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Abstract

Category-specific impairments witnessed in patients with semantic deficits have broadly dis-

sociated into natural and artificial kinds. However, how the category of food (more specifi-

cally, fruits and vegetables) fits into this distinction has been difficult to interpret, given a

pattern of deficit that has inconsistently mapped onto either kind, despite its intuitive mem-

bership to the natural domain. The present study explores the effects of a manipulation of

a visual sensory (i.e., color) or functional (i.e., orientation) feature on the consequential

semantic processing of fruits and vegetables (and tools, by comparison), first at the behav-

ioral and then at the neural level. The categorization of natural (i.e., fruits/vegetables) and

artificial (i.e., utensils) entities was investigated via cross–modal priming. Reaction time

analysis indicated a reduction in priming for color-modified natural entities and orientation-

modified artificial entities. Standard event-related potentials (ERP) analysis was performed,

in addition to linear classification. For natural entities, a N400 effect at central channel sites

was observed for the color-modified condition compared relative to normal and orientation

conditions, with this difference confirmed by classification analysis. Conversely, there was

no significant difference between conditions for the artificial category in either analysis.

These findings provide strong evidence that color is an integral property to the categoriza-

tion of fruits/vegetables, thus substantiating the claim that feature-based processing guides

as a function of semantic category.

1. Introduction

The way in which semantic concepts are represented in the brain has been largely informed by

neuropsychological studies with brain-damaged patients (for a review, see [1]) whose selective

impairment in object recognition has been broadly distinguished between natural and artificial

(manmade) entities. Notably, however, the category of food—namely, fruits/vegetables—has

dissociated from this canonical natural/artificial distinction, with a pattern of deficit that has
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differentially accompanied an impairment either in the processing of natural entities (i.e., ani-

mals [2]), artificial entities (i.e., tools [3]) or has demonstrated isolated impairment [4].

Several theories have been proposed to explain the structural organization of concepts in

the brain. These theories broadly fall into two general groups. Those that follow a correlated

structure principle posit that, while the number of shared versus distinctive features between

objects differs across categories, this conceptual distinction is not instantiated at the level of

functional neuroanatomy. Those that ascribe to a neural structure principle claim instead that

dissociable neural substrates are differentially involved in representing categories (for review,

see [1]). Proponents of the correlated structure principle assert that the co-occurrence of par-

ticular feature types, with an interplay between feature distinctiveness versus sharedness, is

what facilitates categorical knowledge and identification (e.g., Conceptual Structure Account

[5]). By extension, categories that possess high within-category similarity, such as that of

fruits/vegetables, could be rendered more susceptible to deficit potentially due to a crowding

effect of feature overlap that results in low discriminability at the basic level [6].

Alternatively, adherents of the neural structure principle emphasize representational con-

straints based on the internal neuroanatomical structure of the brain. Some scholars propose a

categorical organization of knowledge [7–9], claiming that evolutionary pressures imposed

functionally dissociable neural circuits dedicated to specific categories (e.g., animals, tools,

faces) that have aided our survival. Others, instead, propose that distributed, modality-specific

subsystems represent the core organizing principle of semantics; and that these subsystems are

differentially important to each category (e.g., [2, 10]). More specifically, they propose that nat-

ural entities rely on sensory properties (e.g., color, shape) and artificial entities on functional

properties (e.g., use and manipulability) for their classification. Indeed, neurophysiological evi-

dence has revealed an interaction between the processing of category and feature type; lateral

portions of the fusiform gyrus have shown to be more active for animals (e.g., natural) as

compared to manmade tools (e.g., artificial [11]), with these areas linked to distinct feature

processing regions associated with color (i.e., ventral temporal cortex) versus action-related

information (i.e., middle temporal cortex [12]), respectively.

Somewhat orthogonally to this debate about how semantic information is organized in the

brain (and therefore, how categories emerge), scholars have argued about the format of seman-

tic information. Supporters of grounded/embodied views have suggested that concepts are

deeply rooted within the sensory and motor systems, so that understanding a word or activat-

ing a concept involves the re-enactment of its perceptual and motoric counterpart (e,g., think-

ing of “red” engages the same neural and cognitive machinery as actually seeing the color; see,

for example [13–17]). Theories widely vary in this camp as to the “strength” of the embodi-

ment assumption: while some theorists suggest that the whole of meaning is contained through

sensory-motor content (e.g., [13]), others believe that the semantic system is independent of

but directly associated with sensory and motor information (e.g., [18, 19]). At the opposite

end of the spectrum, some theories of the semantic system state that meaning information is

entirely symbolic, with essentially no role left for the sensory or motor content that generated

it. This was the dominant position in early psycholinguistic theories (e.g., [20, 21]), and is

often an implicit assumption behind the more recent models based on computational linguis-

tics (see, e.g., [22, 23]).

It is interesting to note that this debate focuses quite exclusively on the format of semantic

information—what constitutes a word meaning or a concept—rather than on its organization

—how words and concepts are related to each other. Therefore, the role of categories in the

symbolic-grounded cognition debate has been fairly secondary; scholars would typically search

for activation of primary sensory and motor areas in neuroimaging data (e.g., for a review,

see [24]), or assess the disruptive impact of sensory-motor impairment/secondary task on
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semantic processing (e.g., [25]), rather than looking into how categories affect semantic pro-

cessing or how they get disrupted in neuropsychological patients. Nonetheless, these theories

might license predictions as to the role of certain types of information in the representation of

some categories; if one gives primary importance to sensory and motor information in concept

representation, for example, stimuli where this information is inconsistent (e.g., the picture of

a blue apple) should be quite difficult to process semantically, possibly more in categories

where this information is more relevant, or more distinctive. As it became clear that both

entirely symbolic and extreme-grounding positions were untenable (e.g., see [15, 26, 27]), the-

ories emerged that recognized both an important role to sensory and motor information and

yet their distinction from conceptual representations, which necessitate shared participation

across distributed regions towards semantic content selectivity [28]. In a somewhat similar

vein, others have postulated the presence of a multi-modal hub where information from differ-

ent grounded spokes become integrated (e.g., [29, 30]). In this hub-and-spoke approach, cate-

gories seem to emerge from constellations of similar information across different areas in the

brain, although perhaps the hub—which is typically located in the Anterior Temporal Lobe—

might compactly (and symbolically) represent them in its attempt to merge information from

the various (grounded) spokes.

