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Abstract: Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor progno-
sis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute
to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer
patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands
and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers,
as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and
respiratory muscle wasting was also associated with improved survival. However, the definitive
proof that improved survival directly results from muscle preservation following blockade of ACVR2
signaling is still lacking, especially considering that concurrent beneficial effects in organs other than
skeletal muscle have also been described in the presence of cancer or following chemotherapy treat-
ments paired with counteraction of ACVR2 signaling. Hence, here, we aim to provide an up-to-date
literature review on the multifaceted anti-cachectic effects of ACVR2 blockade in preclinical models
of cancer, as well as in combination with anticancer treatments.

Keywords: cancer cachexia; tumor; chemotherapy; myostatin; activins; muscle wasting; survival;
mortality; multi-organ

1. Introduction

Skeletal muscle is essential for locomotion, breathing, maintenance of bone mass
and strength, and it plays a central role in whole body metabolism, acting as a target for
glucose disposal and serving as an amino acid reservoir [1,2]. Muscle size, quality and
function have been strongly related to risk of mortality and overall outcomes in different
diseases and wasting conditions [3–5]. Regardless, the role of skeletal muscle tissue remains
underappreciated in health and disease [2].

Wasting syndrome associated with disease states, such as cancer, is referred to as
cachexia [6]. Cachexia is a multifactorial syndrome characterized by loss of body mass
due to wasting of muscle, often also accompanied by loss of adipose tissue and increased
inflammation [7]. Cancer cachexia induces substantial alterations in many tissues, organs
and metabolic pathways [6]. Many of these alterations are compensatory adaptations aimed
to restore the tissue homeostasis disrupted by tumor and antitumor treatments; however, in
certain conditions, such derangements ultimately become harmful to the patient, resulting
in energetic inefficiency and wasting [6].

Cancer cachexia is associated with poor prognosis and increased chemotherapy toxic-
ity, while the latter can further aggravate muscle wasting and thus potentially compromise
cancer therapies [4]. Even though the poor prognosis associated with cachexia has been
acknowledged for almost a century [8], it was only quite recently that research started to
focus on the importance of skeletal muscle mass in cancer, mainly as a target to design
potential therapies to counteract cachexia.
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Two hallmark studies by Benny Klimek et al. [9] and Zhou et al. [10] demonstrated
that blockade of activin receptor 2B (ACVR2B) ligands successfully prevented cachexia in
tumor-bearing mice. Interestingly, prevention and reversal of cachexia were associated with
improved survival in tumor-bearing mice without effects on tumor growth [10]. These find-
ings highlighted the importance of maintaining muscle mass in experimental cancer cachexia
and proposed blocking of ACVR2 signaling as a potential therapeutic strategy to counter-
act cachexia, thereby also prolonging survival. Similar pro-survival properties of blocking
ACVR2B ligands or the receptor have since been validated by others [11–13], although to-
gether, these studies emphasized the idea that improved survival may be a multi-systemic
phenomenon, and thus more complex than previously thought. Additional studies from
our groups have recently shown that blocking ACVR2 ligands is also effective in preventing
muscle wasting in different murine models of chemotherapy-associated cachexia [14–17].
Altogether, the translational value of these preclinical studies is also supported by evidence
that blocking these ligands in healthy humans promotes larger muscles [18].

Despite all this, whether targeting ACVR2 signaling represents a putative therapeutic
strategy for the preservation of muscle mass and function in cachexia remains partially
unclear, especially in light of the recent unsuccesful translation of myostatin/activin in-
hibitors in the treatment of Duchenne muscular dystrophy and other muscle wasting
conditions in humans (see References [18,19]). Here, we provide a proof of concept and an
up-to-date literature review on the effects of ACVR2 counteraction in preclinical cancer-
and chemotherapy-induced cachexia models with a special emphasis on the multi-tissue
and multi-systemic effects possibly contributing to improved survival.

2. Cachexia Induced by Cancer or Chemotherapy
2.1. Cancer Cachexia and Skeletal Muscle Wasting

Cancer cachexia is defined as “a multifactorial syndrome characterized by an ongoing
loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed
by conventional nutritional support and leads to progressive functional impairment” [7].
Considering the number of patients affected by such comorbidity (30–80% depending
on the tumor type [20,21]), the poor prognosis related to it, and the fact that no effective
therapies are currently available, cancer cachexia represents an important field of investiga-
tion. Cachexia arises from a variable combination of reduced food intake and abnormal
metabolism, including systemic inflammation. The most advanced stage of cachexia, i.e.,
refractory cachexia, is characterized by progressive catabolism and unresponsiveness to
anticancer treatments. Unfortunately, during this phase, patients are unlikely to benefit
from interventions targeted at reversing muscle wasting or cachexia [7]; hence, there is a
need to identify early targets for intervention.

Cachexia is associated with progressive wasting in many human cancers and pre-
clinical cancer cachexia models utilizing rodents [13,21–26] and is well-known as an in-
dependent risk factor for mortality, as well as for increased chemotherapy-related toxi-
city [4,27–29]. In addition to negative effects on prognosis and tolerance to anti-cancer
therapies, muscle wasting associated with cancer cachexia drastically impairs the quality
of life and functional capacity of cancer patients and induces weakness, fatigue and exer-
cise intolerance [30]. Muscle wasting in cancer cachexia has been attributed to increased
protein degradation [12,30–33] and/or decreased protein synthesis [13,30–35]. A potential
involvement of impaired regeneration in skeletal muscle has also been a recent subject of
investigations [36]. Overall, the relative contribution of each of these mechanisms may
depend on type of cancer and the stage of cachexia [31,33].

2.2. Chemotherapy and Skeletal Muscle Wasting

Despite the recent progress in the development of new therapies for cancer, cytotoxic
chemotherapy remains the preferred treatment strategy for most tumors, irrespective of its
associated toxicities. In line with this, the interaction among tumor, host and anticancer
treatments is usually critical for the overall outcome. If the tumor responds to the treat-



Cells 2021, 10, 516 3 of 26

ment, then the applied anticancer therapy, such as chemotherapy, is likely to alleviate
cachexia and to improve patient’s quality of life [4,32,37]. For instance, in tumor-bearing
mice, chemotherapy with antitumor effects has been found to restore muscle protein syn-
thesis [32]. However, in some cases, as already reported in tumor-bearing animals, the
negative effects of chemotherapy can exacerbate the negative nitrogen balance despite its
antitumor activity [38], thus also underlining the specificity of the effects of chemothera-
peutic agents and their interaction with the tumor. However, to better clarify chemotherapy
interaction with skeletal muscle mass, it is also important to evaluate its independent effects
in the absence of a tumor. Indeed, it has been shown that even before tumor regression
occurs, different anticancer therapies, including cytotoxic chemotherapy, surgery, radiation
therapy, androgen-deprivation therapy, or targeted therapies, may cause muscle wasting
and thus aggravate the cachectic phenotype [4,37,39].

