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Viscoelastic parameterization of human skin cells
characterize material behavior at multiple
timescales
Cameron H. Parvini 1, Alexander X. Cartagena-Rivera 2✉ & Santiago D. Solares 1✉

Countless biophysical studies have sought distinct markers in the cellular mechanical

response that could be linked to morphogenesis, homeostasis, and disease. Here, an iterative-

fitting methodology visualizes the time-dependent viscoelastic behavior of human skin cells

under physiologically relevant conditions. Past investigations often involved parameterizing

elastic relationships and assuming purely Hertzian contact mechanics, which fails to properly

account for the rich temporal information available. We demonstrate the performance

superiority of the proposed iterative viscoelastic characterization method over standard

open-search approaches. Our viscoelastic measurements revealed that 2D adherent meta-

static melanoma cells exhibit reduced elasticity compared to their normal counterparts—

melanocytes and fibroblasts, and are significantly less viscous than fibroblasts over time-

scales spanning three orders of magnitude. The measured loss angle indicates clear differ-

ential viscoelastic responses across multiple timescales between the measured cells. This

method provides insight into the complex viscoelastic behavior of metastatic melanoma cells

relevant to better understanding cancer metastasis and aggression.
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Current state-of-the-art mechanobiological applications
involve testing samples that are soft, viscous, and/or
polymeric in nature1. Understanding the mechanical

character of these materials at the nanoscale is especially important
in biological studies2–4. Whether the goal is characterizing bio-
physical behavior in human lung epithelial cells5, describing the
various microrheological phases that isolated adherent cells gen-
erally exhibit6, investigating why cancer cells apparently soften
during disease progression7, or investigating why human cardiac
cells showcase both shear-force fluidization and strain-stiffening
while beating (despite appearing contradictory)8, using an appro-
priate analytical treatment for soft sample mechanics is critical to
correctly describing complex biological processes.

Cancers are a group of diseases that possess a common char-
acteristic of leading to the development of transformed cells
exhibiting a rapid and uncontrollable burst of growth and pro-
liferation, which in turn leads to the formation of a solid tumor9.
Metastatic cancer is an aggressive disease, characterized by its
high level of mutational burden, resistance to traditional che-
motherapies, and rapid metastasis dissemination9. To successfully
metastasize, cancerous cells must migrate away from the primary
tumor, invade the surrounding tissue, extravasate through the
circulatory system, and intravasate through the vasculature to
colonize a new tissue10,11. While cancer cells can use a variety of
migration strategies, metastatic cells are subjected to the stringent
physical constraints of the extracellular matrix (ECM)11–13. Thus,
to successfully pass-through micron sized gaps in the ECM, the
cell actomyosin cortex and its nucleus (the largest and stiffest
organelle in the cell) must be deformed to a high extent (over
50−80% of its original size), thus experiencing large external
mechanical stresses12–14. Therefore, the mechanical properties of
cancerous cells, including melanomas, are critical for the suc-
cessful survival, migration, and colonization of tissues.

Recent work has shown that the intracellular mechanical
properties are mostly controlled by the cytoskeleton, a network of
intermediate filaments, microtubules, and filamentous actin15.
Cells are often considered to be soft biomaterials that behave as
complex viscoelastic fluids in terms of their response to external
mechanical stresses16,17. By applying atomic force microscopy
(AFM), cancer cells have been shown to be more deformable than
their normal untransformed counterparts7,18, potentially due to
modifications in cytoskeletal organization, possibly aiding them
with upregulated migration through a structurally and mechani-
cally complex ECM19–21. However, most of the current cell
mechanics research has relied upon continuum mechanics models
which assume cells exhibit purely elastic behavior22; this approach
has been frequently applied when characterizing cancerous
cells7,23–29. While this methodology may be useful under very
specific conditions, this linear elastic treatment fails to capture and
properly account for the rich temporal information available in soft
sample mechanical behavior datasets. For example, in applications
using AFM to evaluate cell properties, the difference between
assuming linear-elastic sample behavior versus more complex
viscoelastic mechanics can be significant3,30–33. While there have
been a few investigations into linear viscoelastic assumptions for
soft samples34–38, these implementations rarely account for more
than two discrete stiffnesses and one retardation time. For cellular
action taking place over a broad duration, a single retardation time
could not simultaneously account for both small- and large-
timescale mechanical responses. In this case, it is necessary to
approximate physical action using a model that successfully
delineates between timescales, such that there still remains a need
to develop generalized viscoelastic models for soft cells.

Using a modified approach outlined in this paper, we
build upon a previous open-search viscoelastic parameter
extraction methodology31 to parameterize biological samples with

a dynamic number of retardation times, and search for new
mechanical information that emerges at multiple timescales. One
clear application is for use on cancerous cells, where directly
tracking the effects of the viscoelastic harmonic response as a
function of frequency could uncover new mechanical signatures
that are useful for the early detection of common cancers, such as
metastatic melanoma. Characterizing the mechanical response
that occurs over short timescales (at seconds timescales) could
also provide significant insight into individual cellular processes,
such as filamentous actin cortex cytoskeleton remodeling39,
turnover of actin filament crosslinkers40, myosin motor fast
contractility41, microtubule assembly or disassembly42, and
vesicle trafficking43 to name several. These single-cell biological
processes are essential for cellular tissue functions including cell
and tissue homeostasis, development, and disease progression
including cancer metastasis. The method presented here also
reduces the computational overhead for each individual para-
meter fit by limiting the associated parameter space. This
decreases the number of iterations necessary to obtain each
unique mathematical series describing the material, leading to
comparable overall parameterization times and less susceptibility
to local minima versus the previous methodology. While this
iterative approach still allows for further optimization, it provides
a marked improvement over the open-search methodology and
has been applied successfully for soft samples.

