
fnins-13-00685 July 6, 2019 Time: 12:41 # 1

METHODS
published: 09 July 2019

doi: 10.3389/fnins.2019.00685

Edited by:
Xiaoping Philip Hu,

University of California, Riverside,
United States

Reviewed by:
Mingrui Xia,

Beijing Normal University, China
Xiao Liu,

National Institute of Neurological
Disorders and Stroke (NINDS),

United States
Tianming Liu,

University of Georgia, United States

*Correspondence:
Jianfeng Feng

jianfeng64@gmail.com
Chun-Yi Zac Lo

zaclocy@gmail.com

†These authors have contributed
equally to this work as co-first authors

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 14 January 2019
Accepted: 17 June 2019
Published: 09 July 2019

Citation:
Zhou Q, Zhang L, Feng J and

Lo C-YZ (2019) Tracking the Main
States of Dynamic Functional
Connectivity in Resting State.

Front. Neurosci. 13:685.
doi: 10.3389/fnins.2019.00685

Tracking the Main States of Dynamic
Functional Connectivity in Resting
State
Qunjie Zhou1†, Lu Zhang1,2†, Jianfeng Feng1,2,3,4* and Chun-Yi Zac Lo2*

1 Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China, 2 Institute of Science and Technology
for Brain Inspired Intelligence, Fudan University, Shanghai, China, 3 Oxford Centre for Computational Neuroscience, Oxford,
United Kingdom, 4 Department of Computer Science, University of Warwick, Coventry, United Kingdom

Dynamical changes have recently been tracked in functional connectivity (FC) calculated
from resting-state functional magnetic resonance imaging (R-fMRI), when a person is
conscious but not carrying out a directed task during scanning. Diverse dynamical
FC states (dFC) are believed to represent different internal states of the brain, in
terms of brain-regional interactions. In this paper, we propose a novel protocol, the
signed community clustering with the optimized modularity by two-step procedures,
to track dynamical whole brain functional connectivity (dWFC) states. This protocol is
assumption free without a priori threshold for the number of clusters. By applying our
method on sliding window based dWFC’s with automated anatomical labeling 2 (AAL2),
three main dWFC states were extracted from R-fMRI datasets in Human Connectome
Project, that are independent on window size. Through extracting the FC features of
these states, we found the functional links in state 1 (WFC-C1) mainly involved visual,
somatomotor, attention and cerebellar (posterior lobe) modules. State 2 (WFC-C2)
was similar to WFC-C1, but more FC’s linking limbic, default mode, and frontoparietal
modules and less linking the cerebellum, sensory and attention modules. State 3 had
more FC’s linking default mode, limbic, and cerebellum, compared to WFC-C1 and
WFC-C2. With tests of robustness and stability, our work provides a solid, hypothesis-
free tool to detect dWFC states for the possibility of tracking rapid dynamical change in
FCs among large data sets.

Keywords: community clustering, signed networks, modularity, temporal changes, resting state functional
magnetic resonance image

INTRODUCTION

Spontaneous fluctuations are a fundamental mechanism representing neural signals that has been
largely explained by functional magnetic resonance imaging (fMRI) data. Resting-state functional
connectivity (FC) can demonstrate the intrinsic network organizations of human brain (Friston,
2011). The cognitive activities of high order brain function involve the dynamic interplay of a
set of brain circuits rather than a specific region, and the spontaneous activity in rest is also
predictive of task and behavior performance (De la Iglesia-Vaya et al., 2013; Reineberg et al., 2015;
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Tavor et al., 2016). Accumulating studies have proposed
to detect the spatiotemporal organization of dynamic
functional connectivity (dFC), and of dynamic whole-brain
functional connectivity (dWFC) (Calhoun et al., 2014;
Kopell et al., 2014; Preti et al., 2017), showing how brain
FC organized over time.

Clustering analysis, particularly k-means is one of the
most common methods of categorizing dFC patterns (Calhoun
et al., 2014). It partitions n samples in observation space
into k clusters, where each sample belongs to the nearest
cluster according to its distance from the cluster centroid.
However, it requires the pre-defined number of clusters k and
is sensitive to initial values that may lead to different results.
Hierarchy clustering (HC) aims to building a dendrogram which
represents a hierarchy of cluster, and the samples could be
attributed to a sub-cluster within a main cluster. Thus, HC
is a more flexible method to understand the dFC structures
in different levels (Vidaurre et al., 2017). However, it also
requires the definition of a specific threshold for cluster
separation. Both k-means and HC are not assumption free
and need a priori knowledge for categorization of the states
of brain activity.