Many different chemotherapeutic agents are used, alone or in combination with other
agents, to treat cancer. Among these, doxorubicin, a widely used anthracycline chemother-
apeutic agent, is used to treat different cancers [40]. Unfortunately, in addition to its antitu-
mor effects, doxorubicin has deleterious effects on noncancerous tissues, with cardiotoxicity
being its most well-known side effect and limiting its clinical use [40–42]. However, even
with this limited dosage, doxorubicin accumulates into skeletal muscle [15,43], and studies
in both humans [41] and animals [44–53] have usually reported muscle weakness, fatigue,
dysfunction and atrophy after chemotherapy with doxorubicin alone or combined with
other cytostatic agents.

High doses of doxorubicin have been shown to activate markers of proteolysis [51,54].
However, the degree of proteolysis may be small compared with other muscle wasting
conditions [55,56], as typical “atrogene” expression signature was not observed in murine
skeletal muscle acutely after a single dose of chemotherapy [14]. In addition, increased
markers of autophagy [44,54] and apoptosis [44,51,54] have been observed in muscles of
rodents treated with doxorubicin-based chemotherapy regimens.

In addition to doxorubicin, the muscle effects of other chemotherapeutics have been
recently investigated in rodents. Barreto et al. [17] were the first to report that chronic
administration of clinically relevant doses of Folfiri, a combination of 5-fluorouracil, leu-
covorin and irinotecan frequently prescribed for the treatment of solid tumors, promoted
the occurrence of a cachexia-like syndrome in healthy mice, including transient loss of food
intake, body and muscle weight loss, as well as muscle weakness. Interestingly, dramatic
bone loss was also described in healthy animals receiving Folfiri [57]. The same group
showed that among the mechanisms responsible for such muscle phenotype consequential
to Folfiri administration were activation of mitogen-activated protein kinases (MAPKs)
and mitochondrial abnormalities [17,58], the latter mostly responsible for perturbations in
the energy metabolism [59]. Similarly, treatment with the multi-kinase inhibitors (MKIs)
regorafenib and sorafenib, used as second-line treatment for solid tumors, was shown to
drive muscle toxicities in in vivo conditions, including muscle wasting and weakness. Of
note, cardiac defects, such as reduced left ventricular mass, internal diameter, posterior
wall thickness and stroke volume, were also described [60]. Additionally, platinum-based
chemotherapeutics were found to cause similar musculoskeletal deficits, with cisplatin and
carboplatin triggering skeletal muscle atrophy and marked weakness, along with extensive
bone resorption, which was completely abolished by combination with bone-targeting
anti-resorptive bisphosphonates [61–63].

Similar to evidence suggesting a pro-survival role of skeletal muscle mass in cancer,
many studies have proposed a role of muscle mass also in the metabolization of and the
tolerance to anticancer drugs. Indeed, it was reported that sarcopenia, low muscle size,
or low lean body mass associate with increased incidence of toxicity in patients receiving
chemotherapy [27–29,64,65]. Keeping in mind that weight loss and muscle wasting have
been suggested to influence the response to treatment [66,67], it appears that the toxic effects
of chemotherapy in patients with low muscularity may require dose limitations, delays,
or even termination of the treatments, thus obviously hindering their efficacy [7,27,28].
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However, the association between lean body mass and chemotherapy toxicity has not
been observed in all studies [68], and it has been speculated that the increased toxicity
reported in many studies may result from conventional dosing based on body surface
area rather than body composition. Based on this idea, patients with low fat-free mass
in relation to body surface area, comprising especially women and obese subjects, may
present lower volume of distribution of the drug, thereby often resulting in overdosing
and increased toxicity [28,29,69,70]. Thus, considering both the potentially harmful effect
of chemotherapy on muscle tissue and the negative effect of low muscle mass on the
outcome of the treatment, it would be of great importance to find effective therapies to
counteract muscle wasting that would potentially provide more time to treat the underlying
disease. Moreover, preservation of muscle mass may help to reduce the toxic effects of
chemotherapy and thus improve survival in cancer patients [71]. Considering that starting
chemotherapy administration as early as possible after cancer diagnosis is paramount for
the oncologists, for the future, we envisage that supportive oncological treatments aimed
at preserving muscle mass even in the absence of overt cachexia will begin simultaneously.

Unfortunately, our current knowledge of chemotherapy-associated effects on whole
body mass and metabolism is limited, therefore highlighting the need for an up-to-date
comprehensive review of the muscle wasting effects of different anticancer therapies.
Interestingly, Talbert et al. showed that not all cancer treatments per se induce muscle
atrophy [72]. More studies are also needed as most of the studies conducted so far have
investigated the effects of chemotherapy in healthy organisms, therefore highlighting the
possibility that some of the side effects produced by anticancer drugs may be different in
the presence of a tumor. Furthermore, in addition to the effects of the anticancer treatments
on muscle tissue, the development of cachexia may cause some limitations to the anticancer
therapies, thus potentially hindering the effectiveness of the treatment and the overall
outcome [4,27–29]. These effects are reviewed in the next sections.

2.3. Cachexia and Survival: The Role of Skeletal Muscle Wasting

The development of cachexia is associated with impaired prognosis and survival
in cancer patients [4,27,67,73]. A number of studies have found association between the
loss of body mass [5,67,74–76] and skeletal muscle [77–82] and the overall survival, thus
suggesting that the rate of wasting might play a critical role. However, while the role of
cachexia seems to be rather clear, the independent association between muscle loss and
survival has not been found in all studies [66], thus suggesting a more complex picture.

Many [5,27,69,83–92] but not all [80,93–97] studies have reported that low muscle
mass or cross-sectional area at baseline independently predict poorer survival in cancer
patients. Moreover, poor muscle quality has been shown to be associated with shorter
survival in cancer [5,96]. However, the role of larger muscle mass as a prognostic factor
is less clear, as pharmacologically mediated increase in muscle mass only before the
cachectic stimulus was not sufficient to provide a survival benefit [13]. In addition to
muscles involved in locomotion, usually investigated in human studies, preclinical studies
have shown that cachexia also affects other vital muscle groups, such as cardiac and
respiratory muscles. For instance, formation of hepatic colorectal cancer metastases was
recently described concurrent to evidence of cardiac dysfunctions [98]. On the other
hand, atrophy and weakness of the diaphragm [13,24,99], the major respiratory muscle,
accompanied by ventilatory dysfunction [99], have been observed in a murine model of
cancer cachexia. These may potentially contribute to the impaired survival associated with
muscle wasting [100–102], although further investigations are required to conclusively
validate the hypothesis that muscle mass and function play a causal role in cancer survival.

