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Chromosome-level genome assembly of the Chinese
longsnout catfish Leiocassis longirostris

The Chinese longsnout catfish (Leiocassis longirostris
Gilinther) is one of the most economically important freshwater
fish in China. As wild populations have declined sharply in
recent years, it is also a valuable model for research on sexual
dimorphism, comparative biology, and conservation. However,
the current lack of high-quality chromosome-level genome
information for the species hinders the advancement of
comparative genomic analysis and evolutionary studies.
Therefore, we constructed the first high-quality chromosome-
level reference genome for L. longirostris. The total genome
was 703.19 Mb, with 389 contigs and contig N50 length of
4.29 Mb. Using high-throughput chromosome conformation
capture (Hi-C) data, the genome sequences (685.53 Mb) were
scaffolded into 26 chromosomes ranging from 17.36 to 43.97
Mb, resulting in a chromosomal anchoring rate for the genome
of 97.44%. In total, 23 708 protein-coding genes were
identified in the genome. Phylogenetic analysis indicated that
L. longirostris and its closest related species P. fulvidraco
diverged approximately 26.6 million years ago. This high-
quality reference genome of L. longirostris should pave the
way for future genomic comparisons and evolutionary
research.

Leiocassis longirostris (also named Jiangtuan) belongs to
the family Bagridae, which contains more than 220 species
(Ferraris, 2007), and the order Siluriformes. It is a semi-
migratory and commercially important freshwater species
endemic to China, especially the Huaihe, Liaohe, Minjiang,
Yangtze, and Pearl rivers, and the western regions of the
Korean Peninsula (Shen et al., 2014; Wang et al., 2006; Zhu
et al., 2005). In recent years, wild populations of L. longirostris
have experienced a rapid decline due to over-fishing, water
pollution, hydropower construction, and other human activities
(Liang et al., 2016; Luo et al., 2000; Wang et al., 2006; Xiao &
Yang, 2009). Thus, to facilitate conservation and evolutionary
research, we constructed the first high-quality chromosome-

This is an open-access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (http:/
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted
non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Copyright ©2021 Editorial Office of Zoological Research, Kunming
Institute of Zoology, Chinese Academy of Sciences

level reference genome for L. longirostris using BGISEQ-500,
Nanopore, and high-throughput chromosome conformation
capture (Hi-C) technologies.

One healthy adult female L. longirostris (Figure 1A)
collected from a farm at the Sichuan Academy of Agricultural
Sciences in Meishan, Sichuan Province, China, was used for
genome sequencing. Muscle tissue was collected for DNA
extraction after treatment with the anesthetic tricaine MS-222.
Genomic DNA for BGISEQ-500 and Nanopore sequencing
was isolated using standard chloroform-isoamyl alcohol
extraction procedures (Sambrook et al., 1989). DNA quality
and quantity were measured using a NanoDrop™ One UV-Vis
spectrophotometer (Thermo Fisher Scientific, USA) and
Qubit® 3.0 fluorometer (Invitrogen, USA), respectively.

A DNA library (200400 bp insert size) was constructed
following the manufacturer's instructions as described in
previous study (Huang et al., 2017). The library was then
sequenced following the BGISEQ-500 protocols (Huang et al.,
2017). The short-read data obtained from the BGISEQ-500
platform were filtered using SOAPnuke v1.5.2 (Chen et al.,,
2018). The adapter sequences were removed from the reads,
and paired reads with more than 10% ambiguous or low-
quality (Phred score<5) bases were discarded, with BLAST
v2.2.31 applied for the evaluation of sample contamination
(Altschul et al., 1990). As a result, we obtained a total of 64.11
Gb short reads (Supplementary Table S1). Using Jellyfish
v2.2.6 (Margais & Kingsford, 2011), the K-mer frequency
distribution was calculated. The Jellyfish results were
subsequently delivered to GenomeScope (Vurture et al.,
2017). Using a K-mer size of 17, the K-mer frequency
distribution for L. longirostris was obtained (Supplementary
Figure S1). As a result, the genome size of L. longirostris was
estimated to be 688.99 Mb, with heterozygosity, repeat
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Figure 1 Genome analysis of L. longirostris
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A: Image of L. longirostris used for genome sequencing. B: Hi-C contact map of L. longirostris genome, color bar shows contact density from red

(high) to white (low). C: Phylogenetic tree of 11 fish genomes constructed using 3 585 single-copy orthologous genes. D: Genome comparisons

between L. longirostris and I. punctatus.

content, and GC content of 0.35%, 42.53%, and 38.43%,
respectively.

