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Abstract

This study was designed to identify metalloproteinase determinants of macrophage migration and led to the specific
hypothesis that matrix metalloproteinase 10 (MMP10/stromelysin-2) facilitates macrophage migration. We first profiled
expression of all MMPs in LPS-stimulated primary murine bone marrow-derived macrophages and Raw264.7 cells and
found that MMP10 was stimulated early (3 h) and down-regulated later (24 h). Based on this pattern of expression, we
speculated that MMP10 plays a role in macrophage responses, such as migration. Indeed, using time lapse microscopy,
we found that RNAi silencing of MMP10 in primary macrophages resulted in markedly reduced migration, which was
reversed with exogenous active MMP10 protein. Mmp102/2 bone marrow-derived macrophages displayed significantly
reduced migration over a two-dimensional fibronectin matrix. Invasion of primary wild-type macrophages into Matrigel
supplemented with fibronectin was also markedly impaired in Mmp102/2 cells. MMP10 expression in macrophages thus
emerges as an important moderator of cell migration and invasion. These findings support the hypothesis that MMP10
promotes macrophage movement and may have implications in understanding the control of macrophages in several
pathologies, including the abnormal wound healing response associated with pro-inflammatory conditions.
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Introduction

Matrix metalloproteinases (MMPs) are a family of highly

conserved, zinc-dependent endopeptidases with a range of

functions in immunity, tissue repair and other disease processes.

[1,2]. In healthy tissue the activity of MMPs is tightly regulated

with a delicate balance between activation and inhibition, which

is mediated largely by the endogenous tissue inhibitors of

metalloproteinases (TIMPs). Once activated, MMPs act on a

variety of extracellular proteins, including extracellular matrix

(ECM) components and the ectodomains of membrane proteins.

This can have consequences on cell-matrix interactions and

subsequent migration, cytokine signalling, and leukocyte activa-

tion in both normal and pathological processes (reviewed in

[3,4,5]). The broad and varied function of MMPs highlights the

importance of expanding our understanding of these proteinases

in disease pathology, including inflammation and impaired

wound healing.

Macrophages express a number of MMPs and are key players

in several repair processes and pathologies, including the wound

healing process. Human macrophages and their monocytic

precursors can express a range of MMPs [6,7,8] and this

expression profile is modulated during the process of differen-

tiation from precursor monocyte to macrophage, concomitant

with morphological changes, such as cell adhesion and

spreading [9,10]. Induction of macrophage MMP expression

can be driven by pro-inflammatory stimuli, such as TNFa,

gram-negative lipopolysaccharide (LPS), and type II interferons

[7,8,11].

The activation of leukocytes in response to LPS via TLR4/NF-

kB signalling is well-characterised, including an important role in

the transcription of some MMPs. For example, pharmacological

inhibition of NF-kB translocation into the nucleus, in both

primary monocytes and cell lines in vitro, represses the expression

of several MMPs [12,13]. In vivo and ex vivo studies have also

revealed a clear relationship between LPS and MMP expression in

a variety of tissues [14,15].

The migration of macrophages, and indeed other highly motile

cells, is greatly influenced by the composition of the local ECM

[16], affecting both the persistence and directionality of migration

in vivo (reviewed in [17,18]). Advances in our understanding of

proteinase-dependent cell migration/invasion have come from

studies assessing expression and function of MMPs during

migration on or through various matrix components that would
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be present in or around sites of diapedesis [19,20,21,22]. In

macrophages, MMP14 has been localised to the cell’s leading edge

[23] and more recently around podosomes, actin-rich adhesions,

in dendritic cells where it is thought to play a role in cell protrusion

[24].

In vivo evidence supports the idea that certain MMPs may be

involved both positively and negatively in monocyte/macro-

phage migration. Thus Johnson and colleagues [25] have shown

that macrophages are dependent on TIMP2-inhibitable MMP

activity for in vivo colonisation of atherosclerotic plaques (as well

as in vitro migration). Similarly, double Mmp22/2/Mmp92/2

monocytes from knockout mice show reduced infiltration,

suggestive of a reduction in migration, across the parenchymal

basement membrane in an experimental autoimmune enceph-

alomyelitis (EAE) model [26]. Conversely, MMPs can also exert

a negative influence on macrophage migration in vivo. For

example, macrophage recruitment in lungs following Pseudomonas

aeruginosa infection is restrained by MMP28, whilst macrophages

isolated from infected Mmp282/2 mice migrate more rapidly

towards relevant bronchiolar lavage components in vitro [7].

Certain MMPs play key roles in fine-tuning the chemokine and

growth factor response, particularly during the resolution of

wound healing and associated inflammation (reviewed in [27]).

For example, macrophages have been shown to control the

clearance and recruitment of neutrophils in wounds by secreting

MMP12 to cleave and inactivate pro-neutrophil chemokines

CXCL-5 and -8. Over time MMP12 further contributes to the

degradation of pro-monocyte/macrophage chemokines CCL2, 7,

8 and 13, disrupting their own recruitment to bring about the

resolution of inflammation [4].