This study begins by introducing the iterative method used to
improve the accuracy of the fitting functions, showing that the
performance of the approach is far superior and more accurate
than standard open-search methods. We then utilize the method
to characterize the viscoelastic behavior at multiple retardation
times of 2D adherent human metastatic melanoma cells and
compare them with their normal counterparts, primary epi-
dermal melanocytes, and fibroblasts. Our viscoelastic measure-
ments reveal that 2D adherent metastatic melanoma cells are less
elastic and moderately viscous over the relaxation timescale
studied when compared to melanocytes and fibroblasts, whereas
fibroblasts are the stiffest and more viscous. Interestingly, mel-
anocytes have intermediate stiffness, while they are the least
viscous. Altogether, the study provides a general understanding
of the complex viscoelastic behavior of living metastatic mela-
noma, which is relevant to better understanding metastasis and
aggression.

Results
Improved characterization of cells viscoelastic behavior by
parameterization approach. One shortcoming of using an open-
search methodology44 to parametrize a viscoelastic material using
a discrete generalized model is the inability to pinpoint the
contribution of each viscoelastic element in the model to the
overall mechanical response. This is due primarily to the fact that
model elements are not individually treated during the fitting
process—all parameters are estimated simultaneously using a
nonlinear least-squares regression approach (Fig. 1b). The asso-
ciated parameter space for each fit is large, which can easily lead
to improper coupling of different elements. For example, in the
case of a multi-element material model, the fitting algorithm
could artificially increase the stiffness of one particular element to
account for an improperly tuned characteristic time in another
element. The algorithm would therefore skew the stiffnesses of
both elements and fail to correct the error in the characteristic
times, while still providing an apparently good fit to the experi-
mental dataset. This shortcoming of the open-search method may
not be critical when the user only seeks a close approximation,
but can be detrimental to the quality of the final fit, and may
require refinement at an additional, unnecessary cost. Aside from
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these associated computational penalties, the range of values that
provide an adequate fit to the data can have drastically different
implied mechanical properties, which in turn complicates and
adds uncertainty to the analysis of the sample response. These
ambiguities seem to be exacerbated in the case of soft biological
samples. By contrast, the iterative-search methodology (Fig. 1a)
introduces new elements in turn and utilizes the previous opti-
mization results as an initial estimate for those parameters in a
new, more complex model.

To evaluate the efficacy of both the open-search and iterative
approaches, the elapsed time was tracked while a simulated
AFM quasi-static force curve was used to parameterize a
generalized viscoelastic model. The results, in addition to the fit
quality as a function of the number of terms introduced, are
shown in Fig. 2 for both approaches. For this evaluation case,
500 fitting iterations were run for each unique series, with up to
four timescales (each requiring one separate term in the model),
beginning with an initial timescale on the order of 10−4 seconds
and using increasing timescales for each new model term. The
associated errors for each model configuration have been
included in Supplementary Table 2, which indicates that the
iterative approach resulted in standard errors roughly one order
of magnitude smaller than the open-search.

The elapsed fitting time (Fig. 2b, d) clearly shows that the
iterative approach required a longer time to fit an equivalent
number of terms when compared with the open-search approach.
This is expected, since the iterative method requires separate
calculations for each number of elements leading up to the desired
final quantity. Although the overall time requirement was larger,
the fitting time of each term in the iterative case (considered
individually) was of similar order of magnitude as for the open-
search case. In addition, the nearly overlapping lines in the
iterative case showcase its remarkably stable performance (Fig. 2c),
in contrast with the relatively small but non-monotonic variations
in the open-search (Fig. 2a). This observed instability for the

open-search method can lead to degraded performance for
experimental data sets exhibiting significant noise contributions.
Overall, when evaluating the performance and fitting time
requirement, the iterative approach methodology required a
moderate increase in time while providing a more repeatable
performance. In addition, when the user is interested in evaluating
the results as a function of the number of terms introduced (this is
recommended in order to avoid “overfitting” the data, since the
required number of viscoelastic model elements is not known a
priori), the iterative method can provide that information faster
relative to the open-search method. For example, summation of all
points in Fig. 2b reveals that the total time to obtain this
information for the open-search method (~280min) is larger than
the “Cumulative Time” in Fig. 2d (~250min) for a four-term fit
using the iterative method. If more elements are desired, the
difference in time required to obtain this information would
become increasingly different for the two approaches.

Minimal parameterization terms required for cell viscoelastic
characterization. The improved stability of the iterative para-
meter extraction methodology enables its application to samples
that were previously difficult to analyze and differentiate, making
it especially relevant for biological and other soft samples. To
implement this approach, AFM force curves were collected from
2D adherent human metastatic melanoma cells, as well as their
normal counterparts, primary epidermal melanocytes and fibro-
blasts at the nuclear region (Supplementary Fig. 1).

The critical point of merit for a parameterized model’s
performance is how closely it reproduces the normalized dataset.
In this case, indentation depth and force have been experimen-
tally measured with AFM and scaled according to one of the
following equations:

h tð Þ� �3
2 ¼ 3 1� νð Þ

8
ffiffiffi
R

p
Z t

0
U t � ζð Þ � FðζÞdζ ð1Þ

Fig. 1 Flowchart comparison for the iterative and open-search methodologies. The process visualization for the iterative-fitting (a) and open-search
(b) methodologies are shown here, using increasingly more complex configurations within a generalized viscoelastic model (see Fig. 2f). As depicted,
the iterative-fitting methodology involves slowly expanding the desired generalized viscoelastic model while iteratively re-parameterizing each new
configuration. The “optimal” parameter set for a given configuration is used as the initial guess in the next fitting attempt. In this scheme, a random starting
point is generated only for the new parameters. In the open-search methodology, there is no a priori information provided to the parameterization process,
aside from the valid parameter bounds and a random initial guess for each parameter in the model. The variable “N” represents the Nth element introduced
into the generalized viscoelastic model.
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FðtÞ ¼ 8
ffiffiffi
R

p

3 1� νð Þ
Z t

0
Q t � ζð Þ � h ζð Þ� �3

2dζ ð2Þ

Here, the measured indentation (h) and force (F) have been
convolved with the model-specific viscoelastic Relaxance (Q) or
Retardance (U), and then scaled by the tip radius (R) and Poisson
ratio (ν), in accordance with the well-known Lee and Radok
spherical indentation framework45 (Supplementary Fig. 2). Using
each compliance- (Eq. 1) or stiffness-based (Eq. 2) model
description, the convolution term has been calculated using the
best-fit parameters and the repulsive (i.e., compressive force
application) portion of the indentation force curve. For a full
description of the analytical methods applied when deriving the
material Relaxance (Q) or Retardance (U), see Supplementary