Attempts towards resolving the conceptual organization of semantics have primarily

focused on a subset of categories, such as animals (i.e., natural) and manmade tools (i.e., artifi-

cial), while the category of fruits/vegetables has been relatively under-investigated, despite its

relevance to our survival and its inconsistent pattern of deficit that can potentially be mapped

to both natural and artificial domains. On the one hand, since fruits/vegetables are (i) ontolog-

ically considered to be natural objects and (ii) necessary to our survival, the features important

to their recognition should be similar to those of other natural entities, like animals. Indeed,

their core semantics seemingly rely heavily on shape and color information (e.g., a banana is

elongated, yellow and relatively small, while a watermelon is round, green and relatively large).

On the other hand, however, fruits/vegetables also frequently engage motoric systems to prop-

erly execute eating, which could render them similar to artificial entities and thus relying on

function. The current paper aimed to address the role of feature-based processing in the cate-

gorization of fruits/vegetables compared to the well-investigated artificial category of tools.

Of the sensory attributes theoretically associated with natural entities, color has garnered

particular attention. Some patients have demonstrated dissociation between the perception of

color and the knowledge of color typicality associated with objects [31–33]. Some studies have

also emphasized the importance of surface detail (i.e., color, brightness, and texture gradient)

on structurally similar objects by demonstrating reduced object naming with feature disrup-

tion [34]. Visual competition among structurally similar objects, such as fruits/vegetables, has

led to slower reaction times in identifying an object as real or not [35]. A deficit in identifying

the appropriate colors associated with fruits/vegetables has either been observed in the pres-

ence of intact low-level visual color processing [32], or has not disproportionately affected the

fruits/vegetables category compared to other living categories [31]. However, others have pro-

posed a ‘fractionation’ of visual information relevant within the natural category, with animals

relying more on form and fruits/vegetables on color [6, 36, 37]. Indeed, some studies have sup-

ported a facilitation of color in the classification and naming of fruits/vegetables [38, 39],

although findings have been equivocal, with some studies either not finding such facilitation

[40] or showing a greater relative impact for shape information [41].

Recognition of artificial entities has been shown to rely to a large extent on functional infor-

mation (e.g., manipulability). Tucker & Ellis [42] presented participants with an orientation

classification task of manipulable objects and demonstrated that objects whose handle was

aligned with the responding hand elicited quicker reaction times in orientation judgments

PLOS ONE Perceptual feature modifications affect N400

PLOS ONE | https://doi.org/10.1371/journal.pone.0234219 April 14, 2021 3 / 24

https://doi.org/10.1371/journal.pone.0234219


(i.e., affordance effect [43]). Such sensitivity to affordance has also been observed in priming

tasks in which prior exposure to a line congruent with the graspable axis of a subsequently-pre-

sented object has facilitated performance [44]. At the neural level, the importance of action-

related knowledge to the concept of tools has been argued on the basis of dorsal region activa-

tion (associated with the “where” pathway [45]) to the viewing [46, 47]) as well as the naming

of tool stimuli [48]. Also, the motion associated with tools differentially activates regions of the

lateral temporal cortex from that of biological motion [49].

In sum, there is ongoing debate as to the neural organization of the semantic system, and

how conceptual representations are situated in the perceptual and motoric systems. In this

context, there are both experimental results (although not entirely uncontroversial) and theo-

retical argument to support the hypothesis that visual information (and color, in particular) is

critical for natural object representation/processing, whereas motor–related information (e.g.,

orientation) is critical for manmade object representation/processing. In the current paper, we

would like to place the category of fruits and vegetables within this context: to what extent

does the category of fruits/vegetables obey the classic natural vs. artificial dichotomy and what

importance is granted to visual (e.g., color) versus motor (e.g., orientation, affordance) infor-

mation to its conceptual processing? These are the issues that we wish to address in this paper.

We report the results of two cross–modal priming experiments in which object images are

used to prime lexical decisions on written words. The core manipulation behind our design is

that prime images are either (i) normal, (ii) color–modified, or (iii) orientation–modified rep-

resentations of the relevant objects. Our hypothesis is as follows: if color and orientation are

asymmetrically important for natural (fruits/vegetables) and manmade (tools) objects, respec-

tively, then color-modified primes should render a more severe priming reduction for fruits/

vegetables, while orientation-modified primes would shrink priming for tools. Alternatively, if

fruits/vegetables share overlap with the artificial category, orientation-modified primes should

also yield a priming reduction in this category. Importantly, prime duration was short (i.e.,

100ms), in line with previous work tapping into early semantic processing and the distinction

between natural and artificial entities [50, 51]. Also, the cross-modal design was meant to

ensure that any generated effect would be genuinely semantic in nature, engaging access across

domains.

In Experiment 1, we focused on response times—the experiment was entirely behavioral. In

Experiment 2, we collected electrophysiological measures via EEG. A widely used index of

semantic processing is the N400 component—a negative deflection in the waveform peaking

at about 400ms post stimulus onset, which responds to the semantic ‘predictability’ of a stimu-

lus in a given context (for a review, see [52]). This component has commonly been elicited by

priming paradigms: greater negativity reflects a reduction in relatedness between primes and

targets [52]. N400 effects have been observed for picture-picture priming of real objects [53]

and cross-modal priming using both real objects [54] and line drawings [55] paired with

words. In addition, a graded modulation of the N400 component was reported to reflect a sim-

ilarly graded modulation of prime-target relatedness [56] this finding is particularly pertinent

to the current study, which aims to compare the effect of a prime subjected to visual feature

modification on subsequent target processing.

Extending our hypothesis to the EEG domain, we expect that if color is indeed more crucial

for natural (fruits/vegetables) entities, color-modified primes should elicit an N400 for this cat-

egory. Symmetrically, if orientation is critical for manmade entities (tools), then orientation-

modified primes should elicit an N400 in this domain. Such findings would suggest that a

modification in a feature critical to a given category is perceived as a semantic violation, thus

supporting the claim that such a feature is integrally "woven" into the semantic representation

of that category. If, instead, fruits and vegetables also critically depend on function (similarly
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to tools), we may observe a graded N400 negativity, with the degree of negativity modulated by

the importance of that feature.

Prior EEG research already speaks to the ability of this technique to distinguish between

perceptual and semantic sources of activation [54]. Del Prado Martin and colleagues [57]

investigated the spatio-temporal activity patterns of color-related versus form-related words,

providing evidence for earlier peak processing of color compared to form. Also, these authors

reported that topographies mapped to different underlying neural sources. Furthermore,

Amsel and colleagues [58] utilized a go/no-go semantic decision task to demonstrate that an

incongruent attribute of a given object (e.g., purple—lime), when paired together, elicited an

N200 component for the no-go condition. This N200 effect was also demonstrated in a similar

task for incongruent action-related knowledge referring to graspable objects [59]. The authors

interpreted these results in support of grounded views of cognition, maintaining that the neu-

ral circuitry responsible for perceiving and acting on objects play a role in their conceptual

access from long-term memory [60].

