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ABSTRACT

In this study we show that protein language mod-
els can encode structural and functional informa-
tion of GPCR sequences that can be used to predict
their signaling and functional repertoire. We used
the ESM1b protein embeddings as features and the
binding information known from publicly available
studies to develop PRECOGx, a machine learning
predictor to explore GPCR interactions with G pro-
tein and �-arrestin, which we made available through
a new webserver (https://precogx.bioinfolab.sns.it/).
PRECOGx outperformed its predecessor (e.g. PRE-
COG) in predicting GPCR-transducer couplings, be-
ing also able to consider all GPCR classes. The web-
server also provides new functionalities, such as the
projection of input sequences on a low-dimensional
space describing essential features of the human
GPCRome, which is used as a reference to track
GPCR variants. Additionally, it allows inspection of
the sequence and structural determinants respon-
sible for coupling via the analysis of the most im-
portant attention maps used by the models as well
as through predicted intramolecular contacts. We
demonstrate applications of PRECOGx by predicting
the impact of disease variants (ClinVar) and alterna-
tive splice forms from healthy tissues (GTEX) of hu-
man GPCRs, revealing the power to dissect system
biasing mechanisms in both health and disease.

GRAPHICAL ABSTRACT

INTRODUCTION

G protein-coupled receptors (GPCRs) form the largest fam-
ily of cell-surface receptors and the most important phar-
macological class, being targeted by approximately one-
third of the marketed drugs (1). They transduce a mul-
titude of physico-chemical stimuli from the extracellular
environment to activate intracellular signalling pathways
through the coupling to one or more heterotrimeric G
proteins, which are grouped into four major G protein
families: Gs, Gi/o, Gq/11 and G12/13 based on their �-
subunits (2). GPCRs’ downstream activity is controlled by
�-arrestins, which offer an alternative layer of signalling
modulation via ERK (3). Alteration of these transduction
mechanisms is linked to a myriad of pathological states (i.e.
signalopathies), including cancer (4–7). A deeper knowl-
edge of these mechanisms, integrated in the wider biolog-
ical context of a disease state, can impact targeted ther-
apies and personalized medicine protocols (e.g. (8)). Dis-
secting GPCR-G protein coupling can also aid the design
of chemogenetic tools, such as Designer Receptors Exclu-
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sively Activated by Designer Drugs (DREADDs), that can
be of great use in tinkering with signalling pathways in liv-
ing systems (9). Ligand binding to GPCRs induces confor-
mational changes that lead to binding and activation of G
proteins situated intracellularly. Mammalian GPCRs dis-
play a wide and distinct repertoire of G protein coupling,
ranging from highly selective to promiscuous profiles, which
lead to specific downstream cellular responses (6). Deter-
mining specific coupling profiles is critical to understanding
GPCR biology and pharmacology. Structural determina-
tion of receptor/G protein complexes is advancing rapidly,
with over 170 complex structures deposited in the PDB (as
of March 2022). This unprecedented wealth of structural
information is illuminating the basis of receptor activation
across classes (10), G protein families (e.g. (11)), as well as
among distinct transducers of the same receptor (e.g.(12)).
At the same time, quantitative screening methodologies
have been set up to systematically profile the binding activ-
ities of GPCRs for transducer proteins ((13–16)). Despite
these continuous advancements, a consensus picture of the
sequence and structural basis of selectivity is still far from
being complete and, importantly, coupling information is
still missing for many receptors. Approximately 28% of hu-
man, non-olfactory GPCRs still lack the coupling informa-
tion according to either IUPHAR/GuidetoPharmacology
(GtoPdb) (17) or quantitative coupling studies, preventing
a deeper understanding of their biological function.

To fill this knowledge gap, we previously developed PRE-
COG (18), a machine learning-based predictor of Class A
GPCRs coupling with G proteins. In this previous study, we
used sequence- and structure-based features and trained on
experimentally determined binding activities of 144 Class
A human GPCRs across 11 chimeric G proteins obtained
through the TGF� shedding assay (TGF) (13,14). We herein
present PRECOGx, a new ML-based predictor of G pro-
tein and �-arrestin binding which relies on protein embed-
dings from a pre-trained protein language model, i.e. the
Evolutionary Scale Model (ESM) (19). ESM has been de-
rived from Natural Language Processing (NLP) state-of-art
models, i.e. transformers (20), and has shown superior per-
formances in a number of protein structure and function
prediction tasks as it captures aminoacids’ contextual de-
pendencies within sequence (19). ESM was shown to out-
perform competing methods for protein embeddings (e.g.
SeqVec (21) or Unirep (22)) and similar architectures, i.e.
Evoformer, form the basis of the groundbreaking protein
structure prediction algorithm AlphaFold2 (23).