Discussions 1−4 and 8, which also provides detailed guidelines
for the choice of a viscoelastic material model. The optimal fit
quality is visualized here for each unique cell type within the
stiffness-based Generalized Maxwell Model description (Eq. 2)46.
Calculations were also performed using the compliance-based
Generalized Kelvin−Voigt Model (Eq. 1) which yielded similar
results. This behavior is expected since both models are physically
equivalent46. Note that fit quality has been visualized throughout
this manuscript using the viscoelastic model convolution integral

of the fit (
R t
0Q t � ζð Þ � h ζð Þ� �3

2dζ) against the normalized dataset

(3 1�νð Þ
8
ffiffi
R

p F tð Þ)—see Eqs. 1 and 2. This approach separates the terms

which are dependent upon the model parameters (via the
Relaxance and Retardance) from the quantities that are known
or observed from the experiment.

Fig. 2 Performance comparison for the iterative and open-search methodologies. The fit performance and computational requirements for the Open
Parameter Search method (a and b), and the Iterative Term Introduction method (c and d) are shown, in addition to the original force curve (e) generated
using the Generalized Maxwell Viscoelastic model (f) with parameters provided in Supplementary Table 1 and simulated according to the methods
described in Supplementary Discussion 5. The dashed blue lines in b and d represent the total time necessary to acquire a set of best-fit parameters for a
model with the number of elements indicated—i.e., for four elements, the Iterative Term Introduction method would require just over 250min to run the
fitting for terms 1−4, while the open parameter search method needs only the time indicated for the 4-term fit (approximately 70min). The fitting time for
the iterative approach using 1 term is lower than the corresponding fit for the open parameter search method because in the former the elastic term is first
fit independently, and then fed forward to the 1-term parameterization attempt. The standard error for each model configuration is provided in
Supplementary Table 2. Note that fit quality (a and c) has been visualized using the Generalized Maxwell Viscoelastic model convolution integral of the fit
(
R t
0Q t� ζð Þ � h ζð Þ� �3

2dζ) against the normalized dataset (3 1�νð Þ
8
ffiffi
R

p F tð Þ).
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As is evident from Fig. 3c–e, the introduction of additional
terms into the model does not always significantly alter the
resulting action integral representation of the normalized datasets
—in each case, the observation of subtle improvements at the
longer timescales was the primary indicator of the optimal
model’s configuration within the chosen viscoelastic model
representation. This highlights the need to iteratively introduce
elements: the qualitative effects of each element must be well
understood and must provide clear benefits over simpler
configurations in the frequency range of interest in order to be
useful. In the cases shown, two terms were used to fit the
melanocyte dataset (Fig. 3c), three elements were necessary to fit
the melanoma dataset (Fig. 3d), and two terms were necessary for
the fibroblast dataset (Fig. 3e). Notice that adding a second term
to the melanocyte model improved the fit, however including
additional terms beyond three only served to degrade the fit
quality. Clearly, the inclusion of a large number of elements in the
model is not always beneficial.

Overall, the fit to the observed force (Fig. 3b) indicated that
the chosen parameters can be used to generate satisfactory
representations of the material viscoelastic behavior for most

timescales, within the leading order of magnitude. Nevertheless, it
is important to point out that the linear viscoelastic model chosen
was unable to fully reproduce the AFM force curves, in particular
the apparent stiffening behavior observed at longer timescales
(larger indentation values) in Fig. 3b. In all three cases, the
experimental force curves initially rise slowly, and afterwards rise
more sharply, with a functional dependence that corresponds to a
slope that is greater than the slope allowed by the chosen
viscoelastic model. Specifically, in an elastic spherical indentation
experiment, the force is proportional to the indentation raised to
the power 3/2. For a viscoelastic material represented by the
Generalized Maxwell model, the exponent on the indentation will
be smaller than 3/2, since the sample experiences relaxation, and
this exponent can only decrease (not increase) at longer
timescales. Thus, while the chosen model offers a significant
improvement over the state of the art, especially over approaches
relying on purely elastic approximations, the complexity in the
mechanical response of biological materials may require more
elaborate mechanical models, depending on the level of accuracy
sought in representing their material behavior. This is due to the
fact that such systems are generally heterogeneous and nonlinear,