In support of a causal link between cachexia and mortality, prevention of muscle
wasting has been associated with improved survival in a number of pre-clinical murine
models of cancer cachexia [10–13,103–109]. Inhibition of nuclear factor-κB (NF-κB) sig-
naling in muscle [104] or tumour necrosis factor (TNF)-like weak inducer of apoptosis/
fibroblast growth factor-inducible 14 (TWEAK/Fn14) signaling in the tumor [106], block-
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ade of growth differentiation factor 15 (GDF15) [107], treatment with histone deacetylase
inhibitors [109], or counteraction of myostatin and activins [10–13,105,110] have resulted in
prevention of muscle wasting and improved survival in different murine models of cancer
cachexia. From a speculative perspective, improved survival in the above-mentioned
studies is likely due to a complex multi-organ effect that goes beyond the rescue of muscle
mass. Conversely, sparing muscle mass may play an essential role in the overall health of
the host, thus better coping with tumor growth.

In all the human and animal studies, there are also other factors affecting survival
besides muscle per se. Indeed, despite the association between low muscle mass, wasting
and mortality risk, it is still debated whether this link is actually causal, and there is
still no consensus on the mechanisms by which cachexia causes premature death [111].
Also, cachexia never exists without the underlying disease and it is possible that it simply
represents an epiphenomenon that is secondary to the disease or its risk factors, and that
the disease causes death independent of cachexia [111] (see Figure 1 below).
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Figure 1. Hypothesis of causality between cancer cachexia and death. Dashed lines indicate inferred
mechanisms requiring further investigation. Images were adapted from https://smart.servier.com
(accessed on 23 February 2021).

3. Activin Receptor Ligands in Cancer- and Chemotherapy-Induced Cachexia
3.1. Discovery and Function

The Transforming Growth Factor β (TGF-β) superfamily consists of more than 30
growth factors representing TGF-βs, growth and differentiation factors (GDFs), bone
morphogenetic proteins (BMPs), activins and nodal [112]. The best known activin receptor
ligands, myostatin, activins and GDF11, are reviewed below.

Myostatin (also known as GDF-8) was discovered in 1997, when its expression during
embryonic development and in adult muscle was first described [113]. It was found
that myostatin mRNA was expressed almost exclusively in skeletal muscle tissue and that
homozygous disruption of the myostatin gene resulted in individual muscles to become 2–3
times larger [113]. In addition, mutations in the myostatin gene were described concurrent
to a double-muscled phenotype in cattle [114–116]. These results led to the conclusion that
myostatin acts specifically as a negative regulator of muscle growth. Indeed, blockade of
endogenous myostatin was shown to drive muscle hypertrophy [117–119] and increased
strength also in adult muscle [118]. Conversely, overexpression of myostatin was found to

https://smart.servier.com
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cause muscle atrophy [120,121], showing that myostatin is able to regulate muscle size also
in adults.

GDF11, closely related to myostatin, was found to be expressed in many tissues and
to play a role in skeletal patterning and development of bone and nervous system, as well
as in aging and in different disease states [122,123]. Unlike myostatin, whose effects seem
to be mostly restricted to skeletal muscle, overexpression of GDF11 was also found to
equally cause atrophy in skeletal and cardiac muscles [124]. Furthermore, muscle-specific
deletion of the GDF11 gene was not shown to affect skeletal muscle size, indicating that at
least muscle-derived endogenous GDF11 may not be vital for regulation of skeletal muscle
size [125], although some controversy exists concerning the role of GDF11 in the regulation
of skeletal muscle tissue during the whole lifespan [126]. Thus, the effects of GDF11 and its
inhibition in adult skeletal muscle require further investigation.

Activins are pleiotropic proteins belonging to the TGF-β superfamily [127]. Among
the activins, the best characterized, activin A, was discovered in 1986 by Vale and colleagues
from ovarian follicular fluid [128]. Their name originates from their ability to stimulate
the release of follicle-stimulating hormone from the pituitary gland, in contrast to inhibin,
which, on the contrary, inhibits its release [127]. Activins play important roles in reproduc-
tion and embryonic development [127]. In addition, activins and their receptors are present
in virtually all mammal body systems, and thus they have varying functions all over the
body in normal physiology and in response to injury or disease [127,129]. For example,
activin A has been shown to have important effects on multiple extra-reproductive systems,
including the brain, cardiac, renal, digestive, immune and respiratory systems, as well as
the musculoskeletal system [127]. The effects on the muscular system are reviewed in more
detail below.

Mice deficient in inhibin, a competitive antagonist for activin, have been shown to
develop gonadal tumors and severe cachexia. This has been found to be associated with
increased levels of activin A and B, secreted from the tumors, that potentially contribute
to development of cachexia [130]. Like myostatin, activin A acts as a negative regulator
of muscle growth during both development and adulthood. This is supported by stud-
ies showing that overexpression of activin A leads to muscle atrophy [131,132], while
heterozygous loss-of-function mutation in the activin A gene [133], as well as activin A
antagonism via overexpression of activin A pro-domain [134], result in increased muscle
mass. Both activin A and its receptor are expressed in adult skeletal muscle. Their effects
on skeletal muscle appear to include inhibition of protein synthesis and promotion of
protein breakdown, thus negatively regulating muscle size [127]. Moreover, activin A
overexpression can decrease muscle contractile function and force production and increase
fibrosis in skeletal muscle [131]. Similar to activin A, activin B overexpression was shown
in association with muscle atrophy [131], and inhibition by overexpression of activin B
pro-domain [134] resulted in muscle hypertrophy, suggesting that activin B can act as a
negative regulator of muscle size.