METHODS

Embeddings generation

We generated the embeddings of the GPCR sequences by
using a pre-trained encoder from the Evolutionary Scale
Model (ESM; https://github.com/facebookresearch/esm).
We computed embeddings from sequences in the Fasta for-
mat by using the extract.py function of the ESM library and
by specifying the ESM1b model (esm1b t33 650M UR50S)
with embeddings for individual amino acids as well as aver-
aged over the full sequence using the option ‘–include mean
per tok’.

We generated embeddings for each individual layer sep-
arately, by specifying their corresponding number in the ‘–
repr-layers’ option. We only retained the average embedding
representation for the next analysis.

Data sets

We obtained experimental binding data from two distinct
sources: the TGF assay (13), which captures the relative ac-
tivities of binding of 148 GPCRs with 11 chimeric G pro-
teins, and the EMTA biosensor (GEMTA) assay (16), which
profiles the binding activities of 97 GPCRs with 12 G pro-
teins and 3 �-arrestins/GRKs binders. We also used the
Unified Coupling Map (UCM) study derived from an in-
tegrated analysis of the aforementioned assays (24), entail-
ing binding relative activities for a total of 164 GPCRs for
14 G proteins. For the TGF assay, we considered a recep-
tor coupled to a G protein if the logarithm (base 10) of
the relative intrinsic activity (logRAi) was greater than -1,
and non-coupled otherwise. Similarly, for the GEMTA as-
say we considered a receptor coupled to a G protein (or �-
arrestins/GRK) if the double normalized Emax was greater
than 0, and non-coupled otherwise. For the UCM study, we
considered a receptor coupled to a G protein if the binding
relative activity was greater than 0, and non-coupled other-
wise.

Model training

We trained multiple models by using embeddings obtained
from the pre-trained ESM1b as features. For each of the
three studies described in the previous section, we generated
training matrices by taking for each receptor the mean rep-
resentation of each embedding layer, which are 1280 long
vectors. This yielded 1280 x n matrices for each training set,
where n is the number of GPCRs in each binding set, which
were subjected to Principal Component Analysis (PCA)
to project them to a lower dimensional space, constituted
by the number of components describing 95% of the to-
tal variance, using the function decomposition.PCA from
Scikit-learn. Next, for each G protein/�-arrestin trans-
ducer family, we created three training matrices, each con-
taining decomposed PCA values of the receptors in the
three studies and their coupling information as classifica-
tion label (see the previous section). We implemented the
machine learning models using logistic regression or sup-
port vector classifier algorithms available from Scikit-learn
(https://scikit-learn.org/). We performed a grid search us-
ing stratified 5-fold cross validation (CV) to select the best
hyper-parameters of the algorithms. We repeated the pro-
cess 10 times to ensure minimum variance. In details, we
used the following hyperparameter space for logistic regres-
sion: penalties {‘l1’, ‘l2’}; solvers)‘newton-cg’, ‘lbfgs’, ‘lib-
linear’, ‘sag’, ‘saga’}; inverse of regularization strength(C)
[0.001, 100]; maximum number of iterations (4000) and
class weights (balanced). For Support Vector machines we
searched for the following hyperparameter space: kernels
{‘linear’, ‘poly’(three degrees), ‘rbf’, ‘sigmoid’}; kernel co-
efficient i.e. gamma (scale), and class weights (balanced);
and the inverse of the regularization strength(C) [0.1, 100].
For each of the 17 G protein/ �-arrestin transducer fami-
lies, we generated two models per embedded layer. Thus, we
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obtained 68 models per transducer family. We then ranked
the models based on their AUC (Area Under the Curve)
scores obtained during the cross-validation process. To en-
sure minimal imbalance, we eliminated the models with the
absolute difference of Recall (REC) and Specificity (SPE)
greater than 0.15 during the cross-validation process. The
top 5 filtered models ranked according to AUC score were
finally employed for testing on a held-out study.

To assess over-fitting, we performed a randomization test
(25) by randomly shuffling the original labels of the training
matrix, while preserving the ratio of the number of positive
(coupled) and negative (non-coupled) GPCRs.