Fig. 3 Experiment rendering and representative example datasets used for viscoelastic parameterization. This figure showcases the model performance
vs. action integral data for the 2D adherent human skin cell lines under study. The experiment configuration is rendered in (a). Note that h(ti) is the final
indentation depth and l(ti) the final contact radius. The force curves reconstructed using the optimal parameter sets for each adherent cell type are
provided in (b), where the thick colored lines represent the observed data and the thinner, marked lines represent the optimal model estimations. For
subfigure b the melanocyte model was fit using two viscoelastic elements, the melanoma model using three elements, and the fibroblast model also used
two elements. The experimental data collected through the AFM force curves has also been visualized in terms of an action integral in log-spaced form as
scattered markers (“Data”), and the corresponding colored lines show the action integral predicted by the model’s approximation of that dataset for a
varying number of terms for melanocytes (c), melanoma (d), and fibroblasts (e), respectively. These subfigures are the basis upon which the “optimal”
parameter sets are determined; the lowest number of terms that most accurately represent the input data has been selected in each case. In some cases,
the first order of magnitude was difficult to approximate (as is evident in (c−e), especially for melanoma), due in part to data acquisition frequency
limitations and the cost of performing numerical convolutions. Gray shaded regions represent the same temporal regions in (b−e) and have been included
to showcase why subtle changes at longer timescales in (c−e) are critical to the quality of fit in the timescales visible in (b) and are given additional
preference over high-quality fits at shorter times. This figure showcases results for the Generalized Maxwell Model in the Lee and Radok framework. Panels
b−e show the results for a single representative force curve taken at the nuclear region of the cell; this process was repeated for between 70 and 193 AFM
force curves from each cell type. Note that the sparse markers for the model estimations included in the force plot (b) are deliberately periodically spaced
for representation purposes to differentiate the model estimation from the dataset without completely obscuring the latter—there are an equivalent
number of model and AFM observable datapoints. The standard error for each model configuration in (c−e) is provided in Supplementary Table 2. In
addition, the fit quality c−e has been visualized using the Generalized Maxwell viscoelastic model convolution integral of the fit (

R t
0Q t� ζð Þ � h ζð Þ� �3

2dζ)
against the normalized dataset (3 1�νð Þ

8
ffiffi
R

p F tð Þ).
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and are often characterized using geometries that are not
idealized (e.g., our systems are not infinite, perfectly flat surfaces).
For example, it is clear from the indentation data (Fig. 3b) that,
especially for the melanocytes, the indentations were relatively
large, which could be causing the stiff nucleus to manifest itself
in the force curves. Alternately, a thick glycocalyx layer on the
melanoma could be causing the obvious shift in slope beyond
0.02 s. While there is no confirmation of these examples in the
given datasets, neither material complexity would be captured
in the current approach nor other state of the art viscoelastic
frameworks.

Multiple timescales viscoelastic characterization of 2D adher-
ent normal and cancerous human skin cells. The viscoelastic
harmonic functions, storage, and loss modulus, for 2D adherent
normal and cancerous human skin cells are plotted in Fig. 4.
These results are the figure of merit for viscoelastic analysis,
which indicates how elastic or viscous the tip-sample interaction
was as a function of deformation frequency (or timescale, which
is the inverse of frequency). A large storage modulus indicates a
strongly elastic action (increased stiffness), and similarly, a large
loss modulus indicates a strongly viscous action (increased visc-
osity) at the corresponding frequency. It is important to note that
the range of frequencies shown in Fig. 4 is not being individually
excited, as with other common AFM modes based on harmonic
(oscillatory) excitation2,4. Instead, the convolution integral used
by the Lee and Radok framework implies that the AFM obser-
vables can be recreated using a series of impulses having varying
magnitudes and timescales31. Thus, by treating each timestep as
an excitation with a frequency of t�1

i (where ti is the current
experiment time), a simple ramp input is capable of exciting
mechanical action at all frequencies between the sampling rate (in
this case, 50 kHz) and the inverse of the experiment length. This
range of frequencies is then used with the parameterized vis-
coelastic model to visualize the harmonic response. For further
details on calculating the viscoelastic harmonic moduli, the reader
is directed to Supplementary Discussion 8.

In general, all three cell types analyzed appear soft, showing
storage moduli on the order of 102−103 Pa. The elastic response
to indentation noticeably decreases below 10 kHz for all three cell
types. The largest relative change occurs for the melanoma and
fibroblast datasets, which exhibit a nearly 50% reduction in elastic
action between the timescales under study. Both the melanocytes

and fibroblasts exhibited relatively tight confidence intervals for
the storage modulus. By contrast, the melanoma dataset features a
remarkably wide confidence interval at the higher frequencies.
The largest viscous action was observed for the fibroblast dataset,
peaking near the onset frequency of elastic stiffening (~ 10 kHz).
The melanoma dataset showcased moderate viscous action, which
similarly peaked near 10 kHz, but also showcased a distinct
feature for frequencies below 10 kHz; the decrease in viscous
action appears to temporarily diminish at a lower rate between
500 Hz and 1 kHz before declining more sharply with decreasing
frequency (longer timescales). Lastly, the melanocyte dataset
exhibited the lowest viscous action, peaking once again near the
onset of elastic stiffening, with loss modulus values that are
approximately one order of magnitude below those of its storage
modulus (~101 Pa as compared to ~102 Pa, respectively). Inter-
estingly, despite the apparently good fit to the force curves in
Fig. 3b for melanoma and melanocytes, the confidence intervals
are relatively large for the corresponding viscoelastic harmonic
quantities plotted in Fig. 4 (blue and red traces), especially for the
loss modulus, which may be due to factors such as variability in
the overall viscoelastic behavior of the sample, noise, or
mechanical nonlinearities not captured by the model. In fact,
the metastatic melanoma cells used in this study are highly
dynamic and migratory, therefore possibly the higher turnover of
the cytoskeleton structures and translocation of the melanoma
cells would impact the viscoelastic harmonic quantities. It is
noteworthy to mention that the averaged indentation response
for every cell line exhibits a clear peak in viscous action at nearly
the same frequency, despite representing very different force
curves in Fig. 3b.