The selection of the number of clusters or the threshold
may bias or affect the interpretation of the states while
lacking comprehensive understanding of the underlying
mechanism of dFC. Principal component analysis (PCA)
coverts a number of possibly correlated variables into
a set of linearly uncorrelated variables, called principal
components. It has been used to investigate dynamic brain
connectivity patterns, “eigenconnectivities,” by ranking and
extracting the principal components of dWFC’s with higher
variability across time and subjects (Leonardi et al., 2013).
Though PCA is a powerful tool to detect the different
features of dFC, it needs to bear a risk of information
loss during the reduction of dimensionality. Other state
detection models based on hidden Markov chain also
require prior knowledge of the expression form and the
number of states (Robinson et al., 2015; Ryali et al., 2016;
Vidaurre et al., 2017).

These approaches are able to uncover the similar time-
varying recurring connectivity patterns into states, and have
revealed the characteristics of dFC linking with the human
demographic characterization, cognitive behaviors and diseases
(Baker et al., 2014; Calhoun et al., 2014; Karahanoğlu and Van
De Ville, 2015; Zhang et al., 2016). However, heterogeneities are
widely observed across studies. There is still a lack of reliable
methods for the research of dFC networks. In this study, we
focused on the co-variation of FCs over time by detecting
the state for dWFC’s across subjects and time from Human
Connectome Project (HCP) data. We proposed the modularity-
optimized community clustering algorithm to categorize the
dWFC’s in an unsupervised and data-driven fashion. This can
provide a more appropriate clustering method while little is
known in dWFC’s states. As the computation for community
clustering is computationally expensive and time-consuming, we
also proposed a two-steps clustering process to reduce the cost of
our proposed algorithm.

MATERIALS AND METHODS

Participants and Data Acquirements
HCP
The dataset used for this study was collected from HCP1 (WU-
Minn Consortium). Our sample includes 812 subjects (ages 22–
35 years-old, 450 females) scanned on a 3T Siemens connectome-
Skyra scanner. For each subject, a three-dimensional T1
structural image was acquired at 0.7 mm isotropic resolution
with 3D MPRAGE acquisition. The four blood-oxygen-level
dependent (BOLD) resting state fMRI (R-fMRI) runs were
acquired in separate sessions on two different days, each for
approximately 15 min (2 mm× 2 mm× 2 mm spatial resolution,
TR = 0.72 s, 1200 timepoints, multiband acceleration factor of 8,
with eyes open and relaxed fixation on a projected bright cross-
hair on a dark background). The WU-Minn HCP Consortium
obtained full informed consent from all participants, and research
procedures and ethical guidelines were followed in accordance
with the Institutional Review Boards (IRB) of Washington
University in St. Louis, MO, United States (IRB #20120436). To
identify WFC, the whole brain was parcellated into 120 regions
according to the automated anatomical labeling (AAL2) atlas
(Rolls et al., 2015), with names and abbreviations listed in Table 1.

Data Preprocessing
HCP Data
The minimally preprocessed R-fMRI data were used, conducted
by HCP Functional Pipeline v2.0 (Glasser et al., 2013), including
gradient distortion correction, head motion correction, image
distortion correction, and spatial transformation to the Montreal
Neurological Institute (MNI) space, with one step spline
resampling from the original functional images. The linear
trend and quadratic term were removed from these functional
images, and several nuisance signals were regressed from the time
course of each voxel using multiple linear regression, including
cerebrospinal fluid, white matter, and Friston 24 head motion
parameters. Finally, temporal band-pass filtering (0.01–0.1 Hz)
was performed to reduce the influence of low-frequency drift and
the high-frequency physiological noise. The preprocessed time-
courses were used for further functional connectivity analyses.

Sliding Window Based Dynamic
Functional Connectivity
Either voxel or regional based BOLD signals can be used to
calculate FCs. Here, we considered to process the regional based
BOLD signals without losing any generality. We denoted time
series {xi(t), t = 0, 1, · · · ,N, i = 0, 1, · · · ,M}, where t is time
and i is the brain region. To characterize the dynamics of FCs,
all BOLD signals were segmented into T non-overlapped sliding
window with length L (Figure 1A). Fisher-z transformed Pearson
correlations between all pairs of regional BOLD signal were
calculated and normalized in each window as following.

FCij (s)
1
=

FZ
(
rij (s)

)
− µ (s)

σ (s)

1http://www.humanconnectomeproject.org/
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TABLE 1 | The anatomical regions defined in each hemisphere and their label in the automated anatomical labeling atlas 2 (AAL2, Rolls et al., 2015).