Model testing

We downloaded all the known GPCR/G protein cou-
plings provided in the GtoPDB database (http://www.
guidetopharmacology.org/ (17)). A total of 117, 160, and 94
GPCR/G protein couplings were present in the GtoPDB
but absent in the TGF assay (used as training set also for
our original PRECOG model), the GEMTA assay, and the
UCM studies, respectively. Since GtoPDB lacks a true neg-
ative set, we used Recall (REC) to compare the performance
of PRECOGx with PRECOG (18). Note that we considered
all human GPCRs from all the classes with the exception
of Olfactory receptors, both during the training and testing
stages of PRECOGx. By design, the original PRECOG and
the corresponding model trained on the GEMTA assay us-
ing hand-crafted features (see below) only considered class
A GPCRs. For testing �-arrestin models, we considered 57
Class A GPCR - �-arrestin 1/2 interactions obtained from
STRING (combined score > 600) (26), HIPPIE (27), and
IMEx (28) databases. We finally selected the 17 best per-
forming models for each G protein or �-arrestin based on
the highest Recall during testing.

As an additional test, we compared coupling probabilities
with reported relative activities log(Emax/EC50) of four
GPCRs (i.e. ADRB2, NTSR1, LPAR6, HTR7) obtained
through the TRUPATH platform (15) as well as the TGF�
Shedding Assay. We binarized the experimental activities,
considered as ground truths, as well as coupling probabil-
ities and we computed ACC, REC, PRE and AUC metric
performances.

PRECOG-GEMTA

As a second baseline, we trained a coupling classifier us-
ing information from the GEMTA assay by extracting the
sequence-based features for G protein/�-arrestin selectiv-
ity, as described in our previous studies (18). The GEMTA
assay measured binding activities of 85 Class A, 15 Class
B, and 5 Class C GPCRs with 11 G proteins and 2 �-
arrestins (in presence/absence of GRK2). We considered
double normalized maximum value of ligand-induced re-
sponse (Emax). Due to the lack of enough data for other
classes, we considered only the 85 Class A GPCRs from
the GEMTA assay study to develop the predictor. Briefly,
we created a multiple sequence alignment, using hmma-
lign from the HMMER3 package (29), and the 7tm 1 Hid-
den Markov Model (HMM) from PFAM (30), of the class
A GPCRs from the GEMTA assay study and subdivided
the alignment based on their coupling preference (dou-

ble normalized Emax) to a given interacting group (G
proteins/�-arrestins) (see section Data sets). Next, we cre-
ated the HMM profile of the sub-alignments using the hmm-
build tool from the HMMER3 package (29). To generate
the training matrix, we considered the positions within the
HMM profiles that showed statistically significant (p-value
< = 0.05) differences in the amino acid distributions of cou-
pled vs. non-coupled profiles. We implemented the logistic
regression algorithm using the machine learning workflow
as described above (see section Model training) and calcu-
lated the metrics of the best-performing model (Supplemen-
tary Table S1), which was used for prediction purposes in
the current study.

Attention head importance

By inspecting the weights of the trained classifiers, we ex-
tracted the most important attention head, for the best per-
forming layer of each transducer family.

Let us observe that embeddings obtained through the
ESM model are high-dimensional tensors x ∈ R

1280 ob-
tained by concatenating 64 dimensional tensors across all
of the 20 attention heads of the model.

In order to compute head importance we leverage the lin-
ear structure of the classification pipeline. In more depth,
our pipeline maps an input embedding x to a lower dimen-
sional representation z:

z = [z1, . . . , zK ] ∈ R
K zi =

∑1280

j = 1
wPC A

i, j xj (1)

through PCA, where K is the optimal number of compo-
nents chosen through cross-validation as described in the
model training section. Each classifier than computes a
score S(x):

S (x) =
∑K

k = 1
wcl

k zk (2)

which is then transformed into a class probability. In order
to obtain head importance, we mapped back to x impor-
tance weights from the final classifier through PCA. We de-
fined the importance of the k-th weight (associated with the
k-th PCA component) of the classifier as:

w̄cl
k =

∣∣wcl
k

∣∣∑K
k = 1

∣∣wcl
k

∣∣ (3)

Moreover, we defined the importance of the original i -th
element of x in the k-th component of PCA as:

w̄PC A
i,k =

∣∣wPC A
i,k

∣∣
∑1280

j = 1

∣∣∣wPC A
i, j

∣∣∣ (4)

The quantities defined allow us to compute a reweighted
principal component matrix as follows

⎛
⎜⎝

w̄cl
1 w̄PC A

1,1 · · · w̄cl
1 w̄PC A

1280,1
...