For Nanopore sequencing, we prepared a library using a
Ligation Sequencing Kit (Oxford Nanopore Technologies, UK,
SQK-LSK109) according to the manufacturer's instructions.
The library was sequenced using the Nanopore GridlON X5
sequencer (Oxford Nanopore Technologies, UK) with flow cell
R9.4 on five flow cells. Base calling was performed using
Guppy v2.0.8 with default parameters, and reads were filtered
for mean_gscore_template =7. NanoPlot v1.0.0 (De Coster
et al., 2018) was then used to filter the Nanopore reads. For
the construction of the Hi-C library, 1 g of muscle tissue was
used to prepare a library according to previously established
protocols (Rao et al., 2014). The library was then sequenced
on a BGISEQ-500 sequencer (BGI Genomics, China) using
100 bp paired end sequencing.

For transcriptome sequencing, the liver tissues of 15 L.
longirostris individuals collected from the same farm were
used for RNA extraction with TRIzol reagent (Invitrogen,
USA), followed by treatment with DNase | (Invitrogen, USA) to
remove genomic DNA. RNA concentration and integrity were
measured using a Qubit® RNA Assay Kit and Qubit® 2.0
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fluorometer (Life Technologies, USA) and an RNA Nano 6000
Assay Kit with the Agilent Bioanalyzer 2100 system (Agilent
Technologies, USA), respectively. Three RNA sequencing
libraries (five fish per library) with an insert size of 250-300 bp
were prepared using a NEBNext® Ultra™ RNA Library Prep
Kit for llumina® (NEB, USA) following the manufacturer’s
protocols, and then sequenced on the lllumina Hiseq X Ten
platform (lllumina Inc., USA) as 150 bp paired-end reads. The
raw RNA-seq reads were cleaned and assembled as
described previously (Ye et al., 2018).

Using the Nanopore sequencing platform, we obtained
43.23 Gb long reads, with an expected average sequencing
coverage of 61.48 X for genome assembly (Supplementary
Table S1). We then performed de novo genome assembly
using Canu v1.8 (Koren et al., 2017) following the correction,
trimming, and contig construction steps. After contig
assembly, three rounds of contig sequence polishing were
performed with cleaned genomic short reads using Pilon v1.23
(Walker et al., 2014). Purge Haplotigs v1.0.3 (Roach et al.,
2018) was used to produce an improved and deduplicated
assembly. Finally, we obtained the assembled genome of L.
longirostris, which was 703.19 Mb in length, with 389 contigs
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and an N50 contig size of 4.29 Mb. This is a medium-sized
genome among other sequenced catfish genomes (Table 1;
Supplementary Table S2). We performed genome assembly
quality control using the distribution of GC_depth. The
GC_depth scatter plots demonstrated a Poisson distribution,
indicating that this genome had no significant contamination.
The overall GC-content of 39.67% in the L. longirostris
genome was slightly higher than that of the walking catfish
(Clarias batrachus) (Li et al., 2018) and common carp
(Cyprinus carpio) but much lower than that of most teleost
genomes (Xu et al., 2014). The completeness of the
assembled L. longirostris genome was estimated using
BUSCO v3.0.2 (Siméo et al., 2015) with the actinopterygii_
odb9 database. As a result, 4 293 (93.6 %) of the 4 584
BUSCO genes were completely identified in the genome,
including 4109 (89.6%) single-copy and 184 (4.0%)
duplicated genes. These results suggest high genome
assembly completeness.