Furthermore, given the high dimensionality of EEG data, exploratory analysis was per-

formed using linear classification. Previous studies have successfully utilized semantic-decod-

ing algorithms [61] to disentangle representations at the neural level.

2. Experiment 1

2.1. Methods

2.1.1. Participants. A total of 60 healthy right-handed (confirmed by the Edinburgh

Handedness Inventory [62]), native Italian speakers with normal or corrected-to-normal

vision participated in the experiment (age range: 18–34 years). Participants were recruited via

an advertisement posted on a dedicated social-networking site, and were monetarily compen-

sated for their participation. All participants were naive to the purpose of the experiment and

provided informed written consent. The experiment was part of a program that has been

approved by the Ethics Committee of SISSA.

2.1.1. Materials. Forty–two Italian words served as critical target stimuli for the experi-

ment. Twenty–one of them represent natural objects (fruits/vegetables; e.g., pomodoro,

tomato) and twenty–one represent tools (kitchen utensils; e.g., forchetta, fork). The main lexi-

cal features of these 42 words are illustrated in Table 1.

Each target word was associated with three different prime images, representing the corre-

sponding object: (i) in its canonical color and position (identity prime); (ii) with a clearly non–

standard color (color modified prime); (iii) with a clearly non–standard position (orientation–

modified prime). In the case of objects without a clear canonical base position (e.g., knife; see

Table 1. Lexical features for each category.

Lexical features Natural Artificial

Mean SD Mean SD
Frequency 3.11 0.55 3.07 0.72

Word length (letters) 7.24 1.82 8.1 2.11

Coltheart’s N 12.43 19.8 7.57 6.53

Old20 1.8 0.58 1.88 0.74

Frequency is given on a zipf scale, which is an improved logarithmic transformation of number of occurrences per

million words (van Heuven, Mandera, Keuleers, & Brysbaert, 2014).

https://doi.org/10.1371/journal.pone.0234219.t001
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[63]), the original image was chosen to be the one with maximum affordability for a right–

hand grasp [42]. Identity primes were all taken from the FRIDa database [64].

For the orientation modification, images were rotated 180 degrees in the counterclockwise

direction. For the color modification, images were converted to CIELab, which nonlinearly

compresses an RGB color image into a three–dimensional coordinate space with the position

on one axis representing the red-green opponent channel (a), another the yellow–blue oppo-

nent channel (b), and the third the lightness of color, which is the cube root of the relative

luminance [65]. The advantage of using such a color space is that the lightness contrast can be

manipulated independent of a color modification. Furthermore, transformations of images

that are high in gray content respond well to manipulations in this color space, meaning that

more drastic changes can be achieved as compared to a uni–coordinate modification of hue in

the HSL or HSV color space. This was particularly useful for the artificial category, which con-

tained a high number of objects whose principle color was gray. Modifications to both natural

and artificial objects were achieved using a custom–written MATLAB1 code and made by a

fixed proportional change in a—and b–channel value coefficients, the position of each pixel

for either axis multiplied by.8 and.2, respectively. This created a purple–blue effect, which

we selected among other available options because it rendered a color most naturalistically

improbable for our stimuli (e.g., we didn’t have any object among our targets that is prototypi-

cally purple or blue). Examples of these prime images can be found in the experimental design

schematic of Fig 1.

Identity prime images were matched between natural objects and tools for brightness, spa-

tial frequency, and size in addition to evaluative ratings of discriminability and familiarity,

which were based on a 100-point scale. These ratings were obtained from the normative rat-

ings of the FRIDa database. Additionally, in a separate experiment, we had an independent

group of participants (N = 28) rate the discriminability of all images and compared ratings

from the canonically-presented object images to those of the color- and orientation-modified

object images. Results showed no significant difference in image discriminability between con-

ditions (P > .12).

To compute brightness, images were converted to grayscale and the average brightness

extracted. To compute object size, objects were isolated using a layer mask in an online image

editing application (https://pixlr.com/). Pixels representing the object were converted to black,

the background was converted to white, and the ratio between the two was calculated. Spatial

frequency was calculated by employing a bi-dimensional fast Fourier transform, which con-

verts the image represented as an array of brightness values to its unique representation in the

spatial frequency domain. After transformation, individual pixels represent the power of spe-

cific spatial frequencies in a given direction [64]. Values for each feature were obtained using

custom-written MATLAB1 codes (Mathworks, Natick, Massachussets, USA). Both color and

orientation–modified images underwent the exact same pipeline (for values of all features, see

Table 2).

The assignment of each word target to the three priming conditions was counterbalanced

over participants in a Latin Square design, so that all participants received primes from each

condition, but saw each target only once.

For the purpose of the lexical decisions task, 42 nonwords were generated as further target

stimuli. They were created from real words by either vowel inversion or single consonant sub-

stitution (e.g., pentalo from the Italian word pentola, pot)—we wanted the task to be challeng-

ing, thus engaging participants in deep lexical processing. In order to avoid participants being

able to successfully perform the task based on stimuli surface features, words and nonwords

were matched for length in letters (Words: M = 7.67, SD = 2.02; Nonwords: M = 7.55,

SD = 1.75) and orthographic neighborhood size (as measured by OLD20; Words: M = 1.84,
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SD = 0.658; Nonwords: M = 1.9, SD = 0.686). These targets were also associated with prime

images, similarly to the word–target stimuli. However, nonword-target stimuli were associated

with only one image (e.g., normal, color, or orientation) and were not subjected to rotation.

Images were displayed within a 450–pixel square, against a gray background. All letter

strings were presented in size 36 Courier New Font, and displayed in white on the same gray

background.

2.1.3. Procedure. Participants were tested in a dimly lit room. Participants were seated

approximately 60 cm from a monitor with a screen diagonal of 48 cm (resolution: 1280 x 1024

Fig 1. Experimental design schematic of trials of normal condition with color and orientation modification conditions for each category

shown to the left. Participants were asked to respond by key press to the question “Is it a word or nonword?” Target strings remained on the

screen for 3000ms or until key press.

https://doi.org/10.1371/journal.pone.0234219.g001

Table 2. Visual properties and evaluative ratings of stimuli for each category.