Given the implication of MMP expression in inflammatory

pathologies we have taken an unbiased approach to determine

murine macrophage expression of all MMPs following LPS

stimulation. These studies reveal differential and time-dependent

modulation of MMP10 expression in response to LPS. Further

experiments revealed a novel role for MMP10 in macrophage

migration and invasion.

Materials and Methods

Materials
Unless otherwise stated all chemical reagents were purchased

from Sigma-Aldrich Corp. (St. Louis, MO, USA), all tissue culture

reagents from Gibco Invitrogen Corp. (Paisley, Scotland, UK) and

all tissue culture plastics from Nunc Thermo Fisher Scientific

(Rochester, NY, USA).

Bone Marrow-derived Macrophages
Bone Marrow-derived Macrophages (BMDM) were isolated

from the femurs and tibias of C57Bl/6 mice (according to

institutional guidelines and UK Home Office requirements)

essentially as previously described [28]. Briefly, bone marrow

was flushed from the bone cavity with a 21 g needle and syringe

(BD, Oxford, UK) containing macrophage medium consisting of

Roswell Park Memorial Institute (RPMI) 1640 liquid medium

containing 100 units/ml penicillin/streptomycin antibiotic, 5 mM

L-glutamine, 1% (v/v) sodium pyruvate, 0.5% (v/v) nonessential

amino acids, 24 mM tissue culture grade b-mercaptoethanol,

supplemented with 10% (v/v) fetal bovine serum (FBS; BioSera,

East Sussex, UK) and 10% (v/v) L929-cell-conditioned medium

(LCM) as a source of Colony Stimulating Factor-1 (CSF-1) [29].

Cells in the bone marrow flush were plated onto non-treated

bacteriological petri dishes (BD Falcon, Oxford, UK) in macro-

phage medium. After three days of incubation at 37uC, 5% CO2,

the non-adherent population was re-plated with fresh macrophage

medium. The adherent population was discarded. After a further

five days culture the non-adherent population was discarded,

whilst remaining adherent BMDM were harvested for experimen-

tation.

BMDM from Mmp102/2 mice [15] and wild-type littermates

(protocols approved by the Institutional Animal Care and Use

Committee at the University of Washington) were isolated as

above.

RNA Purification, Reverse Transcription and Quantitative
Real Time – PCR

For analysis of gene expression BMDM (56105) were

transferred into medium containing 0.2% FBS and exposed to

100 ng/mL c-irradiated Lipopolysaccharide (LPS) purified from

E. coli (0111:B4) for the duration of the experiment stated. Total

RNA was purified from BMDM cell lysates using the RNeasy

Minikit (Qiagen, West Sussex, UK) according to the manufac-

turer’s instructions and including an additional DNase 1

(Invitrogen Ltd, Paisley, UK) step. Purified mRNA (250 ng–

1 mg) was reverse transcribed to complementary DNA (cDNA)

using Superscript II Reverse Transcriptase (Invitrogen Ltd)

according to the manufacturer’s instructions. Quantitative real-

time PCR (qRT-PCR) reactions were performed using the 7500

Fast RT-PCR System and TaqmanH primers and probes

(Applied Biosystems, CA, USA) for murine metalloproteinases

as described in [30] and [31] and QuantiTect probe PCR

Master Mix (Qiagen) according to the manufacturer’s instruc-

tions. Forward and reverse primer and probe sequences for

TNFa were designed using Primer Express software (Applied

Biosystems; forward 59 –AGACCCTCACACTCAGAT-

CATCTTC–39, reverse 59 –CCACTTGGTGGTTTGC-

TACGA–39, and probe 59-FAM-CAAAATTCGAGTGA-

CAAGCCTGTAGCCCA-TAMRA -39). Steady state mRNA

expression was normalized against 18 s ribosomal RNA

expression using the comparative cycle threshold method

(DDCT). Statistical analysis of change in gene expression

between two sets of data was performed using the two-tailed

Student’s T-test on sample groups no smaller than n = 3.

MMP10 Protein Immunostaining
BMDM (26104 cells per 13 mm glass coverslip) under indicated

conditions were treated with 5 mM Monensin Sodium Salt for 3 h

to block intracellular protein transport [32] and then fixed with a

4% (w/v) Paraformaldehyde solution. Cell membranes were

permeablised with 0.1% (v/v) Triton X-100 and non-specific

binding was blocked with 10% (v/v) normal donkey serum

(DAKO, Ely, UK) before incubation with Sheep anti-MMP10

polyclonal primary antibody [33]. BMDM were washed to remove

unbound primary antibody before incubation with Donkey anti-

Sheep Alexa-Fluor 488 conjugated polyclonal IgG secondary

antibody (Molecular Probes/Invitrogen, Paisley, UK). Before

mounting with Hydromount mounting medium (National Diag-

nostics, GA, USA), 49,6-diamidino-2-phenylindole (DAPI) nuclear

stain was applied.