. . .
...

w̄cl
k w̄PC A

1,k · · · w̄cl
k w̄PC A

1280,k

⎞
⎟⎠ (5)
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Recalling that each head outputs a 64 dimensional repre-
sentation, the h-head’s importance is then obtained as:

Ih =
∑K

k = 1

∑(l+1)∗64

j = l∗64+1
w̄cl

k w̄PC A
j,k (6)

By varying h from 1 to 20 we obtained vector I =
[I1, . . . , I20] and identify the most important head by select-
ing the head with maximum importance value. If the best
performing model was obtained using the support vector
classifier (with a non-linear kernel), we resorted to the logis-
tic regression model (trained on the same embedding layer
and assay study) to compute the most important head.

Unsupervised learning of the GPCRome embedded space

We generated embeddings for the human GPCRome, com-
prising a total of 377 receptors (287 Class A, 15 Class B1,
17 Class B2, 17 class C, 11 class F, 25 Taste receptors and
5 in other classes) shorter than 1024 amino acids in length
due ESM model length constraints. We performed Princi-
pal Component Analysis (PCA) on each embedding layer
using the PCA function from decomposition.PCA method
of the Scikit-learn package (https://scikit-learn.org/). Each
human GPCR sequence was annotated with the available
functional labels, i.e. GtoPdb Class membership or Trans-
duction Mechanism, couplings from the TGF� shedding or
GEMTA and STRING interactions (for �-arrestins).

We performed K-means clustering of the study projected
along the first two components of the PCA using the func-
tion cluster.KMeans from Scikit-learn. The number of clus-
ters was set as the number of variables possible for the given
functional label (i.e. GtoPdb GPCR Class, Transduction
mechanisms or Coupling specificities from either TGF or
GEMTA assays). In the case of GtoPdb class information,
the number of clusters was set to 5 (possible variables: Class
A, Class B, Class C, Frizzled, and Taste). For the remaining
functional labels about coupling information, the number
of clusters was set to 2 (possible variables: coupled or non-
coupled to a G protein/�-arrestin). We then calculated the
Normalized Mutual Information (NMI) score of the result-
ing clusters using metrics.cluster from Scikit-learn for all the
33 layers. We chose the best layer for a given functional label
as the one with the highest NMI score.

Contact analysis

To interpret the determinants of G protein binding speci-
ficity, we first calculated predicted intra-molecular con-
tacts for each receptor sequence using the logistic regres-
sion algorithm trained over the ESM’s attention maps,
(using the function predict contacts in the ESM library)
(31) and retaining predicted contact with a probability
greater than 0.5. We referenced sequence residue positions
to the GPCRdb generic residue numbers (32). Next, contact
maps were grouped based on G protein binding specificity
(either TGF, GEMTA or UCM) and differential contact
maps were derived by calculating the log-odds ratio from
the following contingency Table 1:

using the following equation (1):

log − oddsratio = log
(

AA
DD

× CC
BB

)
(7)

Table 1. Contingency table for calculating log-odds ratio

Contact pair/G protein Contact No contact

Coupled AA BB
Not coupled CC DD

AA and BB terms represent a number of coupled GPCRs
to a specific G protein depending on the assay that have or
do not have a specific contact pair, respectively. CC and DD
terms represent the number of non-coupled GPCRs for a
specific G protein depending on the assay, that has or does
not have a specific contact pair respectively. Contacts con-
tributed from the loops, N-termini and C-termini of the
GPCR where aggregated. We calculated the enrichment in
a specific transducer family with respect to non-coupled re-
ceptors for a consensus list of 223 unique pairs, correspond-
ing to 181 unique GPCRdb positions for the UCM study
(220 and 184 unique pairs and positions for the GEMTA as-
say or 231 and 186 unique pairs and positions for the TGF
assay).

We computed log-odds ratio using the Table2×2 func-
tion from StatsModels (https://www.statsmodels.org/). Re-
sulting log-odds ratios were normalized using the MaxAb-
sScaler from scikit-learn.

Contacts with a positive log-odds ratio (enriched) are
seen more frequently in receptors coupled to a specific G
protein, while contacts with a negative log-odds ratio (de-
pleted) are seen less frequently in receptors coupled to a
specific G protein.