Condition Natural Artificial

Mean SD Mean SD
Brightness 134.12 10.49 133.77 9.86

Spatial frequency 0.0052 0.0022 0.0059 0.0013

Size 0.0006 0.0023 0.0007 0.0032

Discriminability 7.61 18.46 8.13 15

Familiarity 58.3 28.9 57.15 29.11

https://doi.org/10.1371/journal.pone.0234219.t002

PLOS ONE Perceptual feature modifications affect N400

PLOS ONE | https://doi.org/10.1371/journal.pone.0234219 April 14, 2021 7 / 24

https://doi.org/10.1371/journal.pone.0234219.g001
https://doi.org/10.1371/journal.pone.0234219.t002
https://doi.org/10.1371/journal.pone.0234219


pixels; aspect ratio 4:3; refresh rate: 75Hz) and instructed to decide whether or not the letter

strings appearing on the screen represented existing Italian words. They were also told that the

letter strings would be preceded by a fixation cross, but no mention was made of the presence

of the prime images. On each trial, a fixation cross (500ms duration) was followed by the pre-

sentation of the prime image (100ms duration), which was followed by a blank screen (100ms

duration) and then by the target string of letters. Participants were asked to respond by key

press to the question "Is it a word or a nonword?" as quickly and accurately as possible (for a

schematic representation including examples of condition manipulations, see Fig 1). Keys

associated with word and nonword trials were counterbalanced across participants. Partici-

pants were given six practice trials to familiarize themselves with the task, in addition to the

first trial being considered as a practice trial.

Overall, the experiment included 84 trials (42 words and 42 nonwords), for a total duration

of about 6 minutes, with the first trial being omitted from the analyses as practice. Stimuli

were presented using E-Prime 2.0 Professional (Psychology Software Tools, Sharpsburg, PA).

2.1.4. Analysis. Data were analyzed using mixed–effect modeling as implemented in the

R package lme4 [66]. The dependent variable was response time, inverse transformed in order

to reduce the typical right skewness shown by RT distributions. We only considered correct

responses for word trials in these analyses.

Fixed factors were target Category (natural object vs. tools), prime Condition (normal vs.

color-modified vs. orientation-modified image) and their interaction. This defines the core

structure of the experimental design. Participants and target words were also specified as ran-

dom intercept factors, which took into consideration the theoretically uninteresting variation

introduced into the data by these factors. This model was confirmed to be the simplest with

maximum explained variance by the likelihood ratio test [67]. Robustness to outliers of the

model estimates was checked with model criticism as advocated by Baayen, Davidson, and

Bates [68]; that is, models were refitted after removing those data points whose standardized

residual error was higher than 2.5 and effects were considered significant only if they resisted

this procedure. P-values were computed adopting the Satterthwaite approximation for degrees

of freedom [69] as implemented in the lmerTest R package [70]. In addition, ggplot2 [71],

reshape [72], and visreg [73] were used as part of the R system for statistical computing (Ver.

2.8.1 [74]).

2.2. Results

Three participants were excluded from the analyses in having exceeded three standard devia-

tions in either reaction time (1 participant) or accuracy (2 participants) performance. Thus, 57

participants (29 female) remained in the final analysis (age: M = 23.67; SD = 3.32). One word

was also eliminated from the analysis due to an accuracy of less than 85%. Furthermore, a his-

togram of individual RTs pooled across all subjects revealed two additional extreme RTs

(RT>2500ms), likely to be the result of task inattentiveness, which were thus removed. After

removing incorrect trials (n = 263), 4476 data points (2254 word trials) remained in the final

analysis. The overall accuracy rate for the task was high- 94.45% (see Fig A.1 for accuracies by

category/condition in S1 Appendix). Means, medians and standard deviations for response

times in the six conditions are illustrated in Table 3 (see Fig A.2 for a scatterplot by category/

condition in S1 Appendix). We also performed logistic regression on the accuracy scores to

see if there was a significant difference in accuracy between categories or conditions that could

have introduced selective bias in speed/accuracy tradeoff (e.g., lower accuracy combined with

faster reaction time). While we did observe significant main effects of category and condition,

with the natural category (z(462) = -3.54, p< .001) and normal condition (z(462) = -2.32,
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p = .021) displaying higher accuracy than the artificial category and both the color and orienta-

tion conditions, respectively, there was no interaction effect that could have differentially

impacted the effect of the modified condition on either category (P> .2). Critically, the normal

condition displayed both the highest accuracy in addition to the fastest reaction times, indicat-

ing that a speed/accuracy tradeoff did not favor increased speed at the cost of accuracy.

Statistical modeling revealed a significant effect of target Category [F(1, 38.93) = 7.7, p =

.008], prime Condition [F(2, 2842.39) = 6.86, p = .001], and, most importantly, their interac-

tion [F(2, 2842.31) = 4.47, p = .01]. To explore the interaction, we fitted separate models for

natural and artificial target words. We wish to note that in model division, we do not control

for multiple comparisons, given that such correction among breakdown of mixed models is

neither commonly practiced nor arguably subjectable to the same criterion as fixed effects

modeling. One could say that our data is built on hierarchical modeling, which makes the level

of adjustment difficult to ascertain. For the natural category, color–modified primes generated

a significant reduction in priming compared to orientation–modified (t(56) = -2.12, p = .034)

and normal primes (t(56) = -3.87, p< .001), which in turn didn’t differ significantly from each

other (P = .084). For the artificial items instead, orientation–modified primes penalized prim-

ing the most, providing less priming than both color–modified (t(56) = -2, p = .045) and normal

primes (t(56) = -2.88, p = .005), which in turn didn’t differ from each other (P = .38).

Reaction times were also binned into quartiles to explore the effect across the distribution.

F-statistics and p-values for the effect of condition across quartiles, divided by category, is pro-

vided in Table 4. An interesting finding is that, for the natural category, a visualization of the

data revealed a similar pattern of performance across all response time intervals. However, for

the artificial category, the main effect of condition emerged at later time intervals, representing

a distributional shift. Such a shift in RT distribution could potentially be attributed to retro-

spective retrieval processes, where the target is semantically matched to the prime [75].

2.3. Discussion

We used a cross-modal, lexical decision priming task to test the hypothesis that natural and

artificial entities rely on different properties for their semantic processing. We have shown

that, indeed, the processing of natural entities is more sensitive to modifications of a sensory

Table 3. Raw RT means, medians, and standard deviations for condition x category.

Condition Natural Artificial

Mean Median SD Mean Median SD
Normal 672.67 614 221.06 759.79 702.5 258.83

Color 705.41 646 230.66 779.24 719.5 276.92

Orientation 684.98 625 235.51 804.28 735.5 292.36

https://doi.org/10.1371/journal.pone.0234219.t003

Table 4. F-statistics for anova of models divided by category and quartile.