Gene Silencing
BMDM (1.56104) were seeded onto 10 mg/mL bovine plasma

fibronectin (Calbiochem/Merck, Nottingham, UK) coated plastic

wells 24 h prior to transfection. 15 nM lyophilised siGENOME

SMARTpool siRNA targeting mouse MMP10 (siMMP10; 59-

GAAUUGAGCCACAAGUUGA-39, 59-GAGAUGUUCA-

CUUCGAUGA-39, 59-CCUCAGGGACCAACUUAUU-39.
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Dharmacon, CO, USA) and AllStars Negative Control (59-

GGGAAGUCCUAUUCUUUAA-39. Qiagen, West Sussex,

UK) were combined with HiPerfect Transfection Reagent

(Qiagen) and added to BMDM a further 24 h before time-lapse

microscopy began. Where stated, 3 ng/mL recombinant human

(r)MMP10 [34], was added to BMDM cultures for 6 h before

time-lapse microscopy.

2D Cell Migration Assay and Time-lapse Microscopy
BMDM were seeded onto plastic wells (24 well plates) coated

with rat tail collagen I (BD Biosciences, Oxford, UK), human

plasma fibrinogen (Calbiochem/Merck) or bovine plasma fibro-

nectin (all ECM components at 10 mg/mL). BMDM in 24 well

plates (alone or transfected with siRNA for MMP10 as indicated)

were transferred to a motorised stage within a controlled

environment chamber, also at 37uC, 5% CO2. Cells were imaged

every 10 minutes for 17 h with the AxioCam ICm 1 monochrome

CCD camera attached to the Axiovert 200M wide field inverted

light microscope using Axiovision 4.8.2 software (all Carl Zeiss

Ltd, Herts, UK). Cell migration speed was determined following

measurement of distance translocated by cells using ImageJ

software [35] with gel-ins ‘Manual Tracking’ (F. Cordelières,

Institute Curie, France) and ‘Chemotaxis and Migration Tool’

(Trapp and Horn, Ibidi GmbH, Germany).

3D Inverted Invasion Assay and Confocal Imaging
The 3D inverted invasion assay was performed as described

previously [36] with some modifications. Briefly, 100 mL of

Matrigel (BD Biosciences; stock mixed 1:1 with ice-cold PBS

and supplemented with bovine plasma fibronectin to a final

concentration of 50 mg/mL), was transferred to a TranswellTM

insert (8 mm pore; Corning, NY, USA) to polymerise at 37uC, 5%

CO2. After polymerisation, TranswellTM inserts were inverted and

56104 wild-type or Mmp102/2 BMDM were applied directly to

the underside of the insert filter and allowed to adhere for 2 h,

before further inversion and gentle washing to remove any non-

adherent cells. Finally, TranswellTM inserts were placed into a

chamber containing macrophage medium whilst 100 ng/mL LPS

was applied to the upper TranswellTM chamber to establish a

chemotactic gradient through the Matrigel/fibronectin gel.

TranswellTM cultures were incubated for 72 h to allow invasion

into the gel. Cells were then stained with 4 mM Calcein-AM

(Molecular Probes/Invitrogen). Confocal images of cells adherent

to the filter were obtained, to confirm cell adhesion had remained

constant across conditions during the experiment. These cells were

then removed with a cotton swab to ensure only migrating cells

were analysed. Serial confocal optical sections (20 mm) of the

Matrigel/fibronectin gel were captured with a Leica TCS SP2

laser scanning confocal microscope and LCS software package

(Leica Microsystems Ltd, Bucks, UK). For each experimental

condition the inverted invasion assay was performed in duplicate

Transwells and confocal data was collected from 3 fields of view

per Transwell (6 fields of view in total). Experiments were repeated

with cells independently isolated from 2 mice per genotype.

Invasion data was quantified using ImageJ software (NIH) with

gel-in ‘Area Calculator’ (Sergio Caballero, University of Florida,

USA).

Unless otherwise stated all experiments were performed at least

3 times, with a representative experiment shown. Statistical

analysis was performed using Student’s t-test.

Results

LPS Differentially Regulates the Expression of
Metalloproteinases in Both BMDM and Raw264.7
Macrophages

Taking an unbiased approach to determine the effect of LPS on

steady state mRNA metalloproteinase and TIMP expression in

BMDM, qRT-PCR profiling of all MMPs, and TIMP1-4 was

performed on BMDM exposed to LPS for 24 h (Figure 1). In

addition expression of ADAMs 8, 15, 17, 33, ADAMTS1 and 4

was determined as they are known to be expressed in human

monocytic cells following differentiation [10] and/or have been

associated with inflammation [37,38]. Since the Raw264.7

macrophage cell line is often used as a model system for

macrophages, we also assessed the response of these cells to LPS

(Figure 1). Table 1 depicts those MMPs, ADAMs and TIMPs

whose steady state mRNA expression was significantly regulated

by LPS in these two macrophage populations (confirmed in 2

further experiments). In BMDM, expression of several MMPs was

up-regulated as previously reported, including MMP9 [39,40] and

MMP14 [41]. Although MMP12 was significantly down-regulated

by LPS, this proteinase was still highly expressed (data not shown).