In addition to the results presented in Fig. 4, the traditional
Hertzian spherical contact model was parameterized to provide a
pseudo-elastic (Young’s) modulus for each cell type, yielding the
results shown in Fig. 5 for the same datasets visualized in Figs. 3
and 4. The median Young’s modulus values are appreciably larger
than the moduli plotted in Fig. 4, with the Hertz model Young’s
modulus values ranging from ~600 Pa to 1.2 kPa and the
viscoelastic storage modulus values ranging from ~200 Pa to
1.1 kPa. Nevertheless, the modulus values for both models were
within the same order of magnitude and ranked the cell type
stiffnesses in the same order. Similar to the viscoelastic model fits,
the Hertzian model fits did not always properly reproduce the
curvature of the experimental force curves (Fig. 5b), both over-
and underestimating the forces for the short and intermediate

Fig. 4 Viscoelastic harmonic quantities acquired from 2D adherent normal and cancerous skin cells. The Storage (a) and Loss (b) modulus have been
calculated from the parameterized Generalized Maxwell model for 2D adherent normal and cancerous human skin cells. These viscoelastic harmonic
quantities are calculated using the optimal parameter set obtained from analyzing an average of 70, 71, and 193 force curves from the melanoma,
melanocyte, and fibroblast cell conditions, respectively. In total, the averaged datasets contain curves collected from 13 unique melanoma cells, 12 unique
melanocytes, and 33 unique fibroblasts. Note that the number of terms in the fitted viscoelastic model series determines the number of distinct features
present in the plots. The observed confidence intervals are shaded in matching colors for each model; the method for determining these bounds is outlined
in the “Methods” section, and is based on the optimal parameter sets obtained using every individual curve from each cell type.
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timescales (0.1−10 ms), especially for the melanoma. In fact, the
fit quality for the chosen force curves obtained with the Hertzian
model seems to be comparable to the fit quality obtained with the
viscoelastic models, which partly explains why the simpler elastic
treatment is often assumed to be satisfactory. However, the

critical shortcoming of the Hertzian approach is that it lacks the
proper physics, reducing the material response to a single number
that is independent of deformation rate, which makes it unable to
describe the material viscous response. Generalized viscoelastic
models, by contrast, incorporate the proper physics and provide a
richer perspective from which material behavior at different
deformation timescales can be inferred.

In analyzing viscoelastic behaviors, it is helpful to consider not
only the magnitude of the storage and loss moduli, but also the
implied loss angle. This quantity, which varies between 0° and
90°, is the inverse tangent of the ratio of loss modulus to storage
modulus and provides information on the relative magnitude of
viscous to elastic action present within the dataset at different
timescales. A higher loss angle indicates proportionally greater
viscous action, whereas a smaller value indicates proportionally
greater elastic action. The loss angle for the three distributions
shown in Fig. 4 has been plotted in Fig. 6 together with results for
human lung epithelial cells from the literature5. The lung
epithelial cell results are based on fitting the mechanical behavior
measured with AFM to a power-law rheology (PLR) model, for
which the response of the material must follow a specific
monotonic trend defined by the power-law parameters. This is in
contrast to our use of generalized models, which do not constrain
the response at a given timescale to exhibit any specific trend with
respect to the response at other timescales. From the loss angle
plots in Fig. 6, it is evident that the melanocyte dataset exhibited
the lowest loss angle for the range of timescales studied. The
averaged melanocytes loss angle peaked at just under 3°, and at a
slightly higher frequency when compared to the fibroblasts
(~5 kHz, plotted on the right-side axis). The melanoma showed a
moderate loss angle, peaking at approximately 4.5° and remaining
relatively constant for frequencies below 5 kHz, in contrast to its
healthy counterparts, for which the loss angle dropped more
sharply at low frequencies relative to its peak value. This indicates
a uniquely heterogeneous response for melanoma, which could
not be characterized using a purely elastic treatment like the
Hertzian model analysis of Fig. 5. The averaged melanoma
response also showcases a distinct bimodal curvature, further
differentiating it from melanocytes and fibroblasts. Lastly, the
fibroblasts showcased the largest viscous response peak for all cell

Fig. 5 Statistical analysis and corresponding force curve estimation by parameterizing Young’s modulus for each cell type. Pseudo-Elastic (Young’s)
modulus distribution (a) and examples illustrating the fit quality for the Pseudo-Elastic model (b) for the adherent human skin cell lines visualized in Fig. 3.
This plot provides some insight regarding the overall stiffness for each cell type, specifically that the melanoma cells appear softer than their healthy
counterparts by a noticeable margin. The red markers indicate “outlier” values, which are determined to be more than 1.5 times the interquartile range
away from the upper and lower bounds of the boxes. The Fibroblasts showcase the only outliers by this definition, which can be reasonably expected
because significantly more curves were acquired for that cell line. The number of cells analyzed per cell type is n= 12 melanocytes, n= 13 melanoma cells,
and n= 33 fibroblasts. Data are represented as mean ± deviation with significant difference between cell types determined by unpaired two-tailed
Student’s t-test with Welch’s correction indicated as, *P < 0.05. Note that the sparse markers for the model estimations included in (b) are deliberately
periodically spaced for representation purposes to differentiate the model estimation from the dataset—there are an equivalent number of model and AFM
observable datapoints. The standard error for each cell type is provided in Supplementary Table 2.

Fig. 6 Loss angle comparison of the generalized Maxwell viscoelastic
model and power law rheology (PLR) models for various adherent human
skin cell types. The generalized viscoelastic models showcase non-
monotonic behavior for all human skin cell lines across a wide frequency
range when compared with the relatively smooth and monotonic PLR model
prediction for human lung epithelial cells. Loss angles have been provided
for each cell type and showcase nonlinear, non-monotonic action as a
function of frequency. This is in contrast to the inset data, which was
reproduced from the literature5 using a PLR model for human lung epithelial
cells and shows a completely monotonic response with increasing
frequency. While the frequency ranges for the primary axis and inset do not
overlap, the PLR model is clearly lacking in frequency domain features and
is merely provided to represent a typical PLR model prediction. Observed
confidence intervals are shaded in matching colors for each model. When
comparing all three skin cell types, the melanocyte and fibroblast models
showed noticeably tighter confidence intervals than the melanoma. As with
Fig. 4, these loss angle estimates were obtained by analyzing an average of
70, 71, and 193 force curves from the melanoma, melanocyte, and fibroblast
cell conditions, respectively. In total, the averaged datasets contain curves
collected from 13 unique melanoma cells, 12 unique melanocytes, and 33
unique fibroblasts.
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lines near 3 kHz and 7° but fell below the average melanoma
response at low frequencies. The shapes of the curves for both
healthy cell lines were similar to one another, although the
magnitudes of their responses were separated by approximately a
factor of 2.