Quartile Natural Artificial

F-value Pr(>F) F-value Pr(>F)
Q1 13.52 < .001 1.59 .206

Q2 15.46 < .001 4.42 .02

Q3 14.87 < .001 12.7 < .001

Q4 1.45 .235 5.69 .004

https://doi.org/10.1371/journal.pone.0234219.t004
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property (i.e., color), while that of artificial entities is more sensitive to modifications of a func-

tional property (i.e., orientation).

The cross–modality of the effect (primes were object images, while targets were words) fur-

ther suggests that the effect described here is semantic in nature. Moreover, nonword targets

were constructed from real words representing the prime object by changing only a single

vowel/consonant; in this way, both word and nonword targets were semantically related to

the prime image. Neely [76] described a retrospective matching strategy in which checking

whether a target is related to a prime may induce priming in the lexical decision task. As non-

word targets are typically unrelated to the prime, the prime-target relatedness proportion is

lower for nonwords. In the current study, the relatedness proportion between prime and target

was 1 for both words and nonwords, meaning that participants could not have employed a ret-

rospective matching strategy to identify words differentially from nonwords based on a seman-

tic relationship that only target words share with the prime [77]. This is generally considered

as further confirmation that priming derives from access at the conceptual level.

While color is most integral to the processing of fruits/vegetables and orientation to the

processing of tools, there were also reductions in priming for each of the modified conditions

with respect to the normal condition. This suggests that, while a certain feature may be of criti-

cal importance to a particular category, other features may also play a role in its conceptual

representation. Furthermore, this reduction was more evident for fruits/vegetables, which dis-

played greater susceptibility to priming interference by an orientation transformation than

utensils did to a color change. This is not particularly surprising after all; as hypothesized,

fruits/vegetables can also be considered graspable entities that invoke motor affordances

(although such an effect has been reported to depend on overt responses to graspability, which

were not involved in this task [78]).

3. Experiment 2

In Experiment 2, we utilized EEG to test whether the interaction between category and feature

type would manifest at the neural level, as indexed by the N400 component. We hypothesized

that a modification of a feature integral to the representation of a given category would be

processed as a semantic violation, thus eliciting an increase in negativity in the N400 time

window.

3.1. Methods

3.1.1. Participants. Forty native speakers of Italian (32 after exclusion; see Data section

below) partook in the experiment. Participants were healthy, right-handed (confirmed by

the Edinburgh Handedness Inventory [62]) individuals (mean age ± standard deviation =

24.33 ± 2.45; range = 19–30 years; 17 females/15 males), recruited via an advertisement posted

on a dedicated social-networking site and monetarily compensated (25€) for their participa-

tion. All participants had normal or corrected-to-normal visual acuity, no history of neurologi-

cal or psychiatric illness, and no history of drug or alcohol abuse that might compromise

cognitive functioning. All participants were naive to the purpose of the experiment and pro-

vided informed written consent. The experiment was part of a program that was approved by

the ethics committee of SISSA.

3.1.2. Materials. The materials used in Experiment 2 were identical to those employed in

Experiment 1.

3.1.3. Methods. Participants were seated approximately 60 cm from a monitor with a

screen diagonal of 48 cm (resolution: 1280 x 1024 pixels; aspect ratio 4:3; refresh rate: 120Hz).

Participants were presented with a lexical decision-priming paradigm identical to the one used
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in Experiment 1 with one exception- rather than indicating their response by button press,

they were asked to silently categorize the string of letters as word or nonword. However, on

approximately 25% of trials, a question mark appeared following the target string, prompting a

vocalized response. This was done to maintain task engagement while minimizing any motor-

related contamination introduced by a button press [79]. Each target string was associated

with one question mark to ensure that participants could correctly classify all target strings.

Overall, one block of the experiment consisted of 84 trials (42 words and 42 nonwords),

identical to Experiment 1, and was repeated five times. Stimuli were presented using E-Prime

2.0 Professional [80]. The experiment was performed in a sound-proof cabin. All electrical

devices that were not sources of direct current and could interfere with EEG wave acquisition

were turned off before experiment onset.

3.1.4. EEG acquisition. Continuous EEG was recorded from an array of 128 silver-chlo-

ride Biosemi active electrodes mounted on an elastic cap (topographic placement: radial ABC

layout system). Two external electrodes were placed on the left and right mastoids (A1, A2) as

reference. However, due to high impedance values and signal noise discovered upon manual

inspection, mastoids were later discarded and average reference used (i.e., mean of all elec-

trodes). Manual inspection of all participants’ EEG recordings was performed after down-sam-

pling and filtering (described in further detail below, in EEG Preprocessing); it was at this step

that excessive noise in the mastoid channels was detected. EEG signal was amplified using a

Biosemi Active-Two amplifier system (Biosemi, Amsterdam, Netherlands) at a sampling rate

of 1024 Hz. An electrode located at site FC1 (common mode sense: CMS; Biosemi ActiveTwo

system) was used as reference in measuring the single-ended voltages for each electrode. The

direct current offset was kept below 25 mV. Data acquisition was made using the software

Actiview605-Lores (www.biosemi.com).

3.1.5. EEG preprocessing. EEGLAB [81] and Fieldtrip (http://www.ru.nl/neuroimaging/

fieldtrip)- open source Matlab toolboxes- were used to perform all preprocessing steps. Off-

line data preprocessing included a digital high-pass filter of 0.1 Hz (as recommended by Tan-

ner, Morgan-Short, & Luck [82]) and a low-pass filter of 100 Hz. Data were down–sampled to

256 Hz and segmented into epochs of 1200 ms, starting 200 ms before prime onset. Before pro-

ceeding with data cleaning, incorrect trials were identified and removed. Incorrect classifica-

tion of a target string resulted in all trials in which that string appeared being removed. Given

that participants were only asked to vocalize a response on 25% of trials, we only obtained one

response per string indicating if a participant was able to correctly identify the string as a word

or nonword; thus, an incorrect trial could denote an inability to correctly identify the target

string, resulting in all trials of that string being discarded to ensure that only correct trials were

being analyzed. Properties of each electrode’s signal were analyzed for outlier detection and

removal according to three measures- kurtosis, to detect unusually “peaked” values across the

signal; probability, to detect unusual trends in the signal based on the observed probability

density function over all trials and computing joint probability values across the signal; and

spectrum, to detect frequencies that deviate from the mean baseline frequency (for further

details, see [83]). Values to compute each of these properties were normalized to have zero

mean and unit standard deviation to define z-thresholds for electrode exclusion; electrodes

exceeding a specified z-threshold (kurtosis = 4; probability = 4; spectrum = 3) were removed

from the data (for threshold suggestions, see [83]). A subset of electrodes sensitive to ocular

movements were withheld from this threshold check and later passed to Independent Compo-

nent Analysis (ICA). Noisy trials were deleted by visual inspection and data were referenced to

the average. ICA using the Infomax algorithm was performed on all data for elimination of

artifacts related to ocular and muscular movements. Data were time-locked to the onset of the

prime image and baseline (200 ms pre-prime onset) removed. Automatic trial rejection was
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then performed for a more fine-grained cleaning: ±50 dB threshold in the 0–2 Hz frequency

range (for capturing residual eye movements) and +25 to -100 dB in the 20–40 Hz (for captur-

ing muscle movements). Finally, missing electrode data were interpolated to the original

128-electrode montage. Nine electrodes, on average, were removed and interpolated for each

subject.