Expression of MMPs was also differentially regulated by LPS in

Raw264.7 cells with several genes regulated in a similar manner to

those in BMDM (MMP10, 11, 14, and 25). Some differences were

observed, however. For example, whilst MMP2 was significantly

up-regulated in BMDM, expression was not detected under any

condition in Raw264.7 cells. Several MMPs were not expressed in

either BMDM or Raw264.7 in either untreated or LPS-treated

cells. Expression of ADAM8 and 15 was partially repressed in

BMDM by LPS. Amongst the TIMPs only TIMP2 expression was

partially but significantly repressed in both BMDM and Raw264.7

cells.

Steady-state mRNA Levels of MMP10 are Differentially
Regulated by LPS Over Time and in an NF-kB-dependent
Manner

Novel MMP regulation in BMDM by LPS included the

significant repression of MMP10 at 24 h (Table 1). Given that

LPS is typically regarded as an inducer of MMP expression, we

explored MMP10 expression at an earlier time point. Interestingly,

LPS significantly induced expression of MMP10 at 3 h (Figure 2A),

with expression returning to basal levels by 8 h (Figure S1).

MMP10 expression was repressed up to 7-fold below basal levels

by LPS at 24 h (Figure 2A) and in a dose-dependent manner

(Figure 2B). Importantly, the repression of MMP10 expression by

LPS was also observed at the protein level as revealed by

immunolocalisation in BMDM treated with the intracellular

protein transport inhibitor, monensin, thus preventing MMP

secretion (Figure 2C). We took this approach because levels of

MMP10 secreted by murine BMDM are low and do not permit

ready detection by Western blotting. TNFa expression was

markedly induced in BMDM at 3 h and remained highly

expressed at 24 h post-stimulation (Figure 2D) confirming that

LPS mediated a predictable pro-inflammatory response in these

cells. An extended time-course of MMP10 expression revealed that

by 48 h after LPS treatment steady state mRNA levels for MMP10

had returned to basal levels (Figure S1).

To address the potential mechanisms involved in MMP10

expression in macrophages, the effect of the IkB kinase (IKK)

inhibitor BMS-345541 was assessed. Inhibition of IKK repressed

LPS induction of MMP10 and TNFa at 4 h in Raw264.7 cells

(Figure 3A, upper and lower panels respectively) and also in

MMP10 Modulates Macrophage Migration
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BMDM at 3 h (Figure 3C). Interestingly, this inhibitor also largely

reversed the LPS-mediated repression of MMP10 at 24 h in

Raw264.7 cells (Figure 3B, upper panel) suggesting that LPS

regulates MMP10 expression via an NF-kB-dependent mecha-

nism. However, endogenous expression of MMP10 at 24 h was

not inhibited by the IKK inhibitor (Figure 3B, upper panel)

suggesting that other signalling pathways must be involved. TNFa
induction in Raw264.7 cells was also repressed at 24 h (Figure 3B,

lower panel). BMS-345541 proved toxic to BMDM at 24 h such

that no data could be generated. Taken together these data suggest

that the NF-kB pathway is involved in both the induction and

repression of MMP10 by LPS.

BMDM Migrate Across Several ECM Substrates Showing a
Preference for Fibronectin

As MMP10 has been suggested to affect migration of other

cell types [42], we hypothesised that its endogenous expression

may play a similar role in BMDM motility. We first determined

an optimal substrate for these cells in 2D time-lapse random

migration assays, selecting three substrates of relevance to

macrophage biology. A 2D substrate of fibronectin resulted in

the highest BMDM random migration speed (Figure 4A, left

panel), similar to that observed over fibrinogen. Macrophages

migrating over fibronectin showed significantly enhanced net

cell translocation (Figure 4B) compared to either collagen I or

fibrinogen (Figure 4A, upper panel). Corresponding plots of

BMDM migration reflect these observations (Figure 4C). Col-

lagen I was a poor substrate for macrophage adhesion, failing to

induce cell spreading (inset Figure 4C left panel) although

supporting migration of the still-rounded cells (Figure 4C left

panel).

Gene Silencing of Endogenous MMP10 Represses
Random Migration of BMDM

To explore the role of endogenously expressed MMP10 in

BMDM migration, we used a gene silencing approach, transfect-

ing BMDM with siRNA targeting MMP10 (siMMP10), which was

verified at both mRNA (Figure 5A) and protein levels (Figure 5B)

Figure 1. LPS regulates steady state expression of metallopro-
teinases and TIMPs in Raw264.7 macrophages and in BMDM.
Macrophages were cultured alone or in indicated concentrations of LPS
for 24 h prior to RNA extraction, reverse transcription and qRT-PCR
analysis. A heat map represents the mean expression in CT value for
triplicate samples. The cycle threshold (CT) value indicates the number
of PCR cycles required for the amplification of target cDNA to reach an
arbitrary threshold level. A low CT value indicates a greater level of
target cDNA present; therefore fewer cycles are needed to reach the
threshold.
doi:10.1371/journal.pone.0063555.g001

Table 1. The regulation of metalloproteinases and TIMPs in
response to LPS.