GPCR-G� complexes prediction via AlphaFold-Multimer

A total of 2141 GPCR-G� pairs, reported to bind in ei-
ther GtoPdb or the TGF assay or the GEMTA assay, were
considered, respectively corresponding to 265 and 14 hu-
man GPCRs and G� proteins (the three members of the
GNAT family are not considered). We generated through
Alphafold-Multimer v2.1.1 (33) the 3D structural models
for each of these experimental GPCR-G� complexes lack-
ing a known 3D structure in the PDB. The databases re-
quired to run AlphaFold-Multimer were downloaded on 16
November 2021. Among the 5 models generated for each
GPCR-G� pair, only the one with the highest confidence
was considered for further analysis.

ClinVar mutations analysis

We used PRECOGx to predict the functional consequences
of 2140 missense variants (212 GPCRs) from ClinVar (34).
For each variant we compared predicted couplings with the
ones calculated for the wild-type receptor sequence. Vari-
ants or wild-types with predicted probability higher than
0.5 were considered coupled and those with lower probabil-
ity as uncoupled to specific G protein.

Healthy Tissue (GTEx) alternative splicing isoforms

We used PRECOGx to predict the impact of alternative
splicing on GPCR signalling. We considered 1141 protein-
coding, alternatively spliced mRNA transcripts from 364
unique genes from GTEx (35). We used the best perform-
ing model (PRECOGx) to profile coupling specificities for

https://scikit-learn.org/
https://www.statsmodels.org/


W602 Nucleic Acids Research, 2022, Vol. 50, Web Server issue

both canonical and spliced variants. Spliceforms with pre-
dicted probability greater than 0.5 were considered coupled
and non-coupled otherwise. We annotated spliceforms with
their highest expression across the tissue. Different condi-
tions were tested by imposing cutoffs for isoform length (i.e.
retaining 25%,50% 75% or all of their 7TM segments) or for
expression (TPM > = 1.0).

Pipeline

Given user input data, i.e. receptor WT or mutant se-
quences, the web server backend generates the ESM embed-
ding features (see Figure 1). The average embeddings are
extracted and the ones corresponding to the best perform-
ing layer for the classification of a given coupling are used
as features in the corresponding model for coupling classi-
fications. The embedding layers are also used to project the
input sequence in the PCA embedded space previously gen-
erated for the human GPCRome.

To detect the closest homolog for structural visualiza-
tion purposes, every input sequence is aligned through PSI-
BLAST (36) either to 3D structures of GPCRs G protein/�-
arrestin complexes from the PDB or to AlphaFold-
Multimer predicted complexes. Identified matches are re-
turned for visualization and sorted based on percentage
of identity. Sequence and structure residue positions were
referenced to the GPCRdb generic residue numbers from
GPCRdb (32).

We developed PRECOGx using Apache2 (https://httpd.
apache.org/) using the Python programming language, both
for the web frontend, which is based on Flask (http://flask.
pocoo.org/) and for the internal pipeline to handle back-
end processes. We additionally used the following Python
and JavaScript libraries at both back- and front-ends: NGL
Viewer (v1.3.1), jQuery (v3.5.1), neXtProt (v0.2.17), Boot-
strap (v5.13), Scikit-learn (v1.0.2), DataTables (v1.11.3),
Plotly (v2.6.3).

RESULTS

Using the webserver

The input can be one or more protein identifiers (UniProt
identifiers, accessions, gene symbols or GtoPdb offi-
cial nomenclatures), mutations in the format protein
identifier/aa substitution (e.g. MC1R/D294H) or FASTA
sequences (see Figure 1A). Examples of the different inputs
accepted are available through dedicated buttons besides
the ‘Submit’ one. The mutation format is particularly suited
for predicting the functional consequence of missense mu-
tations. For larger variants, e.g. alternative splicing variants,
the user is recommended to directly input the correspond-
ing FASTA sequence (see section ‘Predicting the functional
consequences of GPCRs variants.’ below).

On the results page, a tutorial is available on the top. Pre-
dictions for each individual G protein/�-arrestin are tabu-
lated in the upper panel. Each row lists either predicted cou-
pling probabilities or experimental binding data, whenever
available, for each given input. In the centre-left of Figure
1A, predicted intra-molecular contacts are displayed at the
primary sequence level. Alternatively, transducer family-
specific predicted contacts are shown via a toggle button