3.1.6. Data. Of the initial 40 participants, 32 were retained for the analysis. One partici-

pant was eliminated due to high error rate (8.3% trials) and the remaining seven due to exces-

sive noise (> 25% of trials were rejected). Error rate was less than 1% (M = 0.7; SD = 1.2) and

the average number of trials rejected due to noise was less than 15% (M = 86.67%; SD = 6.6%)

for the remaining subjects. There was no significant difference in the number of remaining

artifact-free trials between task conditions F(5,186) = .284, P = .92.

3.1.7. Standard ERP analysis. ERPs were computed for epochs extending from 200 ms

pre-prime onset to 1000 ms post-target onset. Analysis was performed using threshold-free

cluster-enhancement (TFCE), which is a cluster-based technique that embeds permutation-

based statistics for significance testing [84]. The advantage of TFCE over other cluster size/

mass techniques is that it uses information about both the intensity and the spatial distribution

of the signal to enhance weak, but broadly supported signals to the same numerical values as

strong, but highly focal signals, without having to select a cluster-forming threshold a priori

(for a more thorough description, see [84]). In addition, this technique outperforms other clus-

tering methods in controlling for Type 1 errors [85]. The entire epoch was submitted to TFCE

analysis, which resulted in a significance matrix (electrode x time) in which clusters were iden-

tified based on the span of significance in both time and space. Significance was assessed based

on a two-tail threshold of p< 0.05. Clusters within a window spanning from 250-500ms post-

target onset were considered to capture a modulation of the N400 [86].

The first comparison of interest was between all word and nonword trials, irrespective of

prime pairing. This was to ensure that our paradigm indeed elicited the most basic semantic

distinction between meaningless and meaningful stimuli as previously demonstrated in the lit-

erature [87]. Average waveforms for all word and nonword trials were calculated for each par-

ticipant and a grand average computed to compare conditions. Thereafter, nonword trials

were discarded from further analysis and only word trials considered. Word trials were divided

by category into those representing natural versus artificial entities. For each category, all com-

binations of conditions were compared (i.e., normal–color, normal–orientation, color–orien-

tation). Results were corrected for multiple comparisons, using the Benjamini-Hochberg

procedure, at an FDR-threshold of Q = 0.05.

3.1.8. Classification. In addition, we performed a searchlight classification on all elec-

trodes in the interval of 250 to 500 ms post-target onset, corresponding to the N400 time win-

dow [86]. We chose linear discriminant analysis (LDA) classification because it employs an

algorithm that is able to handle input of more than two classes; LDA utilizes a data reduction

technique to divide the feature space based on maximum variance, similar to Principal Com-

ponent Analysis (PCA), and generates weights to discriminate between classes [88]. LDA sup-

ports multiclass discrimination directly without performing pairwise classification; thus, the

output from the classifier is a single accuracy value per participant, with chance threshold

established as 1/number of classes. LDA classification was performed separately for the natural

category (all conditions included) and then artificial category (all conditions included).

Classification was performed at the individual participant level. For each participant, indi-

vidual trials, serving as observations, were submitted to the classifier. In cases where conditions

contained different numbers of trials, a random subset of trials from the larger condition was

sampled to match. Algorithms employed a cross-validation measure and an odd-even partition

scheme whereby both even and odd runs served as training and testing sets. A searchlight
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approach was used to create neighborhoods of channels with each channel serving as ‘origin’

and identifying neighboring sensors within a certain configuration. Neighbors were defined

based on a triangulation algorithm in Fieldtrip that allows for the building of triangles of

‘nodes’ that are independent of channel distances. Classification was then performed on each

searchlight neighborhood across the entire scalp. Accuracies were generated per comparison,

per participant, which were then thresholded for significance at the group level using Monte

Carlo permutation testing with 10000 iterations. Essentially, permutation testing in this con-

text involves subtracting the chance accuracy from the computed accuracies and randomly

flipping the sign over iterations. This generates multiple t-statistics over iterations that are

then corrected for multiple comparisons using TFCE, which results in a z-score map that can

be plotted for significance. Significance was defined as a one-tail probability value of z> 1.64

(p< 0.05) because we were only interested in classification accuracies that were significantly

higher than chance level.

3.2. Results

3.2.1. ERP results. In a first comparison between word and nonword trials, TFCE analysis

showed that nonword trials generated greater negativity relative to word trials for 19 unique

channels in the left fronto-central region for the time range of 288–423 ms (peak channel at

389 ms: C1; T = -6.27; p< 0.002). This finding is in line with previous semantic literature that

has demonstrated an N400 effect for meaningless compared to meaningful stimuli [87].

Examining word trials only, for the natural category, TFCE analysis revealed a significant

difference between the color and normal condition, such that color trials elicited significantly

greater negativity than normal trials for 11 unique channels in the left fronto-central region in

the time range of 213–387 ms (peak channel at 256 ms: C1; T = 6.12; p< 0.009). The resulting

scalp topography and grand mean waveforms for all three conditions can be seen in Fig 2.

Next, although an evident difference emerged in the grand mean for selected electrodes

between the color and orientation conditions as well, TFCE confirmed that the color condition

elicited a greater N400 response with respect to the orientation condition. This effect was

found for 8 unique channels in the central region for the time range of 299–381 ms (peak

channel at 320 ms: B1; T = -6.07; p< 0.001; see Fig 3). These findings are in line with our

hypothesis that a color-modification for fruits/vegetables should yield a semantic violation as

indexed by an increase in N400 amplitude. Last, a comparison between orientation and nor-

mal conditions revealed one channel that exhibited significantly higher amplitude compared

to the normal condition, in the centro-parietal region for the time range 89–97 ms (peak chan-

nel at 93 ms: Pz; T = -5.88; p< 0.05), but did not survive FDR correction.