ID Region description AAL2 Lobe Abbreviation

1, 2 Precentral gyrus Precentral Sensorimotor PreCG

3, 4 Superior frontal gyrus, dorsolateral Frontal_Sup Frontal SFG

5, 6 Middle frontal gyrus Frontal_Mid Frontal MFG

7, 8 Inferior frontal gyrus, opercular part Frontal_Inf_Oper Frontal IFGoperc

9, 10 Inferior frontal gyrus, triangular part Frontal_Inf_Tri Frontal IFGtriang

11, 12 IFG pars orbitalis Frontal_Inf_Orb Frontal IFGorb

13, 14 Rolandic operculum Rolandic_Oper Frontal ROL

15, 16 Supplementary motor area Supp_Motor_Area Sensorimotor SMA

17, 18 Olfactory cortex Olfactory Frontal OLF

19, 20 Superior frontal gyrus, medial Frontal_Sup_Med Frontal SFGmedial

21, 22 Superior frontal gyrus, medial orbital Frontal_Med_Orb Frontal PFCventmed

23, 24 Gyrus rectus Rectus Frontal REC

25, 26 Medial orbital gyrus OFCmed Frontal OFCmed

27, 28 Anterior orbital gyrus OFCant Frontal OFCant

29, 30 Posterior orbital gyrus OFCpost Frontal OFCpost

31, 32 Lateral orbital gyrus OFClat Frontal OFClat

33, 34 Insula Insula Subcortical INS

35, 36 Anterior cingulate & paracingulate gyri Cingulate_Ant Frontal ACC

37, 38 Middle cingulate & paracingulate gyri Cingulate_Mid Frontal MCC

39, 40 Posterior cingulate gyrus Cingulate_Post Parietal PCC

41, 42 Hippocampus Hippocampus Temporal HIP

43, 44 Parahippocampal gyrus ParaHippocampal Temporal PHG

45, 46 Amygdala Amygdala Subcortical AMYG

47, 48 Calcarine fissure and surrounding
cortex

Calcarine Occipital CAL

49, 50 Cuneus Cuneus Occipital CUN

51, 52 Lingual gyrus Lingual Occipital LING

53, 54 Superior occipital gyrus Occipital_Sup Occipital SOG

55, 56 Middle occipital gyrus Occipital_Mid Occipital MOG

57, 58 Inferior occipital gyrus Occipital_Inf Occipital IOG

59, 60 Fusiform gyrus Fusiform Temporal FFG

61, 62 Postcentral gyrus Postcentral Sensorimotor PoCG

63, 64 Superior parietal gyrus Parietal_Sup Parietal SPG

65, 66 Inferior parietal gyrus, excluding
supramarginal and angular gyri

Parietal_Inf Parietal IPG

67, 68 SupraMarginal gyrus SupraMarginal Parietal SMG

69, 70 Angular gyrus Angular Parietal ANG

71, 72 Precuneus Precuneus Parietal PCUN

73, 74 Paracentral lobule Paracentral_Lobule Parietal PCL

75, 76 Caudate nucleus Caudate Subcortical CAU

77, 78 Lenticular nucleus, Putamen Putamen Subcortical PUT

79, 80 Lenticular nucleus, Pallidum Pallidum Subcortical PAL

81, 82 Thalamus Thalamus Subcortical THA

83, 84 Heschl’s gyrus Heschl Temporal HES

85, 86 Superior temporal gyrus Temporal_Sup Temporal STG

87, 88 Temporal pole: superior temporal gyrus Temporal_Pole_Sup Temporal TPOsup

89, 90 Middle temporal gyrus Temporal_Mid Temporal MTG

91, 92 Temporal pole: middle temporal gyrus Temporal_Pole_Mid Temporal TPOmid

93, 94 Inferior temporal gyrus Temporal_Inf Temporal ITG

95, 96 Cerebellum Crus I Cerebelum_Crus1_L Cerebellum CRBLCrus1

97, 98 Cerebellum Crus II Cerebelum_Crus2_L Cerebellum CRBLCrus2

99, 100 Cerebellum lobule III, hemisphere Cerebelum_3_L Cerebellum CRBL3

101, 102 Cerebellum lobule IV V, hemisphere Cerebelum_4_5_L Cerebellum CRBL45

(Continued)
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TABLE 1 | Continued