Myostatin, GDF11 and activin A and B exert their effects through binding to activin
receptors [123,135] expressed in many human tissues, including skeletal muscle [136]. Two
types of activin receptors have been identified, and based on their molecular weight, named
type I (low molecular weight) and type II (high molecular weight) receptors [127]. The
ligand first binds to the activin receptor type II (ACVR2), which is a transmembrane protein
consisting of an extracellular ligand-binding domain and an intracellular serine/threonine
kinase domain [127,135]. It was first characterized by Mathews and Vale in 1991 [137],
and two forms, i.e., ACVR2A and ACVR2B, have been identified [127]. The binding
of the ligand to ACVR2A or ACVR2B enables the interaction of the ligand with type I
receptor, i.e., activin receptor-like kinases (ALKs), further enabling the recruitment and
phosphorylation of ALK by the activated kinase domain of ACVR2 [127,135]. This renders
ALK active and results in phosphorylation of its downstream targets, such as the Smad2
and Smad3 transcription factors [127,135]. Smad2/3 then form a heterodimer complex
that incorporates with Smad4 and translocates to the nucleus, where it influences the
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transcription of target genes [127,135]. Ultimately, the activation of Smad signaling results
in inhibition of protein synthesis via mechanistic target of rapamycin (mTOR) [135,138] and
may also promote protein degradation via enhanced nuclear translocation of forkhead box
O3 (FoxO), followed by increased expression of ubiquitin ligases [135] (Figure 2), though
the evidence for the latter is being debated [138]. In addition to the so-called canonical Smad
signaling, other non-canonical pathways may also be regulated by ACVR signaling [139–
141] (Figure 2). These Smad-independent pathways include p38 mitogen-activated protein
kinase (p38 MAPK), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and c-Jun
NH2-terminal kinase (JNK), which have all shown increased phosphorylation by myostatin
in muscle cells [139], a response that can have variable functions in muscle cells [127,135].
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In addition, the complexity of Smad signaling in skeletal muscle was complicated by
the discovery that several bone morphogenetic proteins (BMP) subfamily members activate
Smad1/5/8, in parallel to the activin-Smad2/3 axis, thus promoting muscle hypertrophy.
Smad2/3 and Smad1/5/8 operate in opposition, and indeed, BMP signaling inhibition
results in muscle atrophy, unleashing myostatin/activin signaling [142].

3.2. Levels of ACVR2 Ligands in Cancer Cachexia and in Cancer Treatment

Activin A and B (inhibin βA and inhibin βB, respectively) are expressed in many human
cancer cell lines and particularly in those that display a high degree of malignancy [131],
which altogether could explain their role in inducing cachexia [143–147] and, potentially,
survival [143–146]. Among the most extensively employed preclinical murine cancer cachexia
models, the Colon 26 (C26) adenocarcinomas were reported to have markedly higher gene
expression levels of activin A and myostatin when compared to Lewis lung carcinoma (LLC)
tumors. Notably, growth of the C26 tumors also resulted in more pronounced cachexia at a
similar time point with the same number of injected cells [13].

In patients with colorectal and lung cancer, high circulating activin A levels were
associated with cancer cachexia [144,147–149], along with an independent negative prog-
nostic impact [144] and reduced chemotherapy response [148], although in some other
cancers, decreased activin-signaling was also observed [150]. In addition, based on a study
by Miyamoto et al., a polymorphism in the activin A gene (INHBA) was found to predict
survival in refractory metastatic colorectal cancer patients treated with regorafenib [151].

https://smart.servier.com
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Conversely, in those very same studies showing elevated activin A, circulating myostatin
was found decreased [147,149], similar to myostatin gene expression in gastric cancer
patients with minimal or no weight loss [152,153]. Interestingly, circulating myostatin
is substantially lower in humans than in mice [154], perhaps contributing to the poor
translation of blocking myostatin alone [19]. More studies are needed to fully understand
the role of activin A in muscle atrophy, also keeping in mind that low muscle size, as
calculated from computed tomography (CT) scans, was not found to correlate with activin
A levels [148].

In contrast to human and experimental cancer, there is not much evidence of upreg-
ulated ACVR2 ligands following cancer treatments. For instance, in mice, doxorubicin
treatment did not induce mRNA expression of myostatin, activin A, Gdf11 or their receptor
in the skeletal muscle or in the heart [15]. Similarly, animals exposed to Folfiri showed
slightly higher levels of circulating activin A, which, however, were not statistically differ-
ent from the vehicle-treated mice [57]. Since blockade of basal ACVR2 signaling is sufficient
to increase muscle mass, it is also likely to counteract muscle wasting, compensating the
catabolic stimuli in situations where ACVR2 ligands are not markedly elevated [15,57]. A
number of studies conducted in healthy subjects would seem to support this idea, even
though, due to the minimal or negligible muscle effects reported in some cases, more
investigative efforts are required [18].

3.3. Strategies to Block ACVR2 Signaling

Given their important role in the regulation of muscle size, ACVR2B ligands are
attractive targets for development of therapies to counteract muscle wasting. Many dif-
ferent strategies to block myostatin, and to some extent also other ACVR2 ligands, have
been developed and successfully used in animals, and some have also been tested in
humans [18,155]. The strategies developed cover all the steps from inhibition of synthesis
to blockade of intracellular downstream signaling [155]. For instance, the synthesis of
myostatin may be inhibited by RNA interference using antisense oligonucleotides that
induce exon skipping on myostatin RNA, or with small interfering RNAs (siRNA) or short
hairpin RNAs (shRNA) [155].

After synthesis and secretion, blockade can be achieved by different methods, such as
administration of mutated myostatin or activin A or B pro-peptides, which bind myostatin
and activins, thus inhibiting their activity [155,156], by treatment with neutralizing anti-
myostatin or activin antibodies/peptibodies [157,158], or administration/expression of a
native protein that binds myostatin and/or activins, thereby limiting their bioavailability.
An example of such protein is follistatin, which is an endogenous inhibitor of myostatin,
activins, GDF11 and some BMPs [133,135,155,159]. In addition, a very potent strategy to
block myostatin and activins is the use of a soluble form of the extracellular domain of
their endogenous receptor ACVR2B fused to Fc-region of IgG (sACVR2B-Fc, from here on
referred to as sACVR2B) [160] or a neutralizing antibody against the activin receptor [11].
Both follistatin and sACVR2B sequester myostatin and activins, thus preventing their
binding to the endogenous receptor [155].

Finally, the effects of myostatin and activins on target cells can be prevented by over-
expression of dominant negative ACVR2B [117], or inhibition of ACVR2B or Smad2/3
synthesis [155]. In addition to these therapeutic strategies, different genetic models, such as
constitutive, conditional and inducible knockout models, or heterozygous loss-of-function
mutations, have been used to study the effects resulting from the lack of myostatin or
activin A [155].

3.4. Effects of Blocking ACVR2 Signaling on Skeletal Muscle

Not surprisingly, multiple different strategies to block the function of myostatin or
activins have been shown to increase muscle size and strength in healthy animals [134,155,
161], as well as muscle size and, to some extent also function, in healthy humans, at least
when multiple ligands were blocked [162,163]. Indeed, myostatin and activins synergize
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to regulate muscle mass, as the simultaneous blocking of these ligands was shown to
drive even greater hypertrophy than the blocking of only one ligand at a time [134]. When
blocked alone, myostatin inhibition appeared to induce the greatest increase in muscle
mass and fiber size in mice, compared with other ACVR2 ligands [134]; however, whether
the same also occurs in humans is unknown. Clearly, more clinical studies are needed to
elucidate the relative physiological importance of different ACVR2 ligands.