BMDM Raw264.7

MMP2 q* –

MMP3 no effect q*

MMP8 no effect q*

MMP9 q* no effect

MMP10 Q*** Q***

MMP11 Q* Q**

MMP12 Q* no effect

MMP13 no effect q***

MMP14 q*** q**

MMP15 Q** no effect

MMP21 – Q*

MMP25 q*** q***

MMP27 Q*** –

MMP28 no effect q***

TIMP2 Q*** Q*

ADAM8 Q* no effect

ADAM15 Q* no effect

*p#0.05.
**p#0.01.
***p#0.001.
‘–’ indicates no expression.
Primary BMDM and Raw264.7 macrophages were cultured with 100 ng/mL LPS
for 24 h prior to RNA extraction, reverse transcription and qRT-PCR analysis.
Arrows indicate trend change of gene expression compared to untreated
samples. Only expression changes of greater than 1 CT are included.
doi:10.1371/journal.pone.0063555.t001
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by immunofluorescence of monensin-treated cells. Transfection of

BMDM with siMMP10 resulted in an approximately 3-fold

reduction in cell migration speed and a significant reduction in net

cell translocation compared to scrambled siRNA transfection

(Figure 5C, upper and lower panels; corresponding cell tracks in

Figure 5D). Importantly, the reduction in migration speed driven

by siMMP10 could be rescued by the addition of exogenous

rMMP10 protein (Figure 5C, D). Interestingly, the further

addition of rMMP10 to scrambled siRNA-transfected cells did

not enhance BMDM speed any further, suggesting that the

endogenous level of MMP10 is sufficient to produce the maximum

migration effect under these conditions. These results demonstrate

that endogenous MMP10 expression plays a role in macrophage

migration over a fibronectin substrate.

BMDM from Mmp102/2 mice have Substantially Impaired
Migration Over a Fibronectin Substrate

To further substantiate a role for MMP10 in BMDM migration,

similar 2D migration assays were performed on a fibronectin

substrate with BMDM differentiated from the bone marrow of

MMP10 null (Mmp102/2) mice. Mmp102/2 BMDM showed a

significant 2-fold reduction in cell migration speed (0.31+/

20.03 mm/h compared to 0.7+/20.05 mm/h for wild-type cells)

as well as a significant reduction in net cell translocation compared

to wild-type littermate-derived BMDM (Figure 6A, upper and

lower panels). The migration deficit observed in Mmp102/2

BMDM was rescued by the addition of rMMP10 (0.96+/

20.08 mm/h) and examples of cell tracks of BMDM migration

are depicted in Figure 6B.

MMP10 is Necessary for Invasion of BMDM into a
Reconstituted 3D ECM Matrix

Since macrophages migrate over 2D surfaces, such as the

endothelium, but also through 3D matrices, such as the basement

membrane, the ability of BMDM to invade a thick layer of

Matrigel, supplemented with fibronectin, was explored. In these

experiments we used LPS as a chemoattractant, but since the end-

point of our experiments was at 72 h any effect of LPS on MMP10

expression will have subsided, since MMP10 expression returns to

basal levels by 48 h (Figure S1). A gradient of LPS induced wild-

type BMDM invasion whilst Mmp102/2 BMDM showed a 3-fold

reduced ability to invade (Figure 7A; representative montages of

confocal sections shown in Figure 7B). Importantly approximately

similar numbers of Mmp102/2 BMDM and their wild-type

counterparts were apparent on the underside of the filter as

assessed at the end-point of the experiment, prior to imaging

invasion (Figure S2). These results suggest that MMP10 plays a

key role in macrophage invasion into a 3D matrix.

Figure 2. Macrophage MMP10 expression is modulated in a time-dependent manner in response to LPS. (A) Increased steady-state
levels of MMP10 mRNA 3 h post-LPS treatment in BMDM and decreased levels of MMP10 mRNA 24 h post-LPS treatment as determined by qRT-PCR.
(B) Repression of MMP10 mRNA expression following 24 h LPS treatment is dose-dependent. (C) Immunofluorescence reveals decreased levels of
MMP10 protein (green) expressed by BMDM 24 h post-LPS treatment compared to untreated cells (all cells treated with monensin). DAPI nuclear
stain is shown in blue [scale bar = 25 mm]. (D) BMDM expression of TNFa mRNA is increased 3 h post-LPS treatment and remains enhanced 24 h post-
LPS treatment. All mRNA expression is normalised to 18S endogenous control. **p#0.01, ***p#0.001 (Student’s T test). Each bar represents mean 6

S.E.M. of at least 3 samples. Experiments were performed 3 times and a representative experiment is shown.
doi:10.1371/journal.pone.0063555.g002
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Discussion

Macrophage migration is implicated in both normal and

pathological conditions: it is essential for wound healing and

immune responses but is an unwanted response in inflammatory

conditions such as atherosclerosis and chronic wounds. In this

study a comprehensive survey of metalloproteinase expression has

revealed novel regulation of MMP10 in response to LPS. Further

study uncovered a functional role for this metalloproteinase in the

migration of macrophages on 2D components of ECM as well as

in 3D invasion.