ID Region description AAL2 Lobe Abbreviation

103, 104 Cerebellum lobule VI, hemisphere Cerebelum_6_L Cerebellum CRBL6

105, 106 Cerebellum lobule VII b, hemisphere Cerebelum_7b_L Cerebellum CRBL7b

107, 108 Cerebellum lobule VIII, hemisphere Cerebelum_8_L Cerebellum CRBL8

109, 110 Cerebellum lobule IX, hemisphere Cerebelum_9_L Cerebellum CRBL9

111, 112 Cerebellum lobule X, hemisphere Cerebelum_10_L Cerebellum CRBL10

113 Cerebellum lobule I II, vermis Vermis_1_2 Cerebellum Vermis12

114 Cerebellum lobule III, vermis Vermis_3 Cerebellum Vermis3

115 Cerebellum lobule IV V, vermis Vermis_4_5 Cerebellum Vermis45

116 Cerebellum lobule VI, vermis Vermis_6 Cerebellum Vermis6

117 Cerebellum lobule VII b, vermis Vermis_7 Cerebellum Vermis7

118 Cerebellum lobule VIII, vermis Vermis_8 Cerebellum Vermis8

119 Cerebellum lobule IX, vermis Vermis_9 Cerebellum Vermis9

120 Cerebellum lobule X, vermis Vermis_10 Cerebellum Vermis10

Column five provides a set of abbreviations for the anatomical descriptions.

rij (s) is the Pearson correlation between subset of signals xi (ts)
and xj (ts) where ts = s, s+ 1, · · · , s+ L− 1, and FZ(·) is the
Fisher r-z transform

FZ
(
rij (s)

) 1
=

1
2

ln
(

1+ rij (s)
1+ rij (s)

)
µ (s) and σ (s) represent the mean and standard deviation of the
total M(M−1)

2 different pairs of FZ(rij (s)), separately. Therefore,
we obtained N/L dWFC’s networks for each subject. Because
of the expensive computation, we used a two-steps clustering
process to reduce the cost of the clustering algorithm. The
dWFC’s calculated from all the time windows of each subject
are grouped into sub-datasets for community clustering. The
similarity matrix was presented by the Pearson correlation
coefficient between any pair of dynamic dWFC’s for further
states detection.

Community Detection of Signed Graph
Each dWFC is considered as a vertex in graph theory. The
community clustering algorithm assigns a graph with n vertices
into c communities σi ∈ {1, 2, . . . , c}; i.e., each node was assigned
to a community σi, where i = 1, 2, . . . , n. Q-modularity of
a weighted graph is defined as the edge weights within the
community minus the expected edge weights of them (Leicht and
Newman, 2008); i.e., Q = 1

m
∑

i,j (Ai,j − pi,j) δi,j, where δi,j = 1
if σi = σj and 0 otherwise; pi,j = kikj/m represents the expected
edge weight between i and vertex j; m is total the weight of
all vertexes. A is adjacent matrix, where Ai,j is the exact edge
weight between vertex i and vertex j. By maximization of the
Q-modularity, the community structure is determined with dense
connections as an intra-community feature, while the sparse
connections as inter-community features. As declared above, it
is natural to use the similarity matrix, calculated from Pearson
correlation coefficient of all pairs of dWFC’s, as the adjacent
matrix in community clustering. In this study, the adjacent
matrix A is a signed weighted matrix, and we employ an approach
based on an extended signed Q-modularity of the graph (Lu et al.,
2017). The graph is divided into two graphs composed by positive

edges and negative edges, respectively, represent by A+ and A−,
where A+i,j ≥ 0 and A−i,j ≤ 0. The extended signed Q-modularity
equals (Lu et al., 2017): (i) the fraction of edge weights, of which
both head and tail nodes fall within the same community, minus
(ii) the expected value of the edge weights of a random graph
that follows the same positive weight degree distribution of the
intrinsic graph, plus (iii) the expected value of the edge weights
of a random graph that follows the same negative weight degree
distribution of this intrinsic graph. This can be formulated as

Q =
1

2m

∑
i,j

(Ai,j − p+i,j + p−i,j) δi,j

m is the sum of the absolute values of elements of the matrix A.
p±i,j stands for the expected coupling probability between vertex i
and vertex j based on positive and negative coupling, respectively,
represented by A±. Figure 2 illustrates the examples of the
community structure in the “weighted” and “signed weighted”
graph. The fast community detection algorithm (CDA) is used
in maximize Q-modularity (Le Martelot and Hankin, 2013). The
code from http://www.elemartelot.org/index.php/programming/
cd-code was modified for handling of signed weighted edges.