The proportion of viscous to elastic action for the three cell
types studied fell far below that of the human lung epithelial cell
fits to the PLR model, which exhibited monotonically increasing
loss angles above 20° for a range of test frequencies below those
acquired here. Clearly, since the cell types are different, it is not
expected that the lung cell loss angle predictions should coincide
with those of the adherent human skin cells. Nevertheless, it is
insightful to compare the magnitude of the loss and storage
moduli for different cell types. For both the A549 and BEAS-2B
lung epithelial cell samples, the storage modulus increased nearly
linearly with frequency from approximately 400 Pa to approxi-
mately 1.1 kPa, whereas the loss modulus increased with
frequency, from just over 100 Pa to approximately 1.1 kPa in a
manner similar to that depicted in the inset of Fig. 6. Both lung
epithelial cell lines displayed nearly identical response, with loss
and storage moduli on a similar order of magnitude across the
frequency spectrum, but with only the loss modulus exhibiting
nonlinear changes with frequency. This stands in contrast with
our results presented here, for which the loss and storage moduli
do not always monotonically increase or decrease, and in fact, can
show specific regions of the frequency spectrum where viscous
action peaks. As expected, the PLR results exhibit relatively few
features in the data, aside from the nonlinear, monotonic increase
in viscous action.

Discussion
As depicted in Fig. 4, all measured human skin cell types appear
relatively soft when deformed with a spherical probe at their
nuclear region, ranging from approximately 200−1200 Pa in total
stiffness, but their storage and loss moduli vary widely in both
their absolute values and in the proportion of viscous to elastic
action (Fig. 6). Furthermore, the 2D adherent metastatic mela-
noma sample exhibited a uniquely wide confidence interval for
both moduli. All cell types exhibited their strongest viscous action
near 10 kHz (Fig. 4b), and mostly displayed decreasing viscous
action below and above those frequencies, with the melanoma
and fibroblast datasets showing larger loss moduli than melano-
cytes (for the averaged response of all curves). These observations
suggest that analysis of the frequency-dependent viscoelastic
behavior of human skin cells could be used to unambiguously
differentiate cancerous cells from their normal counterparts.

For all cell types, the proposed iterative methodology delivered
a satisfactory fit of the force curves observed in the AFM
experiments. However, there remained features that were not
represented well, as discussed above for all three cell types.
Several possible explanations for the reduced fit quality, espe-
cially for the melanoma dataset, include relatively deep inden-
tations (> 1 µm) and the existence of a thick glycocalyx layer on
the cell exterior. In regard to deep indentations, the Lee and
Radok viscoelastic framework is defined for relatively small
strains; however, a recent computational study found that clas-
sical contact mechanics models are robust with higher indenta-
tions yielding errors less than 5%47. In the case of large
glycocalyx thickness, it has been shown that the extracellular
brush-like layer on cancer cells can be over 1 µm48, therefore
supporting the use of relatively higher indentations. Note that
indeed the glycocalyx layer could introduce significant artifacts
to our viscoelastic calculations; however, currently, there is no
viscoelastic model capable of fully capturing the complexity of
the material properties of cells and tissues. It is important to

realize that the inability of the chosen mechanical model to
reproduce such features indicates that the corresponding vis-
coelastic behaviors are excluded from the implied viscoelastic
properties (Figs. 4 and 6). Furthermore, in the application of the
methodology one realizes that there exist multiple parameter sets
which can reproduce the normalized data to a similar degree of
accuracy. This means that iteratively introducing new terms into
the model, while limiting the parameter space to some extent,
does not sufficiently isolate the global-optimum parameters
representing the data. Since each of these parameter sets also
corresponds to a different viscoelastic harmonic response, there
remains uncertainty in the extracted viscoelastic properties. This
is visualized in the exceptionally wide confidence intervals for the
melanoma data. While the wide confidence intervals can be seen
as a shortcoming of the method or the model, they do provide
additional physical insight that complements the “best fit” result.
For example, inspection of the melanoma storage modulus plot
(blue line) in Fig. 4a suggests that the elastic response of the
material is much less than that of the melanocytes. However,
consideration of the confidence interval suggests that the mate-
rial stiffness could vary appreciably over the frequency range and
come quite close to the melanocyte response for high fre-
quencies. Similarly, inspection of the corresponding loss mod-
ulus plot in Fig. 4b suggests that a softening behavior would be
accompanied by a decrease in the loss modulus. Clearly, an
important focus moving forward should be the inclusion of more
sophisticated mechanical models, such as nonlinear viscoelastic
models49,50, as well as the development of methods for further
restricting the acceptable parameter space or for navigating the
error surface of the fitting procedures with greater precision, in
order to reduce the width of the confidence intervals. Ideally, the
methodology should eventually capture all the small features
present in the force and indentation data (within noise-related
limitations) to maximize the possibility of discovering clear
mechanical markers for specific biological conditions.