Blockade of myostatin and activins in experimental models was found to prevent or
attenuate muscle wasting associated with different diseases, including cancer, renal failure,
heart failure, metabolic diseases, immobilization and sarcopenia, to name a few [164].
Improvement in muscle strength was also reported [164], although in this case, specific
force might decrease because of larger increase in muscle mass relative to muscle force [165].
Direct targeting of myostatin by anti-myostatin antibodies was found to prevent the loss of
muscle mass and function in mice bearing LLC tumors [158], whereas enhanced expression
of follistatin by inhibitors of histone deacetylases, such as valproic acid or trichostatin-A,
failed to improve cachexia in tumor-bearing rodents [166]. A causal role of blocking activin
A was shown by systemically administering recombinant pro-peptide, which reversed
activin A-induced cachectic wasting in mice [167]. Additionally, treatment with sACVR2B
has been successful in the prevention of cancer-induced muscle wasting [9,10,13,35,98,168,
169] and muscle weakness [10,168,169] in different pre-clinical models of cancer cachexia.
This was shown to occur without an effect on physical activity or food intake [13,169].
In addition to blocking ACVR2 ligands, bimagrumab (BYM-338), a monoclonal antibody
against ACVR2 receptors, was found effective in increasing muscle size and attenuating
muscle loss in various animal and human studies [18], including in tumor hosts treated with
chemotherapy [11]. More recently, in a phase 2 randomized clinical trial, ACVR2 blockade
by bimagrumab led to loss of fat mass, gain in lean mass and metabolic improvements in
type 2 diabetic patients who were overweight or obese [170], thereby supporting the use
of such approach for the pharmacologic management of excess adiposity and metabolic
disturbances. Keeping this in mind, the use of such approach in cancer patients, often
characterized by extensive loss of adipose tissue mass, may be detrimental (see Section
3.6.2) [171]. It is also critical to understand that, although substantial muscle hypertrophy
in theory enhances absolute muscle strength [172], improved body composition does not
always translate into improved physical function [173]. As an example, recent bimagrumab
treatment in older adults with sarcopenia who had six months of adequate nutrition
and light exercise was reported to be safe and well-tolerated, increased lean body mass
and decreased fat body mass, but did not improve physical function [174]. Lastly, a
strategy to systemically block ACVR1 (ALK4/5) receptors by the inhibitor compound
GW788388 was also shown to be effective in the preservation of body mass, muscle mass
and muscle strength in murine cancer cachexia [175]. Altogether, these observations suggest
that blocking ACVRs or their ligands by a variety of methods may represent potentially
beneficial therapeutic strategies in cachexia.

Mechanistically, blocking ACVR2 signaling using sACVR2B was able to restore [35]
or attenuate [169] decreased muscle protein synthesis and decreased mTOR colocalization
with late-endosomes/lysosomes in C26 tumor-bearing mice [13], in line with the increased
muscle protein synthesis observed after acute administration of sACVR2B in healthy wild-
type mice [161]. In addition, sACVR2B prevented activation of the ubiquitin-proteasome
system and induction of atrophy-specific ubiquitin ligases in muscles, and it increased
satellite cell proliferation in C26-bearing mice [10]. However, the augmented ex vivo protein
degradation in LLC tumor-bearing mice [169] and increased markers of activated ubiquitin
proteasome system in C26-bearing mice [13] were not affected by sACVR2B [13,169].
Therefore, while the evidence of blocking ACVR2 signaling on increasing muscle protein
synthesis is strong, the effects on muscle protein breakdown need further studies.

Of note, blockade of ACVR2 ligands was effective in preventing muscle mass loss
also following administration of chemotherapy in mice. As an example, sACVR2B was
able to counteract doxorubicin-induced losses of body and muscle mass, as well as muscle
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fiber size [14]. In a similar manner, treatment with sACVR2B completely preserved muscle
mass and strength in animals administered with Folfiri [57]. Analogously, C2C12 myotubes
exposed to Folfiri showed marked myofiber atrophy and elevated ERK1/2 phosphorylation,
which were completely abolished by the combination with sACVR2B [17].

As a side note, one concern of blocking ACVR2 signaling in muscle was associ-
ated with negative changes in muscle oxidative metabolism in healthy and dystrophic
mice [165,176]. Therefore, exercise as a co-treatment to prevent such changes has been
suggested based on promising results in preclinical trials [176,177]. However, this effect
of blocking ACVR2 signaling seems to be context-dependent, as in tumor-bearing mice,
counteraction of myostatin [158] or ACVR2 ligands [35] was not shown to affect the muscle
oxidative metabolism.

3.5. Blocking ACVR2 Ligands Improves Survival in Pre-Clinical Cancer Cachexia: Are the Effects
Mediated by Skeletal Muscle?

Several studies showed that inhibition of ACVR2 signaling by systemically adminis-
tered sACVR2B or antibodies against the receptor not only markedly improved muscle
mass and function in cancer hosts, but also prolonged survival [10–13,146]. For instance,
we [13] and others [10] showed that prevention of cancer-associated muscle wasting by
sACVR2B resulted in marked improvement in survival without an effect on tumor growth
in the C26 carcinoma model. Notably, survival was improved even when the treatment
was not started until severe cachexia had already developed [10], thus supporting the use
of such treatment to rescue overt cachexia. Similar blockade of myostatin and activins or
genetic myostatin deficiency also prevented muscle wasting and improved survival in LLC
and ApcMin/+ (multiple intestinal neoplasia of the murine Apc locus) models of cancer
cachexia [105], as well as in inhibin-deficient mice [10,110], although in those cases, tumor
growth was also partially inhibited, therefore likely playing a role in improving survival
(see also Section 3.6).

The mechanisms underlying the positive pro-survival effects resulting from ACVR2
signaling blockade are still unknown. We investigated the potential mechanisms un-
derlying the survival benefit with continued treatment with sACVR2B [13] with a pre-
determined endpoint at the time point in which body mass change most strongly pre-
dicted survival (i.e., 11 days after tumor cell inoculation). In addition to unaffected
tumor mass, treatment with sACVR2B did not influence tumor activin A mRNA ex-
pression, and increased Il-6 mRNA levels in the C26 tumors, thus suggesting that the
prevention of cachexia, or the improved survival, are not mediated by modulating the
expression of genes triggering cachexia in cancer cells [13]. At this time point, individ-
ual muscle weights were significantly higher in mice treated with sACVR2B compared
with vehicle-treated tumor hosts. Thus, the preservation of muscle tissue may contribute
to prolonged lifespan per se. This is supported by a large body of evidence showing
that different strategies able to prevent muscle wasting in cancer cachexia result in im-
proved survival [10–12,103–107,109,110,146,178,179]. It is possible that the preservation
of some vital muscles, such as the major respiratory muscles, plays an important role in
survival [100,101]. Indeed, diaphragm atrophy and weakness accompanied by ventilatory
dysfunction have been previously reported in C26 tumor-bearers [13,24,99]. Importantly,
ACVR2B signaling inhibition restored diaphragm mass [13], which may have contributed
to the prolonged survival of these mice. However, more studies are required to confirm the
importance of maintaining diaphragm mass and function during cancer cachexia.