Two-Steps Community Clustering of
dWFC’s for Large Data-Set
The correlation coefficient for each pair of dWFC’s for
an individual subject was computed as the similarity index
for community detection. Ideally the community detection
was performed across all subjects and time. However, the
computation is extremely high when the subject population is
large. In consideration of reducing the memory footprint and
calculation time, this stage was developed in two steps due to
the large amount of dWFC’s (Figure 3). Firstly, all the dWFC’s
were separated into many sub-groups in chronological order
such that each subject assigned a number of dWFC’s to each
given group, denoted by S. That is, there were S dWFC’s from
each subject in each group. The number of groups equals to the
total number of dWFC’s of each subject divided by the amount
in each group, i.e., N

LS . The clustering algorithm was applied
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FIGURE 1 | Sliding window based whole functional connectivity (WFC). (A) The whole brain dynamic functional connectivity matrix was computed with 14.4 s
non-overlapping sliding window (length of 20 time points). The corresponding top 100 significant FCs are shown for illustration at upper right of the matrix. (B) An
example of the community clustering results across time and subjects. The similar (reoccurred) network patterns were clustered into 3 modules, representing 3
states. The similarity of dynamic functional connectivity was defined as their Pearson correlation coefficient.

FIGURE 2 | Community in graph. Each dot represents a vertex (node), and the color of nodes represent the community. Each line represents an edge, and the width
and color represent the weighting and sign, respectively. (A) The community of weighted graph. (B) The community of signed weighted graph.

separately in each group, and the cluster centroids (mean of
dWFC’s within a cluster) were kept. Next, all the cluster centroids
extracted from different groups could be further clustered by
applying the community detection on the correlation matrix of
cluster centroids. We also randomly selected N

LS samples from
194880 dWFC samples (60 windows×4 sessions×812 subjects)
into a group for 100 times. To test the stability and similarity
of the clustering results from each group, we compared the
clustering centroids obtained in random groups with those
obtained in chronological groups, regardless of its sampling
method (Figure 4A). Finally, we used the Davies–Bouldin index
(DBI) (Davies and Bouldin, 1979), a well-known clustering
quality measure by averaging the maximal similarity between
each cluster and all other clusters, as a metric for evaluating the

clustering performance both in step 1 (for dWFC’s in each group)
and step 2 (for centroids from different groups). The smaller the
index is, the better the clustering result is. Furthermore, we also
used k-means algorithm to compare the rationality of the number
of states with our method. For each group, we fixed the number
of clusters as K from 1 to 6, and set 100 different initial values to
detect the best partition with the minimal intra-class distance.

Detection of Connectivity States
After two step clustering, all of the dWFC’s were assigned to the
corresponding communities, which we defined the “states” here,
according to their cluster centroids. The occurrence, transition
rate, and mean lifetime of these states were calculated as dynamic
parameters for all WFC’s in MR sessions (Ryali et al., 2016). The
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FIGURE 3 | Flowchart of two-steps community clustering of dynamic whole brain function connectivity. (1) The extraction of dynamic whole brain functional
connectivity based on sliding window; (2) Random group assignment for community clustering, where each group consists of a number of dWFC’s from all subject;
(3) Community clustering results within each group, and the cluster centroids (averaged dWFC of the same state in each group) were preserved; (4) Final community
clustering for the cluster centroids obtained from groups.

features of corresponding WFC communities were computed by
averaging all dynamic WFC’s from each community, denoted
as WFC-Ci. Here we define the “feature score” by computing
the correlation coefficient between WFC-Ci and a given WFC,
and the highest feature score among the states could predict the
corresponding state.

RESULTS

The Three States of Dynamic
Whole-Brain Functional Connectivity
We applied our method in R-fMRI data from 812 healthy
adults released by HCP to estimate the functional network
connectivity states. The AAL2 atlas was considered first
so that the number of regions M was 120. The length
of the time series N was 4800. We set L = 20 and
the influence of window length had been illustrated in
Supplementary Figure S1. We set S = 5 due to the large
computation consumption and we finally obtained 48 groups
(a larger S could help to reduce the inconsistency between
groups, see Supplementary Figure S1). The WFC’s within
a community follows a common variation trend (positive
correlation, Figure 1B) while those from different communities
do not, or even follow a reversed variation trend (negative
correlation). Noted that cluster centroids extracted in step 1
are distinctly divided into three communities (Figure 4A),
both for the chronological groups and random groups, which
revealed high resemblance of clustering results between groups.
Thus, each WFC in a given time window of a given
subject could be assigned to one of the three WFC state.
The feature of the corresponding WFC community (WFC-
C) was calculated by averaging all dynamic WFC’s from
each community; and we computed the feature score among
the three WFC-C’s to represent the predicted state for the
original WFC’s. The distribution of the matching rate between
the clustering states and the predicted states was 93.3% on