For the artificial category, the color compared to normal condition revealed a significant

cluster of 4 unique channels displaying greater negativity for the color compared to normal

condition (peak channel at 102 ms (post-prime): A26; T = -6.6; p< 0.03), but did not survive

FDR correction. This effect was of short duration, spanning 8 milliseconds, and only witnessed

in the prime window. A comparison between the orientation and normal condition did not

reveal significant channels at any time point (P > .1), nor did the comparison between the ori-

entation and color condition.

3.2.2. Classification results. A statistical z-score map of LDA accuracies can be found in

Fig 4. For the natural category, the LDA classifier successfully discriminated between the three

conditions in 7 channels as origin in the searchlight (z-range: 1.7–2.18; p-range:.015–.045).

These channels were located in the left fronto-central region and resembled the ERP scalp

topography of significant channels for the word-nonword comparison as well as the natural

category comparison, albeit to a lesser extent. These results confirm the robustness of the main
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finding that an exposure to a prime manipulation in a feature relevant to the categorization of

the natural category of fruits/vegetables yields an effect in the N400 time window.

For the artificial category, although there was no significant difference between conditions

when comparing ERP amplitudes, one channel neighborhood was able to significantly dis-

criminate between classes (z = 1.9, p = .029).

4. Discussion

ERP component analysis demonstrated a significant effect in the N400 time window (i.e., 250–

500 ms post-target onset) that was modulated by the manipulation in prime for fruits/vegeta-

bles. A comparison between the normal and color conditions revealed a significant negative

deflection for the color-modified condition (Fig 2), in line with our predictions and with the

results of Experiment 1, as well as a negative deflection for the color-modified condition com-

pared to the orientation-modified condition (Fig 3). Given what appeared to be a trend

towards a graded nature of a priming effect observed in the behavioral data of Experiment 1, it

was hypothesized that an orientation-modification may also elicit an N400 effect, albeit to a

significantly lesser extent than color. However, we did not observe such N400 modulation.

Instead, when we employed a multivariate data analysis tool, the LDA classifier was indeed

able to accurately distinguish between the three conditions at fronto-central channel sites with

a slightly left-lateralized bias (Fig 4); this pattern of results resembled the ERP scalp topography

of significant channels for the word-nonword comparison, with 4 of the 7 channels displaying

this overlap. LDA’s ability to discriminate between conditions could be due to the fact that,

similarly to PCA, it projects the data into a space that is based on feature extraction of dimen-

sions common to all input, to avoid redundancy and maximize the difference between classes.

Fig 2. Left panel: Topographic map of the brain at peak channel significance (~253 ms post-target onset) for Color—Normal trials of the

natural category. Topography reflects the difference between the grand average for Color—Normal trials, black dots represent the 11 unique

significant electrodes at p< 0.009. Right panel: Mean waveforms across the 11-electrode cluster plotted separately for the normal (red), color

(blue), and orientation (green) conditions. Significance reflects the difference between the color and normal condition (orientation is also plotted

for visualization of the pattern of effect). Shaded regions along the waveforms indicate standard error of the mean. The shaded yellow bar denotes

significant time points within the N400 time window. The color condition, compared to the normal condition, elicited the canonical N400. Note:

The shaded yellow bar begins at 450ms (corresponding to 250ms post-target onset) due to the 0 time point on the x-axis being locked to the

prime onset.

https://doi.org/10.1371/journal.pone.0234219.g002
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Fig 3. Left panel: Topographic map of the brain at peak channel significance (~320 ms post-target onset) for Color—Orientation trials of

the natural category. Topography reflects the difference between the grand average for Color—Orientation trials, black dots represent the 8

unique significant electrodes at p< 0.001. Right panel: Mean waveforms across the 8-electrode cluster plotted separately for the normal (red),

color (blue), and orientation (green) conditions. Significance reflects the difference between the color and orientation condition (normal is also

plotted for visualization of the pattern of effect). The black dashed line represents onset of the prime and the pink dashed line represents onset of

the target. Shaded regions along the waveforms indicate standard error of the mean. The shaded yellow bar denotes significant time points

within the N400 time window. The color condition, compared to the orientation condition, elicited the canonical N400. Note: The shaded

yellow bar begins at 450ms (corresponding to 250ms post-target onset) due to the 0 time point on the x-axis being locked to the prime onset.

https://doi.org/10.1371/journal.pone.0234219.g003

Fig 4. Left panel: A statistical z-score map of LDA accuracies for the natural category. Significance was defined as a one-tail probability value

of z> 1.64 (p < 0.05) and can be observed in 7 channels that served as searchlight origins (dark red regions) in left fronto-central sites. Right
panel: Classification accuracies for the 7 significant channels. Each gray dot represents the accuracy of a single participant. The expanse of the

box (purple) represents one standard deviation, the blue middle strip represents the standard error of the mean (SEM) for the 95% confidence

interval, and the blackline represents the mean. The dashed line represents chance level (i.e., 1/3 classes, or.33).

https://doi.org/10.1371/journal.pone.0234219.g004
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However, as this analysis utilizes information at the individual trial level, it may be more sensi-

tive to capturing differences between conditions that do not significantly emerge at the mean

level.

Conversely, ERP component analysis of the artificial category did not reveal a significant

difference in the time window of interest. The only finding was a slight shift and reduction in

the P100 (P1) component to the color compared to normal condition, which did not survive

correction for multiple comparisons. The fact that there was no observable N400 could be due

to a number of reasons. One explanation could be that the neural signature related to the func-

tional knowledge of artifacts might be sensitive to other task-induced factors. For instance, it

could be that the neural signature is not captured by the N400 component alone (e.g., propaga-

tion from an earlier component [53]). Another influencing factor could be orthographic par-

ticularities of the artificial objects we chose. For instance, higher values of Coltheart’s N, which

is a measure of orthographic neighborhood size [89], has been shown to elicit N400s of smaller

amplitude [90]. The artificial category did possess higher values of Coltheart’s N with respect

to the natural category, which could have mitigated an effect. Unfortunately, given the several

other constraints that we had on our stimuli selection (e.g., frequency and length matching,

items needed to be easily picturable and have a characteristic color), it was impossible to work

out a better matching on this front. Although some research has suggested that affordance

effects may be activated under specific circumstances such as goal-directed behavior [91], our

pattern of behavioral results would not suggest such a claim, in addition to the wealth of

research supporting the automatic activation of action knowledge when viewing manipulable

objects [92–94] even in the absence of conscious awareness [95, 96]. Additionally, LDA classi-

fication was able to significantly discriminate between conditions in the N400 time window at

one right posterior channel site. Interestingly, a recent study by Hauser and colleages [97]

showed that the scalp topography related to the hand motor area is located at right-lateralized

posterior sites. The fact that an effect did not emerge in the ERP amplitudes could also attest to

a loss of information when trials are averaged across conditions, necessitating a finer-grained

(multivariate, across time and space) analysis [98].