It was recently shown that muscle-specific blockade of myostatin and activins by use
of skeletal muscle-specific dominant negative ACVR2B-expressing transgenic mice did
not improve survival with orthotopic pancreatic tumors originated from activin A high
cell lines, despite the maintenance of body mass [146]. Similarly, also systemic ACVR2B
blockade by sACVR2B, despite being effective in ameliorating cachexia, was not able to
prolong survival in these hosts, whereas it prolonged life in mice implanted with pancreatic
cancer cells expressing low activin A. The authors speculated that the lack of effects on
survival in mice expressing muscle-specific dominant negative ACVR2B was possibly
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due to a critical role of activin signaling in other tissues, which were not directly targeted
by the muscle-specific intervention. Another speculative hypothesis by the authors was
related to the greater intrinsic propensity for cancer death in those mice, perhaps due
to lower adiposity. However, the fact that the survival was not improved may not be
entirely due to the absence of beneficial effects of ACVR2 signaling blocking in tissues
other than skeletal muscle, especially since, as mentioned above, systemic blockade of these
ligands did not ameliorate survival even in a tumor-model with high levels of activin A,
unlike when pancreatic cancer cells expressing low levels of activin A were implanted [146].
Nevertheless, this study was critically important as it demonstrated that skeletal muscle-
specific activin blockade alone may not be sufficient in a multi-systemic disease setting,
such as cancer. Furthermore, the study strengthened the idea that mortality ultimately
correlates with tumor activin A expression.

In addition to muscle wasting, alterations in other tissues and organs have been asso-
ciated with onset of cachexia and worse prognosis in cancer [6,180]. For example, tumor
growth was shown to induce increased levels of pro-inflammatory cytokines and acute
phase response [35,181,182], increased spleen mass and expansion of myeloid-derived
suppressor cells (MDSCs) [145,183], hematological changes, such as anemia and thrombo-
cytosis [111], cardiac cachexia [184], fat depletion and adipose tissue browning [6,180], as
well as alterations in gut microbiota [185–187] and bone abnormalities [188]. The relevance
of each alteration to the development of cachexia and survival is poorly explored. It is thus
possible that ACVR2 inhibition may prolong survival by targeting tissues other than the
skeletal muscle, as discussed in the following section and summarized in Figure 3.
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effects may occur at least in part through rescuing muscle wasting. Organ images were obtained
from https://smart.servier.com (accessed on 23 February 2021).
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3.6. Non-Muscle Effects of Blocking ACVR2 Ligands
3.6.1. Heart

In addition to skeletal muscle, atrophy of the heart, concurrent with altered cardiac
function, has also been often observed in preclinical cancer cachexia [10,24,25,184]. In
addition, cardiovascular complications are common, and may represent a major cause of
death in cancer patients [111,184]. Blockade of ACVR2B signaling has shown beneficial
effects on the heart as well [10,98,146,189], including reversing cardiac atrophy in both C26
mice and inhibin-deficient mice [10]. Similarly, blocking activin A also reversed activin A-
induced cardiac wasting in tumor-bearing mice [167]. However, since not all studies have
reported effects on the heart [12,13,158], further studies should be conducted to elucidate
whether changes in cardiac mass and function are important and unappreciated features of
cancer cachexia and whether ACVR2 ligand blocking has an impact on them.

3.6.2. Adipose Tissue

Skeletal muscle wasting is often accompanied by loss of adipose tissue in cachexia [6,7],
and this is also true in preclinical models of cancer [10,13,98]. Interestingly, sACVR2B also
preserved adipose tissue in animals bearing metastatic HCT116 [98], C26 [9,35] and LLC [9]
tumors, as well as in mice exposed to Folfiri chemotherapy regimen [57]. This is in contrast
with other studies using sACVR2B in C26 tumor-bearing mice in which loss of fat was
not affected [10,13], and in doxorubicin-treated mice, fat loss was even exacerbated by
sACVR2B [14]. Of note, although the effect of blocking ACVR2 ligands on fat mass is
equivocal and context-dependent, a recent study shows that when loss of fat mass occurs,
it happens as a counterbalance to increased muscle size, thus suggesting that ACVR2
blockade is not acting directly on the adipose tissue [190].

Fat loss was recently shown to play an important role in promoting cachexia and
increased mortality in pancreatic cancer patients [171] and might therefore contribute to the
finding that ACVR2 blockade did not improve survival in high-activin tumor-bearing mice
despite maintenance of body mass [146]. However, the association between fat wasting
and survival has not been observed in all studies [191], and thus further studies are needed
to validate whether improved survival with inhibition of ACVR2 signaling results, at
least in part, from preservation of fat mass. Of note, sarcopenic obesity often presents
poorer prognosis in cancer compared to sarcopenia alone, although the presence of many
confounders does not easily allow firm conclusions about the role of adipose tissue in
cancer [192]. Hence, at this time, we can only speculate on the real contribution of fat
wasting to overall survival in cancer.

In addition, white adipose tissue browning, which has been suggested to happen
in cancer cachexia and to contribute to the progression of cachexia [180], may also be
increased in some situations by blocking ACVR2 ligands [193]. However, markers of fat
browning were not observed to be increased in C26-bearing mice, nor did the blocking
of ACVR2 ligands have any significant effect [194], thus implying that adipose tissue
browning may not be a major factor influencing outcomes and survival in this model
of cachexia. However, more studies are needed to investigate the relevance of adipose
browning in different cachexia models and in cancer patients. Considering the potential
exacerbation of fat browning upon ACVR2 blockade, this may negatively impact on whole
body energy homeostasis and should be taken into account.