average (Figure 4D), which may be helpful to detect the state
for an unknown network without performing the clustering.
For dynamic parameters, the state 3 showed the highest
occurrence, whereas the state 2 showed the lowest occurrence
(Figure 4B). The transition between state 1 and state 3
showed the most frequent rate (Figure 4C). There was no
difference in mean lifetime that the three states had an averaged
mean lifetime of 24.8 s for state 1, 25.1 s for state 2, and
25.9 s for state 3.

The Evaluation of the Number of States
The k-means algorithm was used to compare with our method
(Figure 5A). The DBI was used to evaluate the clustering results
of both steps. The mean DBI of 48 groups reached to the
minimum of 9.58 while K = 3 in step 1 (Figure 5B), showing
a better clustering result for small groups compared to CDA
(the mean DBI = 9.74). However, the DBI of k-means centroids
of K = 3 also achieved the optimal clustering performance in
step 2 with the minimum of 0.54 (Figure 5C), whereas DBI of
community centroids reached a smaller value of 0.52, a better
result of overall clustering across groups. Both of the results in
two steps indicated that the number of 3 clusters was the best for
categorization of dWFC’s states.

Features of the Whole-Brain Functional
Connection States
The AAL2 regions were assigned to Yeo’s seven functional
modules according to the top ratio (the percentage of voxels
of specific region within each network) (Yeo et al., 2011).
Cerebellum and subcortical regions are added as two additional
modules. Figure 6 illustrates the top 200 FC’s in the three
WFC-C’s with functional modules, and the transition rates
among states from HCP data. For state 1 (WFC-C1), the highest
FC’s mainly include functional links both within and across
visual, somatomotor, attention and cerebellar (posterior lobe)
modules. The highest FC’s in WFC-C2 were similar with WFC-
C, but FC’s linking limbic, default mode and frontoparietal
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FIGURE 4 | State Detection of Dynamical WFC. (A) The scatter plot of WFC’s in principal coordinate analysis. Each point represents a cluster centroid (the averaged
WFC’s of the same community) detected in step 1. (Dots represent centroids in chronological groups and circles represent random groups) Distance between WFC
points is defined by 1-correlationwfc−wfc

2, where principal coordinate analysis projects those WFC points into 2D spaces while preserved the original distance as
much as possible. (B) The boxplot of the occurrence of three detected states for all subjects and the p-value of two-sample t-test between the occurrence of
different states. (C) The transition rate between three detected states. (D) The states of dynamic functional connectivity for a single subject (subject #124422 as an
example) were detected based on individual community clustering and feature scores. The states show in colors according to the WFC communities in (A).

modules were more involved whereas the cerebellum, sensory
and attention modules were less involved. In WFC-C3, the
FC’s linking default mode, limbic, and cerebellum were more
involved, whereas somatomotor, dorsal, ventral attention, and
visual modules were much less so, compared to WFC-C1
and WFC-C2.

Robustness of dWFC’s States Across
Window Lengths
The clustering result is independent of window length
(Supplementary Figure S2), shown by the detection of
dWFC’s states with various window lengths among 10, 20,
30, 40, and 50. The averaged dWFC’s in the same community
had a high level of similarity that their Pearson correlation
were close to 1, seen from the diagonal elements of each 3 × 3
matrix (Supplementary Figure S2B). Whereas, comparing the
off-diagonal elements between correlation matrices of different
window size, we still observed a trend that the differences
between three averaged dWFC’s would reduce as the window
length increased.

The Influence of Parcellation Methods
We also detected three communities using dWFC’s calculated
from two different additional atlases, the Shen-268 atlas
(Shen et al., 2013) and Power 264 atlas (Power et al., 2011;
Supplementary Figure S3). The results showed that the number
of dynamic states was independent to the parcellation schemes.
However, the detected state in each window was different across
atlases. By matching the most overlapping states, the averaged
matching rate of states extracted between the AAL2 Shen-268
was 82.7%, and the Power was 66.9%. Besides, we also randomly
relocate the state sequence of the samples, the matching rate was
significantly lower than the estimated matching rate (p< 0.0001),
indicating that the states obtained across the atlases were similar
but not identical.