5. General discussion

The objective of the current study was to assess the role of feature-based processing in the cate-

gorization of fruits/vegetables compared to that of tools. To this end, we administered a lexical

semantic priming paradigm and recorded reaction times and neural responses to investigate

the processing of an object when a modification of a feature potentially crucial to its concep-

tual representation has been presented. Analysis of the reaction time data of Experiment 1

supported the claim that the presentation of sensory or functionally relevant features can dif-

ferentially enhance or detract from the priming effect depending on the type of category. Such

evidence are in line with theories suggesting that (i) concepts are grounded in the sensory and

functional subsystems that are relevant to their processing [14–17] and (ii) these subsystems

are differentially important depending on category type [2, 99]. Moreover, the neural data,

particularly for fruits/vegetables (FV), corroborates this claim as both standard ERP analysis

and multivariate techniques revealed a significant modulation of semantic processing by

color-modified primes. To what extent conceptual content relies solely on modality-specific

regions as opposed to some interplay with multimodal integration zones (e.g., [100–102]) or

whether such a reliance is subject to flexible, task-dependent retrieval processes (e.g., [103–

105]) unfortunately cannot elucidated given the design limitations of the present study (e.g.,

absence of source estimation in the brain [106]). However, our findings do support a general
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automaticity of feature-specific conceptual processing that extends cross-modally [92] and is

differentially modulated by category type.

Fruits/vegetables have proven to be a very interesting, yet still controversial category in the

semantic literature. While ontologically considered to be a member of natural kinds, neuro-

psychological patient studies, in addition to work with healthy individuals, have shown it to be

a category that, in some respects, traverses a coarse natural/artificial domain distinction (for a

review, see [107]). In a review of posterior cerebral artery patients, Capitani and colleagues

[108] suggested that the underlying neural substrate for the processing of fruits/vegetables may

be different than that of animals; specifically, findings from these patients suggest that middle

fusiform lesions disproportionately impair plant life (including fruits/vegetables), whereas

anterior temporal lesions that are typically the result of herpes simplex encephalitis create a

disproportionate deficit for animals. A fractionation between animals and fruits/vegetables has

also been proposed at the level of visual information, with the former relying more on form

and the latter on color for semantic processing [6, 36, 37]. However, a color facilitation in the

conceptual processing of fruits/vegetables has led to equivocal results. Several studies have sup-

ported such facilitation; for instance, the color appearance of color-diagnostic objects, such as

fruits/vegetables, is biased towards the memory color representation even when the objects are

presented achromatically [109, 110]. Neurophysiological evidence has also suggested top-

down feedback from memory color regions representing object knowledge to lower-level

visual pathways of the primary cortex even when fruits are presented in grayscale [111] and

that cortical relay between separate but tightly interconnected regions links visual and seman-

tic information [112], although such color-biased regions traverse stimulus category lines

[113]. Other studies have either not reported a facilitation of color [40] or have showed a

greater impact of other modal information to the processing of fruits [41]. The current study

demonstrated that, indeed, color is an integral feature to the representation of fruits/vegetables

at the conceptual level—response times during lexical-semantic processing of fruits/vegetables

were primed substantially less when a target word was preceded by color-modified primes of

the same object, and electrophysiology nicely backed up this behavioral pattern of results.

An interesting, though not fully unexpected, finding was that LDA classification of the

waveforms could accurately distinguish between all three conditions of fruits/vegetables, even

if ERP (or response times) didn’t reveal significantly strong difference between orientation–

modified and normal pictures. This suggests that orientation may also be relevant to the cate-

gorization of fruits/vegetables, possibly because these are graspable entities with which we

must interact for our survival. The fact that a significant difference only emerged at the level of

classification could be due to the fact that only some fruits/vegetables necessitate an appropri-

ate affordance grasp for their consumption (e.g., a banana may necessitate more manipulation

than a grape). It has been shown that fruits/vegetables can also invoke motor affordances in

the categorization process, although such an effect has been observed for overt responses to

graspability [78]. It has, however, been suggested by Gainotti and colleagues [114] that the left

lateralization of lesions underlying a deficit in the processing of fruits/vegetables in posterior

cerebral artery patient profiles (see [108]) may reflect the reliance on motor knowledge that is

necessary for eating actions. Although orientation appears relevant to the semantic processing

of fruits/vegetables, it is so to a lesser extent than color. As highlighted above, this finding sits

well with theories that place an important emphasis on grounded semantics (e.g., [14, 15, 60,

102]) as it highlights the role of a sensory feature like color in a relatively early time window

(i.e., with an SOA of 100ms).

As for the artificial category, reaction time data revealed a significant slowing of lexical-

semantic processing when words representing tools were preceded by orientation-modified

primes. This finding further confirms the differential importance of modality-specific
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information to the conceptual representation of an object that necessitates that modality for

their processing [99]. At the neural level, although a modulation by feature type did not mani-

fest in the standard ERP analysis, LDA classification did reveal a difference in one right-lateral-

ized posterior channel site. Apart from the fact that averaging across conditions could have led

to the abolishing of an effect for which a finer-grained analysis may be necessary [98], it could

be that greater variability within the category of tools rendered some exemplars more reliant

on motor affordances than others [115]. In a similar vein, potential variability in color diag-

nosticity, albeit less important to the artificial category, could have been responsible for LDA

performance in distinguishing between conditions. While this greater variability could have

driven successful LDA classification, but not significant effects in component analysis, on the

flip side, it could also be the reason why only one channel site could successfully perform this

distinction. In one way, this finding does complement the behavioral pattern where, although

RTs demonstrated a significant difference between normal and orientation conditions, there

were also priming reductions observed for the color condition.

6. Conclusion

In the current study, response times, ERP waves and multivariate techniques applied to the

EEG signal converged to indicate a direct involvement of perceptual color processing and, to a

lesser degree, orientation processing on conceptual access to fruits/vegetables. Although the

inverse pattern of reaction time emerged for the artificial category, this did not manifest in the

neural pattern of N400; however, a more fine-grained analysis of the electrophysiological data

could accurately distinguish between conditions. Our results, in sum, support modal theories,

whereby modality-relevant input is integrated at the conceptual level. As the present study

only considered two features that have been prominent in the semantics literature, future stud-

ies should consider the role of other modalities (e.g., taste, texture) that may be intrinsic to the

conceptual representation of natural and artificial objects.
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