Regulation of Metalloproteinase Expression in BMDM
and Raw264.7 Macrophages by LPS

Comparison of BMDM and the Raw264.7 macrophage cell line

response to LPS stimulation for 24h revealed that although some

genes were differentially modulated in the two cell populations,

others were significantly regulated in a similar manner. For

example; up-regulation of expression of MMP14 and 25 was

observed in both populations whereas that of MMP2 and 9 was

induced only in BMDM. Regulation of MMP14 was in agreement

with previous observations in human monocytes [8,43]. MMP14

has been implicated in the migration of human monocytes in

response to chemoattractant stimuli on a number of substrates,

including fibronectin [23]. MMP25 (MT3-MMP) has been shown

previously to be up-regulated in macrophages of atherosclerotic

plaques, indicating a potential inflammatory association [11] and

was here found to be significantly up-regulated in both Raw 264.7

macrophages and BMDM in response to LPS. Expression of

several metalloproteinases was partially down-regulated in BMDM

following exposure to LPS for 24 h. These include MMP12,

implicated in macrophage migration [4], and MMP15 (MT2-

MMP), whose function in macrophages remains to be established.

The expression of MMP10 in response to LPS was of great

interest since this proteinase seems to be increasingly associated

with inflammation in a variety of physiological and pathological

conditions. Induction of MMP10 by LPS in primary human

monocytes has been shown previously at 4 h [44] and we have

confirmed these results in murine BMDM and Raw264.7 cells.

TNFa was elevated more than 10-fold at 3 h after LPS stimulation

and others have demonstrated substantial secretion of this cytokine

from macrophages within 4 h [45]. TNFa may be responsible for

Figure 3. The time-dependant effects of LPS on macrophage MMP10 expression are sensitive to NF-kB inhibition. (A) Induction of
MMP10 (above) and TNFa mRNA (below) in LPS-treated Raw264.7 macrophages was abrogated by IKK inhibitor BMS-345541 at 4 h as determined by
qRT-PCR (B) The repression of MMP10 mRNA (above) 24 h post-LPS treatment was also reversed by BMS-345541 (below) whilst TNFa induction was
still repressed (right). (C) Abrogation of MMP10 (left) and TNFa (right) expression was also observed in the presence of BMS-345541 in BMDM 3 h
post-LPS exposure. *p#0.05, relative to untreated samples, #p#0.05, relative to LPS alone (Student’s T test). Each bar represents mean 6 S.E.M. of at
least 3 samples. Experiments were performed 3 times and a representative experiment is shown.
doi:10.1371/journal.pone.0063555.g003
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MMP10 induction in this early time-frame, since TNFa can

induce some MMP genes within one hour of stimulation, at least

in other cell types [46]. In our study, treatment with an IKK

inhibitor suppressed both endogenous and induced MMP10 and

TNFa at 4 h in macrophages, supportive of a role for the NF-kB

pathway in MMP10 expression/up-regulation. Recently, Huang

and colleagues [47] have demonstrated that LPS/IFNc treatment

leads to induction of MMP10 expression in human monocytes

which is mediated by several pathways, including NF-kB. These

authors also co-localised MMP10 with NF-kB in macrophage-rich

areas of human atherosclerotic plaques, lending support to a role

for NF-kB in MMP10 regulation in vivo. Previous studies have

shown that TNFa induces MMP10 expression in intestinal

epithelial cells [48] and MMP10 expression in chondrocytes is

also repressed by IKKb inhibition [49]. MMP10 is induced in the

tracheal epithelium of mice infected with the gram-negative

bacterium P. aeruginosa, and mediates a range of transcriptional

responses. Furthermore, analysis of known key gene interaction

networks involved in host response to infection with P. aeruginosa

suggested a role for NF-kB in the regulation this MMP [15].