Despite many mechanical commonalities in cancer cells and tis-
sues, subtle differences may exist in viscoelastic properties that may
be critical to understanding tumor progression and metastasis in
different situations. It is known that cancerous cells adapt to survive
the harsh temporally evolving tumor microenvironment51, sug-
gesting that many cellular properties, including mechanical prop-
erties, must also change accordingly. Several studies have shown that
the mechanical properties of the tumor microenvironment play a
critical role in cancer progression and metastasis, and have been
correlated with the rate of cancer cell migration, proliferation, and
resistance to chemotherapeutics52. In a tumor, the ECM is dyna-
mically remodeled, and these modifications create a tumor micro-
environment that is stiffer compared with the environment found in
normal tissues. This promotes tumorigenesis through downstream
signaling, thus forcing the cancer cells to modify their mechanical
properties53. Previous studies have shown that most cancerous cells
are softer than their non-malignant counterparts, and this correlates
with their migration properties, whereby softer malignant cells are
more migratory18. Interestingly, in melanoma cell lines it has been
observed that early tumorigenic cells are softer than melanocytes,
while highly metastatic melanoma cells were much stiffer than
healthy melanocytes54. In a developing tumor, it is potentially more
beneficial to have softer cells initially to allow more deformability
and survival in the high pressure intratumoral microenvironment,
whereas during metastasis a stiffer cell could be more beneficial to
enable efficient migration throughout the tight confinements present
in tissues. With this complexity in mind, it is reasonable to think
that access to more physical parameters such as elasticity and
viscosity at multiple timescales should provide much more infor-
mation to aid the classification of cancer cells during disease pro-
gression rather than limiting the analysis to the use of only a
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deformation-rate-independent stiffness as a disease biomarker. For
example, the loss angle has been shown to assist in identifying
malignant and benign cell lines using information from only one
frequency37, and providing a wider range of harmonic information
could help enrich this approach.

The potential applications of the method described here are not
limited to cancer. Other applications can be conceived, such as
measurement of the viscoelastic properties at multiple timescales
in the inner ear sensorial and nonsensorial tissues, in order to
elucidate the role of tissue mechanical evolution in hearing loss.
Recently, it has been shown that tensional homeostasis provided
by non-muscle myosin II contractile activity in the mammalian
cochlea is critical for hearing integrity55. Inhibition of myosin II
contractile activity by Blebbistatin relaxes the organ of Corti and
presumably softens it55. It has also been shown that TRIOBP
activity reorganizes the filamentous cytoskeleton in sensory hair
cells and supporting cells, thus TRIOBP is implicated in main-
taining the mechanical properties of the organ of Corti, while loss
of TRIOBP-5 isoform was shown to significantly decrease its
apical surface stiffness56. Another potential application of our
method is the characterization of artery walls with plaque
buildups to more deeply understand the role of mechanics in
atherosclerosis or other cardiovascular-based diseases. In ather-
osclerosis, arterial wall increased stiffness is associated with dis-
ease pathophysiology and cardiovascular risk events57. Notably,
these studies and many others still characterize the mechanics of
diseased systems by only measuring the elastic properties (stiff-
ness), thus neglecting the rich viscoelastic behavior at different
timescales, which as shown here, offers a much more unequivocal
path for differentiating cells and tissues.

One key limitation of the current study is the range of time-
scales which can be accessed using standard quasi-static AFM
force curves on live cells. At shorter timescales, the method is
limited by the equipment data sampling speed, which can be
alleviated by continued advancement in data acquisition rates.
However, because the samples are living organisms, measuring
their viscoelastic properties requires addressing a variety of
complications including sample motion and a dynamic response
to external inputs. Here, it was preferable to perform fast quasi-
static force curves (at or below 1 s) to minimize the artifactual
contributions of cell mechanosensing responses triggered by
external mechanical stimuli, including cytoskeleton remodeling
and morphological changes. It is critical to emphasize that the
proposed methodology is capable of handling significantly longer
timescale data sets, but the current test configuration limits the
range of times that can be accessed, and by extension, the pro-
cesses which can be observed.

In summary, we have introduced an iterative-fitting method to
characterize the viscoelasticity of living cells at multiple timescales
based on a simple-to-acquire input consisting of AFM quasi-static
force curves. The study revealed that unique viscoelastic features
emerging at different timescales can be used to precisely differ-
entiate normal from cancerous cells. This approach could thus be
exploited to categorize cells for disease diagnosis, monitoring, and
treatment. Elucidating the complex viscoelastic behavior of living
metastatic cells could also enable the engineering of novel ther-
apeutic approaches designed to achieve an improved anti-tumor
response. Therefore, we propose the use of viscoelastic properties
at multiple timescales as a mechanical biomarker of diseases.

Methods
Cell culture and preparation. Human Foreskin Fibroblast cells were obtained
from the American Type Culture Collection (ATCC, Cat #: SCRC-1041, Manassas,
VA) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Life Tech-
nologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Life
Technologies), 1 mM sodium pyruvate (Life Technologies), 1x GlutaMAX (Life

Technologies), and 1% Penicillin-Streptomycin (Life Technologies). Human Pri-
mary Epidermal Melanocyte cells were obtained from ATCC (Cat #: PCS-200-013)
and cultured in Dermal Cell Basal Medium (ATCC) supplemented with Phenol
Red (ATCC) and Adult Melanocyte Growth Kit (ATCC). Human Melanoma
A-375 cells (Cat #: CRL-1619) were obtained from ATCC and cultured in DMEM
supplemented with 10% FBS (Life Technologies), 1× GlutaMAX (Life Technolo-
gies), 1X Antibiotic-Antimycotic (Life Technologies), and 20 mM HEPES pH 7.4.

Cells were plated on glass-bottom dishes (Willco Wells, Amsterdam, The
Netherlands) to < 70% confluence. Cells were left to adhere on the glass bottom
dishes overnight and maintained at 37 °C and 5% CO2. On the following day cells
were transported to the AFM system and placed on the AFM X-Y stage to perform
force spectroscopy AFM measurements.