DISCUSSION

We proposed a new method to categorize and track time-varying
networks in R-fMRI studies. It involves two-step community
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FIGURE 5 | State Detection results using k-means clustering algorithm in step 1. (A) The scatter plot of k means centroids obtained in step 1 in principal coordinate
analysis, K represents the number of the clusters in each group and N represents the number of communities detected by Modularity-based algorithm in step 2.
(B) DB index for the clustering results for groups in step 1. Dots represent the mean value for 48 groups and error bars represent standard deviation. (C) DB index
for the clustering results of k means centroids (blue polygon) and community centroids (red dash line).

detection, which is computing efficient and provides robust
results in large data set application. In recent years, various
methods were proposed to capture time-varying networks in

R-fMRI studies (Pinotsis et al., 2013; Calhoun et al., 2014;
Cavanna et al., 2017; Preti et al., 2017). Essentially, it involves two
main considerations.
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FIGURE 6 | Feature of WFC states. Top 200 functional connections are illustrated in each WFC states, with the Yeo’s 7 functional modules, subcortical and
cerebellar regions. The width of the connections represents the connectivity strength. The transition rates among states are indicated by the arrows. For state 1
(WFC-C1), the high FCs in mainly includes functional links both within and across visual, somatomotor, attention and cerebellar (posterior lobe) modules. WFC-C2
was similar with WFC-C1 in those high FCs, however, the FCs in WFC-C2 between cerebellum and the sensory and attention modules were decreased, and higher
connections within and across limbic, default mode and frontoparietal modules, in which medial temporal gyrus (MTG), Superior temporal gyrus of temporal pole
(TPOsup), inferior temporal gyrus (ITG), inferior parietal gyrus (IPG), dorsolateral superior frontal gyrus (SFG) and medial superior frontal gyrus (SFG medial) are highly
involved. In WFC-C3, FCs within sensory and attention modules are still active, but FCs across those modules are decreased. Another feature of WFC-C3 high
values of FCs in default network modules, as well as FCs across modules including default, limbic and cerebellum networks. MTG, precuneus (PCUN), angular gyrus
(ANG), middle frontal gyrus (MFG), superior parietal gyrus (SPG), and Crus1/Crus2 in cerebellum are highly involved.

The first consideration, what is the best feature to
represent the time-varying networks. For example, ICA
could be used to reveal the spatial-temporal structure of the
fMRI signals in either signal subject or group of subjects
(Calhoun et al., 2009). Time and frequency decomposition
of regional coherence was also calculated through cross
wavelet transform (Yaesoubi et al., 2015). However, most
common method is sliding window based FCs (Hutchison
et al., 2013; Thompson, 2018; Reinen et al., 2018), as brain
function are accomplished by the interplay of a set of brain
areas rather than a specific region (De la Iglesia-Vaya et al.,
2013). A recent study questioned the validity, stability and
statistics significance for various dFC pattern detecting method
(Hindriks et al., 2016). The optimal window size remains
unknown. To track rapid temporal changes in FC, shorter
window is necessary for high temporal resolution; while
FC calculation requires longer window for robustness and
statistics significance. It may need further studies to address
this question through our method. We calculated FC the on

various window sizes to test the reliability of the results. In
our application on HCP data set with high tempo-spatial
solution resolution, the three whole-brain dFC states are stable
and independent of sessions and window lengths. The robust
results suggest that our method could be helpful to establishing
the golden standard in dWFC’s tracking in R-fMRI analysis
(Shakil et al., 2016).

The second consideration is mainly a machine learning
problem or a clustering problem. Lacking prior knowledge about
the categorization of dynamical brain states, an unsupervised
learning method especially clustering analysis is more suitable
for detecting dynamical brain states. K-means, a prototype-
based clustering method, is the most widely used in clustering
analysis for its convenience and computing speed. However,
it needs to set the number of states and initial values in
advance and requires a relatively balanced data structure
for good performance. Though many different methods have
been applied, the number of states in the brain still remains
unknown. For example, two brain states were revealed as a
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within-network state and a between-network state in both
healthy and Parkinson disease patients (Kim et al., 2017).
Di and Biswal (2015) separated out triple brain states:
salience-, default-, and motor- networks. Seven brain states
have also been discovered in work by Allen et al. (2014)
through group ICA based-FC and k-means clustering. Further,
as many as 13 clusters of innovation-driven co-activation
patterns were detected in work (Karahanoğlu and Van De
Ville, 2015). Another important issue of clustering analysis
is the measure of distance or similarity between samples.
Euclidean distance is an intuitive and commonly used distance.
However, the Euclidean distance of WFC depends largely on
the overall level of the functional connectivity, which could be
affected by measurements, individual difference. The Pearson
correlation induces a distance that remains unchanged and
is equivalent to the Euclidean distance after normalization
of the data. That is, 1− corr

(
x, y

)
=‖ x− y ‖2/2m, where

x− y represents the Euclidean distance between sample x
and y and m is the dimension of data. It measures the
consistency of the sequence of FCs within the network
between two WFC’s that will not be influenced by the overall
functional connectivity value. Therefore, we used Pearson
correlation to measure the similarity but also normalized each
dynamical brain network for some following analysis of the
detected brain states.