3.6.3. Blood Cells and Anemia

Cachectic tumor-bearing mice [13,195–197] and many cancer patients (e.g., Refer-
ence [198]) frequently present with anemia. Counteraction of ACVR2B ligands was able
to reverse anemia in C26 hosts independent of the administration protocol [13] and in
inhibin-deficient mice [110], while ApcMin/+ mice presenting myostatin gene inactivation
were also free from anemia [105]. In contrast, sACVR2B treatment in mice implanted with
LLC tumors was able to only partially alleviate the strong decrease in hemoglobin without
changes in the hematocrit [12], while doxorubicin chemotherapy-induced anemia was not
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at all alleviated by sACVR2B [14]. Even though anemia may be an independent prognostic
factor in cancer patients [198,199], and the prevention of anemia can be beneficial in C26
tumor-bearing mice [196,197], it may not be a major factor contributing to increased sur-
vival by sACVR2B, as also a “prophylactic” protocol prevented anemia without directly
affecting survival [13]. In addition, in the very same study, the platelet count was increased
in all tumor-bearing groups [13], independent of blocking ACVR2 ligands. Therefore,
thrombocytosis might not be the major factor determining improved survival time by
sACVR2B.

3.6.4. Inflammation, Splenomegaly, Acute Phase Response and Tumor/Metastasis

Systemic inflammation is one of the hallmarks of cachexia [6,145,181]. Consistently,
increased levels of circulating pro-inflammatory cytokines, such as TNF-α, IL-6 and MCP-1,
have been reported in cachectic tumor-bearing mice, as well as in cancer patients [200–203].
Interestingly, administration of sACVR2B failed to correct [10,13,98] or only marginally im-
pacted [12] the levels of these cytokines, as shown in several experimental conditions, thus
suggesting that modulation of ACVR2 signaling is not directly involved in the regulation
of the cytokine response during tumor growth.

Even though the blockade of ACVR2 ligands did not exert major effects on the levels
of pro-inflammatory cytokines, it did impact other markers of inflammation. For instance,
ample evidence revealed that tumor-bearing mice present increased acute phase response
(APR) in both liver and skeletal muscle [13,35,182], in line with increased liver protein
synthesis in tumor-bearing mice [13,204] and in weight-losing cancer patients [205]. Inter-
estingly, liver protein synthesis, along with the phosphorylation of Stat3, were attenuated
by sACVR2B treatment without effects on liver mass [13]. Although APR has been asso-
ciated with impaired survival in humans [181] and in mice, whether this represents the
potential additional mechanism by which sACVR2B alleviates cachexia [13,35] remains far
from being elucidated.

Interestingly, activin A was shown to act in a paracrine fashion to stimulate melanoma
growth and metastasization [206], thus suggesting that ACVR2 ligand blockers may si-
multaneously help in rescuing both muscle mass and immune function, hence also pre-
venting tumor progression and cachexia [150]. Indeed, considering that activin A exerts
pro-tumorigenic functions by promoting immunosuppressive activities in macrophages
and Treg cells [207], ACVR2 ligand blockade may contribute to avoid tumor immune-
escape, explaining the reported impact of sACVR2B on tumor growth and metastatic
spread, independently from the presence of cachexia. Consistently, in studies conducted
in myostatin-deficient ApcMin/+ mice and in LLC hosts [12,105], as well as in inhibin-α-
deficient mice with gonadal tumors [10,110] and in a murine model of pancreatic ductal
adenocarcinoma [146], blockade of ACVR2B ligands or signaling also resulted in partial
attenuation of tumor growth and/or metastasis formation, which, in turn, may contribute
to alleviation of cachexia and prolonged survival. This is an important point to consider, as
in some cases, it is possible that the positive effects of the treatment may result from the
antitumor effect of ACVR2 blockade rather than the preservation of skeletal muscle tissue.
On the other hand, as also previously mentioned, the beneficial effects of ACVR2 ligand
blockade did occur independent of effects on tumor mass [10,13] or tumor gene expression
related to cachexia [13] in C26 hosts, thereby suggesting that the effect of blocking this
pathway may be dependent on tumor type.

Considerable splenomegaly (i.e., increased spleen size) has also been observed in
animals bearing tumors [13,22,23,35,208,209]. Along this line, a recent study showed that
the splenomegaly induced by C26 tumors originated from erythrocyte engulfment and
white blood cell proliferation [35]. Interestingly, this effect was significantly attenuated
by starting administrations of sACVR2B before tumor inoculation [13], but not when the
treatment was commenced after tumor implantation [35]. The former finding adds up
to previous evidence showing that sACVR2B treatment alleviated splenomegaly in an
animal model of β-thalassemia [210]. The expansion of the myeloid-derived suppressor
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cell (MDSC) pool has previously been associated with the development of cachexia and
potentially also with survival [208]. Despite a marked effect on spleen size, the blockade of
ACVR2 ligands did not consistently attenuate the mRNA expression of MDSC markers,
that were found elevated in tumor-bearing mice [13]. Therefore, it may be argued that
altered spleen size or MDCS expansion may not play a major role in survival in the presence
of ACVR2 ligand blockade.

3.6.5. Bone

Muscle and bone are known to interact in an endocrine-dependent manner [211].
According to this idea, muscle secretes factors (i.e., myokines) that can affect bone, whereas
bone produces and serves as a storehouse for mediators (i.e., osteokines) that can target
muscle. Keeping in mind that bone parameters were found strongly correlated with
changes in lean mass, as well as with end-measures of muscle mass and muscle fiber
cross-sectional area in doxorubicin-treated mice [14], it is possible that altered bone mass
occurs at least in part secondary to changes in skeletal muscle [212–214].

Regardless, whether deregulations of the so-called ‘muscle-bone crosstalk’ take place
in cachexia remains partially unknown. Loss of bone mass concurrent to evidence of
muscle wasting has been previously observed in both metastatic [62,215] and non-bone
metastatic tumor models [25,26,98,188,216], as well as upon administration of anticancer
agents [57,63,217]. Interestingly, increasing muscle and lean mass via blocking of ACVR2
ligands has also been shown to improve bone parameters that were impaired by cancer [98]
or following chemotherapy treatments [14,57], thus further supporting the idea that muscle
and bone are regulated in tandem in cachexia.

However, previous evidence has highlighted how blockade of ACVR2 ligands can
improve bone quantity and/or quality in different animal models by acting directly on
bone [190]. Furthermore, counteraction of activin receptor ligands, but not of myostatin
alone, was found to benefit bone mass, despite similar increases in muscle mass with both
treatments [218]. This is of particular interest, especially considering that the abnormal
activation of the signaling pathway downstream of the activin receptors is now known
to play a role in the regulation of muscle and bone interaction, and that several ACVR2
ligands, including activin A, activin B, myostatin and GDF-11, have been reported to exert
effects on both muscle and bone homeostasis, thereby contributing to the development of
overt cachexia [147,219]. Together, these studies show that blockade of activin ligands is an
effective measure to counteract bone and muscle loss in preclinical models of cancer- and
chemotherapy-induced cachexia.