Overall, our data are in keeping with the idea that the up-

regulation of MMP10 by LPS at 4 h may be mediated through an

NF-kB-dependent mechanism, and it has previously been shown

that TNFa-induced MMP10 expression is Rel A/p65 dependent

Figure 4. Fibronectin is a good substrate for random migration of primary macrophages. BMDM were cultured on thin coatings of
collagen I, fibrinogen or fibronectin for 24 h. (A) Time-lapse microscopy analysis reveals no significant variation in speed of macrophage migration
(above), however net cell translocation (below), is significantly enhanced on fibronectin when compared to other conditions. *p#0.05, ***p#0.001
relative to fibronectin (Student’s T test). Each bar represents mean 6 S.E.M. of at least 10 cell tracks. (B) Schematic explanation of net cell translocation
by cells. (C) Migration plots illustrate the enhanced motility of macrophages on fibronectin. Insets: stills from time-lapse recordings. Note cells on
collagen I remain rounded. Experiments were performed 3 times and a representative experiment is shown.
doi:10.1371/journal.pone.0063555.g004
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Figure 5. Repression of random macrophage migration on fibronectin by gene silencing of MMP10 and rescue by the exogenous
application of soluble rMMP10. (A) qRT-PCR analysis reveals successful repression of MMP10 mRNA expression in BMDM transfected with
siMMP10 compared to scrambled control siRNA. ***p#0.001. Each bar represents mean 6 S.E.M. of at least 3 samples. (B) MMP10 protein
immunolocalisation in BMDM 24 h post-transfection with siMMP10 shows repression of protein levels compared to scrambled control siRNA and
secondary (2u) antibody only control, (all cells treated with monenesin), [scale bar = 25 mm]. (C) Time-lapse microscopy analysis reveals a significant
reduction in the speed of BMDM migration (above) on fibronectin following siMMP10 transfection, which was rescued by exogenous rMMP10.
Analysis of net cell translocation (below) confirms the siMMP10 driven reduction in migration. (D) Corresponding migration plots reflect the effect of
siMMP10 and rMMP10 on macrophage motility. ***p#0.001 (Student’s T test). Each bar represents mean 6 S.E.M. of at least 10 cell tracks.
Experiments were performed 3 times and a representative experiment is shown.
doi:10.1371/journal.pone.0063555.g005
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[50]. However, further investigation is needed to substantiate the

involvement of this pathway in our system.

Potential Mechanisms Underpinning Repression of
MMP10 Expression

At 24 h following LPS treatment steady-state mRNA levels for

MMP10 were substantially repressed 7-fold below basal levels with

very little expression observed at the protein level at this time-

point. It should be noted that others have observed up-regulation

of MMP10 expression by LPS treatment in human monocytes at

18 h [8], which may be a reflection of the shorter time of exposure

and/or species. It is possible that in human monocytes MMP10

expression maintains a prolonged elevation. It is of interest to note

that, whilst at 24 h expression of MMP10 is suppressed, TNFa
expression remains high, indicating that this cytokine is likely not

implicated in regulating MMP10 expression at this later time-

point. The time-dependent repression of MMP10 expression

following LPS treatment we observed in both BMDM and

Raw264.7 macrophages may reflect the effect of several signalling

pathways. Interestingly pharmacological inhibition of IKK largely

reversed LPS-driven differential MMP10 expression, indicating

NF-kB pathway involvement. The potential role of NF-kB in

Figure 6. Mmp102/2 macrophages display reduced migration that can be rescued with the exogenous application of soluble
rMMP10. BMDM from the Mmp102/2 mouse and their back-crossed wild-type (WT) litter-mates were cultured on fibronectin for 24 h before the
addition of rMMP10 as indicated. (A) Time-lapse microscopy analysis of Mmp102/2 BMDM (squares) reveals significantly reduced migration speed
(above) and net cell translocation distance (below) compared to wild-type BMDM (circles). Exogenous application of rMMP10 to the culture medium
of Mmp102/2 BMDM (triangles) enhances migration speed (above) and net cell translocation (below) to levels comparable to wild-type BMDM
(circles). (B) Examples of migration plots reflect the effect on BMDM motility. ***p#0.00.1 (Student’s T test). Data depicts mean 6 S.E.M. of at least 60
cell tracks in combined data from cells isolated in two independent experiments (2 mice per genotype).
doi:10.1371/journal.pone.0063555.g006

MMP10 Modulates Macrophage Migration

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e63555



MMP10 repression is further supported by the elegant study of

Treiber et al. [51], who have demonstrated that LPS treatment of

BMDM from mice with functionally inactive RelA/p65 (resulting

in abrogation of NFKB signalling) results in up-regulation of

MMP10 expression, in keeping with our observations at 24 h post-

LPS treatment.

Epigenetic mechanisms of MMP10 regulation have also been

reported with histone deacetylase (HDAC)7 shown to repress

MMP10 expression in endothelial cells through sequestration of

the transcription factor MEF2 [52]. In addition, under TNFa
stimulation HDAC7 dissociates from MEF2 making MEF2

available, allowing subsequent transcription of MMP10 [53].

LPS up-regulates expression of MEF2 in monocytes [54] as well as

HDAC7 in BMDM [55], which could result in overall MMP10

suppression depending on relative levels of these proteins. In our

hands we did not observe modulation of HDAC7 expression at the

mRNA level although we did observe repression of HDAC5 by

LPS (data not shown) and it is noteworthy that HDAC5 can also

bind to and regulate expression of MEF2 (reviewed in [56]).

However given that HDAC7 and MEF2 [54] are also regulated

through phosphorylation events, mRNA levels of HDAC7 may

not be as important as protein localisation, following LPS

treatment. Zinc finger protein 267 (ZNF267) has also been

reported to act as a transcriptional repressor of MMP10 expression

in hepatic stellate cells, in an HDAC-independent manner [57].