For chromosome-level assembly of the L. longirostris
genome, Hi-C reads were first filtered using HIC-Pro v2.8.0
(Servant et al., 2015). Juicer v1.5 (Durand et al., 2016a) was
then used to analyze the Hi-C datasets, and 3D-DNA v170123
was used to anchor the genome assembly to the
chromosomes (Dudchenko et al., 2017) with parameters “-m
haploid -s 0 -c 26”. The contact matrix of the L. longirostris
contigs was mapped using Juicebox v1.11.08 (Durand et al.,
2016b) (Figure 1B). A total of 126.35 Gb clean Hi-C reads
were obtained, and 685.53 Mb (97.44% of total genome)
genome sequences were successfully scaffolded into 26
pseudochromosomes. The number of chromosome scaffolds
is consistent with previous research on karyotypes of L.
longirostris (2n=52; Hong & Zhou, 1984). The lengths of
chromosomes ranged from 17.36 Mb to 43.97 Mb
(Supplementary Table S3). The scaffold N50 of the
chromosome-level assembly was 28.03 Mb (Table 1).

For the annotation of repetitive sequences, we used
RepeatModeler v1.0.10 (Bao & Eddy, 2002), which employs
two complementary computational methods, i.e., RECON
v1.08 and RepeatScout v1.0.5 (RepeatScout, RRID:SCR

Table 1 Summary of sequenced catfish genomes

014653) (Price et al.,, 2005), to identify repeat element
boundaries and family relationships from sequence data.
Subsequently, the outputs from the RepeatModeler and
RepBase v21.01 library were combined and used for further
characterization of transposable elements (TEs), many of
which are not repetitive, and other repeats by homology-based
methods, including identification with RepeatMasker v4.0.7,
rmblast-2.2.28 (RRID:SCR 012954). Using RepBase-based
homology and de novo methods, 239.11 Mb (33.99% of total
genome) repetitive elements were identified, with DNA
transposons (146.40 Mb, 20.81%) being the most abundant
type in the genome (Supplementary Table S4-1). The
proportion of repetitive elements in L. longirostris is similar to
that in the Glyptosternon maculatum genome (33.96%) (Liu et
al., 2018) and higher than that of most teleost genomes
(Supplementary Table S4-2).

Combined homology-, de novo-, and transcriptome-based
methods were used for gene prediction in the genome. The
protein sequences of nine fish species, including Danio rerio,
Gasterosteus aculeatus, Ictalurus Punctatus, Larimichthys
crocea, Oreochromis niloticus, Oryzias latipes,
Pangasianodon hypophthalmus, Tachysurus fulvidraco, and
Takifugu rubripes, were downloaded from the Ensembl
database and mapped onto the assembled L. longirostris
genome using BLASTN. Subsequently, GeneWise v2.2.0
(Birney et al., 2004) with default options was used for
homologous annotation. For de novo prediction, Augustus
v3.1.0 (Stanke & Waack, 2003) was used to predict gene
models. In addition, RNA-seq data were aligned to the
assembled L. longirostris genome to predict gene coding
regions. The gene models were then predicted by combining
the above homology-, de novo-, and transcriptome-based
information using PASA v2.3.3 (Haas et al., 2003). Various
databases, including SwissProt (Boeckmann et al., 2003),
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa & Goto, 2000), TrEMBL (Boeckmann et al., 2003),
InterPro (Zdobnov & Apweiler, 2001), and Gene Ontology
(GO) (Ashburner et al., 2000), were used to functionally
annotate the predicted protein-coding genes, and GLEAN

Assembly Identified  Scaffold Contig N50

Species Family Sequencing platform size (Mb) _genes N50 (Mb)  (kb) References
Longsnout catfish, Leiocassis Bagridae  BGISEQ-500, Nanopore, Hi-C 70319 23708  28.03 3090.00  This study
longirostris
Yellow catfish, Pelteobagrus Bagridae lllumina, PacBio, Hi-C 73280 24552 2580 110000 Songetal,
fulvidraco 2018
llumina, PacBio 71400 21562  3.65 970.00 58?29 etal,
L PacBio, lllumina, 10X Liu et al.,
Glyptosternon maculatum Sisoridae T . 662.34 22 066 20.90 993.67 2018
Channel catfish, ctalurus punctatus  Ictaluridae  lllumina 84540 21556  7.25 48.50 ggfg etal,
lllumina, PacBio 783.00 26661 7.73 77.20 '2"(;’1‘? al.