3.6.6. Negative Side Effects of Blocking Myostatin, Activins and GDF11 and Other
ACVR2 Ligands

The lack of high specificity of ACVR2 ligand and receptor blockers raised concerns
about potential off-target effects. For example, the disruption of endogenous BMP-9 and
BMP-10 signaling highlighted the potential occurrence of unwanted vascular effects [220].
Indeed, the clinical development of a soluble ACVR2B receptor designed by Acceleron
Pharma (ACE-031) was prematurely terminated due to adverse effects, including nosebleed,
gum bleeding, telangiectasia and erythema [221]. The cause was attributed to the cross-
inhibition of BMP9 and BMP10, ligands involved in endothelial cell function. Further, a
recent report showed that sACVR2B administration negatively impacts on testis, producing
long-term hypogonadism and infertility [222], although a decrease in testis size was not
observed in tumor-bearing mice with activin A blocked using its pro-peptide [167]. In
addition, decrease in serum follicle stimulating hormone (FSH) was observed in humans
after administration with both ACE-031 and ACE-011, a soluble ACVR2A-Fc [18]. ACE-011
administration also resulted in increased red blood cell numbers, possibly through inhibition
of GDF11 [18], the latter also representing a positive response in cancer, as discussed above
(see Section 3.6.3.). Nevertheless, because of such side effects, novel tools to block ACVR2
ligands and their signaling were recently generated. As an example, a soluble ACVR2B
receptor modified to minimize vascular side effects (ACE-2494) was created and validated
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to be effective in murine models [223], although later discontinued in humans due to
inconsistent profile of anti-drug antibodies [18]. In addition, the ACVR2 receptor antagonist
bimagrumab (BYM-338), despite being effective in preventing muscle loss in murine cancer
cachexia [11], promoted increased muscle size in some, but not all human trials [18]. The
reader is referred to a recent comprehensive review by Suh and Lee to gain insights on the
effects of new inhibitors of myostatin/activin signaling in clinical trials [18].

Altogether, the findings reported above emphasize the importance of stronger target
specificity when developing future ACVR2 signaling inhibitors, especially for those in
which long-term treatment is planned.

3.6.7. Effects of Blocking ACVR2 Ligands in Cancer: Omics Approach

Systems biology is often necessary to understand the mechanisms of action of drugs
that target several molecules in distinct tissues. In this regard, alterations in gut microbiota,
previously shown to play a role in the development and progression of cancer cachexia,
may potentially contribute to differences in survival time [185–187]. However, while altered
gut microbiota in tumor-bearing mice was demonstrated, sACVR2B did not prevent the
cancer-associated alterations in gut microbiota [224], suggesting that improved survival
with ACVR2 ligand blocking is not mediated via changes in gut microbiome. As with the
analysis of gut microbiota, the analysis of muscle and serum metabolomes, while providing
new insight into metabolic alterations in cancer cachexia and potential new biomarkers for
cachexia progression, did not provide any clear, plausible candidates to explain differences
in survival [194]. However, ACVR2 blockade by sACVR2B was recently shown to rescue
some of the metabolic alterations induced by chemotherapy, suggesting that ACVR2 ligand
blockade could have beneficial effects on muscle and serum metabolomes in some cachectic
conditions [16]. Moreover, administration of sACVR2B was found to be able to reverse or
improve the dysregulated cardiac gene expression in cachectic mice bearing the HCT116
colorectal cancer, likely contributing to the improved cardiac function, despite that no
effects on cardiac size were observed [98]. Lastly, a proteomics approach conducted in C26
tumor-bearing mice administered sACVR2B revealed improved oxidative phosphorylation
(OXPHOS) proteome, which led to the identification of rescued nicotinamide adenine
dinucleotide (NAD+) homeostasis [35]. These results open up new, interesting research
questions and hypotheses for future studies aimed to elaborate on the mechanisms of
cancer cachexia and improved survival.

4. Conclusions and Future Directions

A multitude of studies have demonstrated that administration of ACVR2 signaling
blockers in pre-clinical cancer cachexia models leads to a number of positive health-related
effects, including muscle growth or prevention of muscle wasting, maintenance of bone
mass and bone mineral density, attenuation of hepatic protein synthesis, splenomegaly
and anemia, in some instances, decreased tumor growth and metastases, and ultimately,
improvement of survival. Given the importance of inter-tissue crosstalk in cachexia [180],
it is possible that some of the above-mentioned beneficial effects take place secondarily
to improvements of skeletal muscle. However, in many cases, it is impossible to separate
the effects dependent on muscle size per se and those resulting from counteraction of the
ACVR2B signaling that might be independent of changes in muscle mass.

Based on findings by us and others, preservation of skeletal muscle tissue per se is
critical for survival in cancer cachexia. In this regard, counteraction of muscle wasting
by means of ACVR2 ligand blockers represents a promising strategy. However, further
studies are needed to discriminate between the effects of maintenance of skeletal muscle
(locomotor and respiratory) and the direct effects of, for example, systemic ACVR2 ligand
blocking on non-muscle tissues. Strategies aiming to preserve individual muscles or muscle
groups, such as the heart or the diaphragm, should be developed to the extent of assessing
the importance of these vital muscles with respect to survival in cachexia, as induced by
different tumor types. In addition, to validate whether maintenance of skeletal muscle is
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critically important to prolong life in cancer, investigations on the mechanisms associated
with the preservation of muscle warrant further studies. For example, considering the
multitude of organs, tissues and systems involved in cachexia, the interaction between
muscle and other tissues in relation to survival requires supplementary investigations.
Moreover, given the association between low muscle size/sarcopenia and poorer outcomes
in human studies, it is of the utmost importance to generate observations in support of
a lifestyle aiming at gaining and/or maintaining larger muscles. Future studies should
also address the question of whether there is a causal link between the levels of cachexia-
inducing factors, such as activin A, and survival, or whether these factors merely act as
biomarkers of cachexia and disease progression.

The evidence from clinical studies showing that subjects with muscle wasting at
time of cancer diagnosis also frequently present worse prognosis and shorter survival
implies that having larger muscle mass to begin with might benefit patients’ outcomes in
cachexia [5,27,69,83–92,225]. However, observations from our groups suggest that phar-
macological enhancement of muscle mass prior to the cachectic stimulus is not sufficient
to provide a survival benefit [13]. Hence, future studies are warranted to conclusively
elucidate whether larger muscles at diagnosis may play an active role in improving cancer
prognosis. Further, to the extent of validating exercise as a potentially powerful therapeutic
strategy in cachexia, animal models that enable exercise interventions (e.g., resistance
training [226,227]) should be developed [228,229] and tested in cancer [230] together with
appropriate nutrition/nutraceutical strategies [231] to elucidate whether promoting better
muscle mass and/or function also ultimately affects survival in cancer.
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