Atomic force microscopy. Live cell measurements were performed using a Bruker
BioScope Catalyst AFM system (Bruker, Santa Barbara, CA) mounted on an
inverted Axiovert 200M microscope system (Carl Zeiss, Göttingen, Germany)
equipped with a Confocal Laser Scanning Microscope 510 META (LSM 510 Meta,
Carl Zeiss) and a 40× (0.95 NA, Plan-Apochromat) objective lens (Carl Zeiss). A
Petri dish heating stage (Bruker) was used to maintain physiological temperature
(37 °C) of cells during measurements. Modified AFM microcantilevers with an
attached 25 µm-diameter polystyrene microsphere were obtained from Novascan
(Novascan, Ames, IA). The AFM probe spring constant was obtained using the
thermal tune method built into the AFM system. Calibrated spring constants for
the cantilevers ranged from 0.5 to 1 N/m. After cantilever calibration, the AFM
probe was placed on top of the nuclear region of an adherent cell. The deflection
setpoint was set between 20 and 25 nm, yielding applied forces between 5 and 18
nN. The force curve ramp rate was set to 0.5 Hz and the probe speed ranged
between 1.9 and 2.4 µm/s. Multiple consecutive quasi-static force curves were
collected on each individual cell with a deflection trigger of 25 nm.

Data analysis. To evaluate the performance of the iterative-fitting and previous
open-search methodologies, a Windows 10 64-bit system with a 9th Generation
Intel Core i9 processor and 32 Gb of RAM was used. The Matlab parallel pro-
cessing toolbox function “parfor” was used to communicate the for-loop orders to
each of eight total parallel workers. For every viscoelastic model configuration (i.e.,
1-term, 2-term, etc.) 500 fitting attempts were made using the Generalized Maxwell
and Generalized Kelvin−Voigt viscoelastic models (Supplementary Fig. 3) in the
Lee and Radok indentation framework (Eq. S19).

For the data analysis of all cell types the Matlab script was modified to function
on a High Performance Computing (HPC) cluster at the George Washington
University (GWU). For the melanocytes and melanoma, standard computing
nodes on the Pegasus HPC (Dell PowerEdge R740 server with Dual 20-core
3.70 GHz Intel Xeon Gold 6148 processors, 192 GB of 2666MHz DDR4 ECC
Register DRAM, 800 GB of onboard SSD storage, and Mellanox EDR Infiniband
controllers to 100 GB fabric) were utilized to perform the same parallelized iterative
fitting methodology and the augmented hardware specifications allowed 20 parallel
workers to be used for each dataset. The increased processing power enabled a
larger number of fitting attempts for each dataset. Specifically, 1000 fitting attempts
based on random starting points were used for every model configuration. The
processing time was dependent upon the length of the dataset under study but
varied between 4 and 17 h. For the fibroblasts, due to time and computing cluster
availability constraints at GWU, the National Institutes of Health (NIH) Biowulf
cluster was used with a similar code repository (modified to meet specific HPC
requirements for job scheduling). The 28-core “norm” queue for Biowulf (Dual 28-
core × 2.4 GHz Intel E5-2680v4 processor, 256 GB of RAM, and a 56 Gb/s FDR
Infiniband controller) was used for fitting, which allowed a maximum of 28 parallel
workers. Due to a large number of cells included (33), the fibroblasts required
approximately 147 h of total runtime on Biowulf.

The Matlab script used the “lsqcurvefit” (least squares) function with the “trust-
region-reflective” internal algorithm selected. The cost function used was a simple
Sum of the Squared Error (SSE) between the integral term in Supplementary Eqs.
S4 and S5, and the normalized y-data (left-hand side) for both equations,
respectively. The lsqcurvefit() function was chosen over other alternate nonlinear
least-squares fitting functions because it showcased an increased speed of
convergence compared to other options (specifically fmincon()), and the trust-
region-reflective algorithm was used because it is the default for that function.
Helpful information for benchmarking and troubleshooting new implementations
of the viscoelastic parameterization approach outlined can be found in
Supplementary Discussions 6 and 7.

To reproduce the curves shown in Figs. 4, 5, and 6, the reader is directed to
Supplementary Discussion 8, which outlines the relationships used for creating the
viscoelastic harmonic quantities and the pseudo-elastic model.

Statistics and reproducibility. The viscoelastic results presented in this manu-
script were calculated using the optimal parameter set obtained from analyzing the
average of 70, 71, and 193 force curves from the melanoma, melanocyte, and
fibroblast cell conditions, respectively. The averaging was performed in the fre-
quency domain, after each optimal parameter set was used to calculate a predicted
frequency-dependent curve for the storage modulus, loss modulus, and loss angle
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from every force curve. The solid lines in Figs. 4 and 6 are the simple average of
these individual viscoelastic harmonic quantity predictions, and the confidence
bands (shaded regions) are the range of observations for each discrete frequency
using a 95% confidence level and the Student’s t distribution. In total, the averaged
datasets contain curves collected from 13 unique melanoma cells, 12 unique
melanocytes, and 33 unique fibroblasts.

Due to the intrinsic heterogeneity between individual cells and the complexity
associated with recreating the exact conditions for force curve extraction using
AFM, readers should not expect to recreate the experimental results exactly.
Furthermore, the fitting process is moderately stochastic via the random starting
point generated for each parameterization attempt—although this can be alleviated
by using more fitting iterations. In the context of this manuscript, each force curve
is considered a single experiment, and “replicates” are defined as the number of
unique force curves considered for each type.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets for each cell type (melanocytes, melanoma, and fibroblasts) have been
included in a github repository58, in the “data” directory. Due to size limitations, the
output “.mat” files have been excluded from the repository—these can be made available
upon reasonable request by contacting the authors. Any remaining information can be
obtained from the corresponding author upon reasonable request. The source data for
each figure has been provided in an excel document, labeled “Supplementary Data 1”.

Code availability
The Matlab code used to acquire the optimal parameter sets obtained in this manuscript
is available in a github repository58. In addition, the script used to create the manuscript
figures is also included in the repository under the name “plotManuscriptFigures.m”.
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