:8863:20 55:0663:23 55:2463:26
OHV 58:3164:27 58:9563:87 59:4863:84
OPV 57:5663:73 60:1763:97 62:1664:68
LAS 56:5863:97 61:5363:83 64:6964:25

Figure 6 CDFs of population maximum, here LAS-X is the modified
LAS method without resource allocation.

Figure 7 A sample simulation result using the LAS method presenting
histograms of population GEBVs over time. Here, the red curve is the
mean of population GEBVs and the boundaries of white and gray
areas are the upper and lower selection limits. For a given generation,
the upper selection limit shows the maximum potential of population
in terms of GEBV values and similarly the lower selection limit shows
the minimum potential of the population. The maximum, mean
and minimum GEBVs are respectively 67.64, 64.69, and 60.18 in the
final generation.
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different LD structures; and 3. applying different resource allocation
strategies.
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APPENDIX

PROOF FOR THEOREM 1
This appendixproves theorem1 throughanexample toprovide amore insightful description for fourdifferentpossibilitiesof recombination.Let’s

assumewe start with three pairs of breeding parents (S=6).We represent the genotypic information of these individuals with the followingmatrices:

pair one :

2
664
G1;1;1 G1;2;1

G2;1;1 G2;2;1

⋮ ⋮
GL;1;1 GL;2;1

3
775 ·

2
664
G1;1;2 G1;2;2

G2;1;2 G2;2;2

⋮ ⋮
GL;1;2 GL;2;2

3
775

pair two :

2
664
G1;1;3 G1;2;3

G2;1;3 G2;2;3

⋮ ⋮
GL;1;3 GL;2;3

3
775 ·

2
664
G1;1;4 G1;2;4

G2;1;4 G2;2;4

⋮ ⋮
GL;1;4 GL;2;4

3
775

pair three :

2
664
G1;1;5 G1;2;5

G2;1;5 G2;2;5

⋮ ⋮
GL;1;5 GL;2;5

3
775 ·

2
664
G1;1;6 G1;2;6

G2;1;6 G2;2;6

⋮ ⋮
GL;1;6 GL;2;6

3
775

The individuals in each pair are crossed to produce one progeny. The resulting progenies are then randomly mated for T2 t2 1 generations.
g 2 f0; 1gL is the random gamete produced by breeding parents in meiosis of the ðT2 1Þst generation. From equation (12) we see that four
possibilities exist for recombination. Here, we illustrate those four cases with color coding.

Proof:Wedivide the process into two phases:Phase 1: generation 0 until 2 and Phase 2: generation 2 until T. Let h 2 f0; 1gL denote the genotype
of a specific gamete produced in meiosis by a progeny of a specific pair of breeding parents from the breeding population. This specific gamete
contains the allele Gl;m0;i0 that is passed on to the gamete g at locus l, i.e., hl ¼ gl ¼ Gl;m0 ;i0 . We know that such a gamete uniquely exists because of
the way the two phases are defined. The four cases are as follow:

Case 1: No recombination happens (g2 comes from the same chromosome as g1).2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;1;1

⋮
GL;m;s

3
775

According to equation (12), when i0 ¼ i1   and m0 ¼ m1, we have:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
� ¼ ð12rlþ1Þ2ð12Rlþ1Þ (17)

"l 2 f1; . . . ; L2 1g;  "i0; i1 2 f1; 2; . . . ; Sg;  "m0;m1 2 f1; 2g:

Using this definition equation (17) can be calculated as follow:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
�

(18)

¼ P
�
glþ1 ¼ Glþ1;m0;i0

��gl ¼ Gl;m0;i0
�

(19)

¼ P
�
hlþ1 ¼ Glþ1;m0;i0 ; glþ1 ¼ hlþ1

��hl ¼ Gl;m0;i0 ; gl ¼ hl
�

(20)

¼ P
�
hlþ1 ¼ Glþ1;m0;i0

��hl ¼ Gl;m0;i0 ; gl ¼ hl
� � P�glþ1 ¼ hlþ1

��hl ¼ Gl;m0;i0 ; gl ¼ hl
�

(21)

¼ P
�
hlþ1 ¼ Glþ1;m0;i0

��hl ¼ Gl;m0;i0
�
P
�
glþ1 ¼ hlþ1

��gl ¼ hl
�

(22)

¼ ð12rlþ1Þ2ð12Rlþ1Þ (23)

Equation (19) comes from the fact that i0 ¼ i1   and m0 ¼ m1. Equation (20) is derived from equation (19) because of the way h is defined. To
find equation (21) from (20) independency is used. Finally, equation (22) is derived from (21) due to the fact that hlþ1 ¼ Glþ1;m0 ;i0 is independent
from gl ¼ hl and also glþ1 ¼ hlþ1 is independent from hl ¼ Gl;m0 ;i0 .
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Here, Rl is the recombination frequency between allele l and allele l þ 1, "l 2 f1; . . . ; L2 1g after ðT2 tÞ2 2 number of generations and is
calculated as:

Rl ¼ 12 P
�
glþ1 ¼ hlþ1

��gl ¼ hl
�

(24)

Proof.