Due to the large sample size, we complete the clustering in
two steps that we calculate the cluster centroids in each group
and combine these results by clustering all the centroids. But it
brings up a problem to select an appropriate state number K
for each group and deal with the differences of results caused
by different initial values. Hierarchical clustering can detect the
hierarchical relationship in the data and it does not need to
set the initial values. But it is more impossible to afford the
large computation cost, because the computational complexity of
hierarchical clustering is at least O(n2), which n represents the
amount of dWFC. Moreover, the two-steps clustering strategy
is not suitable for hierarchical clustering for it may break or
disrupted the hierarchy of data when dividing samples into
several groups and leave a tricky problem of matching samples at
the same level from different groups. PCA helps to discover and
describe different FC patterns through an appropriate number
of PCs called “eigenconnectivities,” while it is still a question
how to classify dWFC’s into different states so that we can
track the dynamical changes of whole brain network structure.
Hidden Markov chain based methods are usually performed
directly on the bold signal time series of the brain rather
than functional connectivity structure, they require a pre-given
form of the probability distribution of each state as well as
the number of states. Lacking a comprehensive understanding
of the underlying mechanism of dWFC’s states, we categorize
the dWFC’s through community detection methods based on
the similarity of dWFC’s pair, working in an unsupervised,
data-driven fashion. Finally, by computing the feature score
between networks (the similarity), we can easily estimate an
unknown state of network into a specific state, without redundant
clustering procedures. This is helpful for further studies of the
dynamic networks.

By comparison with k-means clustering, our proposed
method with two-step of CDA showed better superiority.
On the one hand, the DBI showed that the best number
of clustering was 3 with k-means, indicating the CDA
could detect the optimal number for the states of dWFC’s.
On the other hand, compared to CDA, although k-means
showed a smaller mean value of DBI for all groups in
the first step, the larger DBI in the second step indicated
longer distances between the centroids among groups, showing
the weakness for the overall detection by the two step
clustering method. According to the procedure of k-means
algorithm, a possible reason might be that the k-means
is sensitive to outliers (Hautamäki et al., 2005). When
an outlier is added to a given cluster, the center of the
cluster will move toward to the outlier, resulting in the
change of the criteria to update the members of this
cluster. Finally, the members of the cluster are more likely
close to the outliers. In contrast, the community clustering
showed better robustness than k-means. According to the
fast community detection algorithm (Le Martelot and Hankin,
2013), an outlier alone can little influence the update of
the community structure in each iteration because of its
small degree, and therefore the community among groups
had more stable and similar structures, showing its advantage
for subdividing a large sample size into several groups
of small samples.

By taking advantage of the higher temporal resolution
in HCP, we can reduce the window to less than 10 s
while maintaining sufficient samples to calculate correlation
coefficients. However, it still remains unclear as to what the
optimal window for detecting dynamical brain states is. Although
community clustering methods are robust for summarizing
the generality of dFC’s independent of time and subjects; this
method might not be sensitive to individual heterogeneities.
Further studies are needed to address whether there might
be sub states within the three dFC states, i.e., to identify the
hierarchical structure of the dynamic FC’s. The self-converged
community clustering method to detect the connectivity states,
does not rely on the appearance of a clear gap between
any two individual dFC’s from various brain states (Leicht
and Newman, 2008). It is a more appropriate clustering
method while few are known in dWFC states. Besides, the
two-steps community clustering protocol for large R-fMRI
data sets is robust and computing efficient. A distinct gap
between community centroids of different states, regardless
of which groups they come from, showing that our method
performed stably in each group. These results revealed that
there were three states existed for all the dWFC across
subjects and time, with the robustness with various window
lengths and parcellations. Of note, the states of dWFC’s were
not identical across parcellations, because of the location of
regions, region size, including/excluding cerebellum, and the
extracted time series were different, resulting in different
dWFC’s across atlases. The parcellation scheme may affect
the dWFC’s with specific functions (e.g., involving cerebellum
or not), and the diversity of states among atlases may be
further studied.
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