However, these authors commented that LPS does not transacti-

vate ZF267, thus making it less likely to be involved in our system.

MicroRNAs are implicated in repression of many genes and a

candidate in our system may be miR-155 since this microRNA has

been shown to be involved in LPS regulation of several pathways

in dendritic cells [58]. Future studies will determine whether these

pathways are involved in the LPS-mediated repression of MMP10.

MMP10 Regulation of Cell Migration
In both 2D time-lapse migration assays and in 3D invasion we

have shown that MMP10 is a key player in macrophage migration.

Whilst MMP10 has not previously been studied in macrophage

migration, its exogenous expression has been associated with

migrating keratinocytes in wound healing with MMP10 inducing

keratinocyte migration in vitro [42]. MMP10 is regulated in a

spatiotemporal manner during wound healing, with strong

expression at both day 1 and day 5 post-wounding [59] and has

been observed in macrophage-rich areas of the dermis in human

skin ulcers [60]. We have similarly localised MMP10 in

macrophage-rich areas of granulation tissue of mouse skin wounds

(Murray, Bevan and Gavrilovic unpublished observations). Of

interest, circulating MMP10 levels have been correlated with

markers of inflammation and increased atherosclerotic plaques in

patients with elevated cardiovascular disease risk [61]. In addition,

circulating levels of MMP10 are significantly higher in patients

with sepsis [62], suggesting an important role for this proteinase

during infection.

Current concepts of leukocyte cell migration and cell-matrix

interactions have been established in 2D models [63,64,65].

Leukocytes adhere to the undulating, 2D, layer of activated

endothelium lining the blood vessel lumen; rolling then crawling

over it, before subsequent diapedesis and invasion through the

basement membrane and underlying stroma (reviewed in [66,67]).

LPS has been shown to act as a chemo-attractant for macrophages

[68] and we confirm here the ability of LPS to induce macrophage

invasion when applied across an ECM gel. The ability of LPS to

induce invasion may seem contradictory given our observations

regarding MMP10 suppression, however, the steady-state levels of

MMP10 have returned to basal levels by 48 h post-LPS exposure

and given our invasion assay end point is at 72 h any suppressive

role of LPS will have long since subsided.

Our experiments thus highlight a central role for metallopro-

teinases, with both 2D migration and 3D invasion of BMDM

found to be MMP10-dependent. Mechanistically, migration and

invasion have been shown to have several different characteristics

(reviewed in [69]) and invasion of some cell lines through Matrigel

has been shown by others to be independent of proteolytic activity

[70]. However, it is possible that MMP10 cleaves the fibronectin

substrate present in our model, and/or cell surface molecules such

as syndecans, or endogenous chemokines, as reported for other

MMPs (reviewed in [3]). Importantly, others have shown that

Figure 7. Invasion through a 3D Matrigel/fibronectin gel is
impaired in Mmp102/2 macrophages. An inverted invasion assay
was performed to compare 3D invasion of BMDM from the Mmp102/2

mouse and their back-crossed wild-type litter-mates. BMDM were
allowed to invade into a Matrigel/fibronectin gel for 72 h along a
gradient of LPS. (A) Relative invasion was quantified by measuring the
fluorescence intensity of Calcein-AM staining in BMDM penetrating
$20 mm into the gel as a percentage of the total fluorescence intensity
of all cells within the gel, and is expressed relative to untreated wild-
type BMDM invasion. **p#0.01, ***p#0.001. Each bar represents
mean6 S.E.M. for combined data collected from a total of 12 fields of
view (3 per gel) for cells isolated independently from 2 mice per
genotype. (B) Invading wild-type and Mmp102/2 BMDM were stained
with Calcein-AM and visualised by confocal microscopy. Serial optical
sections were captured at 20 mm intervals and typical examples, with
and without LPS gradient, are presented in sequence, left to right.
doi:10.1371/journal.pone.0063555.g007
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cysteine proteinases, including cathepsin B, can mediate macro-

phage invasion [71,72] suggesting that proteinase involvement

may be context- and stimulus-dependent.

In conclusion our studies demonstrate a key role for MMP10 in

both 2D and 3D migratory contexts and future studies will

uncover the precise roles played by this metalloproteinase, which is

of emerging importance in macrophage biology.

Supporting Information

Figure S1 An extended time course of macrophage
MMP10 expression following treatment with LPS. Steady

state mRNA levels for MMP10 are elevated at 4 h, return to basal

levels by 8 h and are repressed at 24 h. By 48 h MMP10

expression levels return to untreated levels and a similar level of

expression is observed at 72 h.

(TIF)

Figure S2 Typical examples to demonstrate approxi-
mately equal numbers of wild-type and Mmp102/2

BMDM adhering to the lower surface of the TranswellTM

filters for the inverted invasion assay. BMDM were stained

with Calcein-AM and visualised by confocal microscopy.

(TIF)
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