R2
l ¼ 0

Ril ¼ 12

��
12Ri21

l

�ð12 rlÞ þ
rl
S=2

�
  "i 2 f3; 4; . . . ; tg

Where rl is the lth recombination frequency for l 2 f1; 2; . . . ; L2 1g and S is number of breeding parents. From the above equations we obtain:

Rl ¼
ðS2 2Þ

	
12 ð12rlÞT2t



S

(25)

This provides the proof for equation (13).

Case 2: Recombination happens within an individual (g2 is coming from the other chromosome of the same individual where g1 is coming
from). 2

664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;2;1

⋮
GL;m;s

3
775

According to equation (12), when i0 ¼ i1   and m0 ¼ m1, we have:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
� ¼ rlþ1ð12 rlþ1Þð12Rlþ1Þ (26)

"l 2 f1; . . . ; L2 1g;  "i0; i1 2 f1; 2; . . . ; Sg;  "m0;m1 2 f1; 2g:

Similarly, equation (26) can be calculated as follow:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
�

(27)

¼ P
�
hlþ1 ¼ Glþ1;m1;i0 ; glþ1 ¼ hlþ1

��hl ¼ Gl;m0;i0 ; gl ¼ hl
�

(28)

¼ P
�
hlþ1 ¼ Glþ1;m1;i0

��hl ¼ Gl;m0;i0
�
P
�
glþ1 ¼ hlþ1

��gl ¼ hl
�

(29)

¼ rlþ1ð12 rlþ1Þð12Rlþ1Þ (30)

Case 3: Recombination happens within the paired individual.2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;1;2

⋮
GL;m;s

3
775; or

2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;2;2

⋮
GL;m;s

3
775

According to equation (12), when i0
2 ¼ i1

2, we have:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
� ¼ 1

2
  rlþ1ð12Rlþ1Þ (31)

"l 2 f1; . . . ; L2 1g;  "i0; i1 2 f1; 2; . . . ; Sg;  "m0;m1 2 f1; 2g:

Similarly, equation (31) can be calculated as follow:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
�

(32)

¼ P
�
hlþ1 ¼ Glþ1;m1;i1 ; glþ1 ¼ hlþ1

��hl ¼ Gl;m0;i0 ; gl ¼ hl
�

(33)

¼ P
�
hlþ1 ¼ Glþ1;m1;i1

��hl ¼ Gl;m0;i0
�
P
�
glþ1 ¼ hlþ1

��gl ¼ hl
�

(34)
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¼ 1
2
  rlþ1ð12Rlþ1Þ (35)

Case 4: This case considers all possible remaining recombination.2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;1;3

⋮
GL;m;s

3
775; or

2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;2;3

⋮
GL;m;s

3
775; or

2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;1;4

⋮
GL;m;s

3
775; or

2
664
g1
g2
⋮
gL

3
775 ¼

2
664
G1;1;1

G2;2;6

⋮
GL;m;s

3
775

According to equation (12), when i0
2 6¼ i1

2, we have:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
� ¼ Rlþ1

2ðS2 2Þ (36)

"l 2 f1; . . . ; L2 1g;  "i0; i1 2 f1; 2; . . . ; Sg;  "m0;m1 2 f1; 2g:

Similarly, equation (36) can be calculated as follow:

P
�
glþ1 ¼ Glþ1;m1;i1

��gl ¼ Gl;m0;i0
�

(37)

¼ P
�
hlþ1 ¼ Glþ1;m1;i1 ; glþ1 ¼ hlþ1

��hl ¼ Gl;m0;i0 ; gl ¼ hl
�

(38)

¼ P
�
hlþ1 ¼ Glþ1;m1;i1

��hl ¼ Gl;m0;i0
�
P
�
glþ1 ¼ hlþ1

��gl ¼ hl
�

(39)

¼ 1
4
·
Rlþ1
S
22 1

(40)

¼ Rlþ1

2ðS2 2Þ (41)
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