. . X " i L . . Jiang et al.,
Giant devil catfish, Bagarius yarrelli ~ Sisoridae lllumina, PacBio 571.00 19 027 3.10 1 600.00 2019
Walking catfish, Clarias batrachus ~ Clariidae  lllumina 821.00 22914 036 19.00 ;'Ojtga"’
Striped catfish, Pangasianodon . . Kim et al.,
hypophthalmus Pangasiidae lllumina 700.00 28 600 14.29 6.00 2018
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(Elsik et al., 2007) was used to create a consensus gene set.
Finally, a total of 23 708 protein-coding genes were identified
in the L. longirostris genome (Supplementary Table S5), of
which 21 692, 20 072, 23 114, 21 169, and 16 638 protein-
coding genes were annotated in the SwissProt, KEGG,
TrEMBL, InterPro, and GO databases, respectively
(Supplementary Table S6 and Figure S2). BUSCO was also
used to test the completeness of the genome annotation with
the actinopterygii_odb9 database, which showed that 92.4%
complete and 4.0% fragmented conserved single-copy
orthologs were predicted for L. longirostris.

For non-coding RNAs, microRNA (miRNA) and small
nuclear RNA (snRNA) were predicted using INFERNAL v1.1
(Nawrocki & Eddy, 2013) and the Rfam database (Kalvari et
al., 2018). Transfer RNA (tRNA) and ribosomal RNA (rRNA)
were identified using tRNAscan-SE v1.3.1 (Lowe & Eddy,
1997) and RNAmmer v1.2 (Lagesen et al.,, 2007),
respectively. After analysis, 422 miRNAs, 2 118 tRNAs, 1 838
rRNAs, and 1 925 snRNAs were annotated in the L.
longirostris genome (Supplementary Table S7).

To identify gene families, protein sequences from the
longest transcripts of each gene from L. longirostris and 10
other fish species, including D. rerio, Astyanax mexicanus, G.
aculeatus, G. maculatum, I. punctatus, Lepisosteus oculatus,
Oreochromis  niloticus, Oryzias latipes, Pelteobagrus
fulvidraco, and T. rubripes, were aligned using BLASTP with
an e-value threshold of 1e®. OrthoMCL v1.4 (Li et al., 2003)
was then used to construct gene families. A total of 19 438
gene families and 3 585 single-copy ortholog families were
identified among the 11 species, with 68 gene families specific
to L. longirostris (Supplementary Table S8). In addition, 11
729 (89.1%) gene families were shared by the four catfish
species, with 301 gene families specific to L. longirostris
(Supplementary Figure S3).

To investigate the phylogenetic relationships of L.
longirostris with the above 10 fish species, the shared single-
copy genes were aligned by MUSCLE v3.8.31 (Edgar, 2004).
RAXML v8.2.1163 (Stamatakis, 2014) was then employed to
construct a phylogenetic tree with the -m PROTGAMMAAUTO
model and 100 bootstrap replicates. MCMCTREE v3.8.31
(Yang, 2007) was used to estimate divergence time based on
the “correlated molecular clock” and “HKY85” models.
Phylogenetic analysis indicated that L. longirostris and P.
fulvidraco, which are both from the family Bagridae, were
clustered onto one branch, and L. longirostris was close to the
P. fulvidraco, G. maculatum, and I. punctatus clades, which
belong to the Siluriformes order. These results are similar to
previous phylogenetic analyses based on the mitochondrial
genome of L. longirostris (Liu et al., 2019). Our results also
showed that L. longirostris diverged ~26.2 million years ago
from its closest related species P. fulvidraco (Figure 1C).
Furthermore, phylogenetic analysis estimated that /. punctatus
diverged from P. fulvidraco around 82.2 million years ago,
consistent with the 81.9 million years reported in previous
study (Gong et al., 2018). Collinearity analysis of
chromosomes between L. longirostris and I. punctatus was
performed using LASTZ v1.02.00 (Harris, 2007) with
parameters “T=2 C=2 H=2000 Y=3400 L=6000 K=2200". As
a result, all 26 pseudochromosomes of L. longirostris
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displayed high homology with the corresponding
chromosomes of . punctatus (Figure 1D), suggesting high-
quality L. longirostris genome assembly.

In the present study, the first chromosome sequences for L.
longirostris were constructed using a combination of BGISEQ-
500, Nanopore, and Hi-C technologies. The reference genome
exhibited high quality in terms of continuity and completeness.
This study should improve our understanding of the L.
longirostris genome and provide valuable chromosomal
information for genomic comparisons and evolutionary
research among important aquaculture species.
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