on a heatmap, where cells are colored according to enrich-
ment (green = enriched; red = depleted). In the centre-right,
the predicted intra-molecular contacts are highlighted on
a 3D structure with edges colored according to coupling
specificity (green = enriched; red = depleted) and contact-
ing residues shown as spheres whose radius is proportional
to their contact network degree, by default the one best-
matching (via BLAST) the input. The visualized structures
can be optionally changed and, alternatively to experimen-
tal PDB structures, 3D models predicted via AlphaFold-
Multimer can also be visualized. On the bottom-left, a PCA
plot of the GPCRome sequence space is used to project
and track the location of the input sequence (Figure 1B).
This new feature performs PCA and k-means clustering on
ESM embeddings of the non-olfactory human GPCRome
to generate a low dimensional space where any input se-
quence can be projected and analysed. For instance, it is
possible to input the wild type sequence of a GPCR (e.g.
human TBXA2R, blue dot in Figure 1B) and perform the
PCA projections on a specific embeddings layer to uncover
functional patterns. To ease pattern detection, points corre-
sponding to reference human GPCRome receptors can be
colored based on functional information via a drop-down
menu which allows to specify either GtoPdb class or trans-
ducer coupling mechanisms from either GtoPdb, TGF or
GEMTA studies. For instance, the 13th layer is the one lead-
ing to the GPCRome clustering that best agrees with the
GPCR Class annotation according to the NMI score met-
ric (Figure 1B; see Methods). PCA bi-dimensional repre-
sentation of the embedded space can also be used to visu-
alise the trajectories of natural or artificial variants with re-
spect to the reference GPCRome sequence space (see be-
low). In the bottom-right, attention maps from the most in-
formative attention head of a given layer can be visualised to
explore residue-residue dependencies associated to a given
coupling.

The information displayed in the sequence, 2D and 3D
contacts visualizations as well as in the attention map pan-
els is automatically updated by clicking on individual cells
of the prediction table corresponding to a specific receptor-
transducer pair (see below for more use examples of these
panels).

Protein language models are predictive of GPCRs signalling
mechanisms: beyond class A and G proteins

We trained and tested multiple machine learning models
by considering different combinations of embedding layers,
algorithms and training sets. The best performing model
for every interacting group, for a total of 17 G proteins/�-
arrestins partners, was selected based on the AUC during
the training and REC during testing phase (Figure 2A, B;
Supplementary Table S2; Methods). Models showed over-
all good stability, with low standard deviations of the per-
formance metrics, and minimal overfit, with training on
randomly shuffled labels always performing worse (Supple-
mentary Figure S1A). With respect to coupling specificity,
we found that seven best performing models were obtained
by training on the Shedding assay and six by the GEMTA
assay. The latter included three G proteins (i.e. GoB, GNAI2

https://httpd.apache.org/
http://flask.pocoo.org/
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Figure 1. (A) Workflow of PRECOGx web application. The input can be provided in different formats, including: protein identifiers (UniProt identifiers,
accessions, gene symbols or GtoPdb official nomenclatures), mutations in the format protein identifier/aa substitution (e.g. MC1R/D294H) or FASTA
sequences. In either cases, the corresponding sequences are used to create ESM embeddings which are in turn employed in different backend processes
to generate PRECOGx output. The latter is presented in a multi-panel view including: summary table of the predicted and known couplings, predicted
differential contacts mapped in 1D (Sequence panel), 2D (Contact panel) or 3D (Structure panel), attention maps and (B) K-means clustering based on
GPCR class of the entire GPCRome projected along the first two components of the PCA. The number of clusters was set to 6 (possible variables: Class
A, Class B1, Class B2, Class C, Frizzled, and Taste).
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Figure 2. PRECOGx ML model creation and screening. (A) Workflow of ML model creation for predicting GPCR-Gprotein (or �-arrestin) coupling; (B)
5-fold CV parameters (AUC,REC,MCC) of best performing models for specific Gprotein (or �-arrestin); (C) Comparison of testing performance (REC)
of PRECOGx with PRECOG for each transducer. Depending on whether the TGF assay or the GEMTA assay returned the best performing model in
PRECOGX for a given interaction, we compared with either the original PRECOG (trained on TGF) or PRECOG-GEMTA; (D) Comparison of testing
performance (REC) of PRECOGx and previously created PRECOG across each Gprotein family; (E) Comparison of testing performance (REC) of
PRECOGx across different GPCR classes.
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and GNA11), and �-arrestins, whose binding data were not
included in the TGF assay (Supplementary Table S2).

The best-performing models (collectively called PRE-
COGx) were tested on an independent test set compris-
ing GPCRs that were absent in the training set but have
known G protein coupling information reported in the lit-
erature (i.e. GtoPDB (17)). To test the predictions for �-
arrestins, we considered high-confidence interactions from
functional interaction databases (see Methods). We com-
pared the performance of PRECOGx with the previ-
ous PRECOG approach trained on TGF as well as on
the GEMTA studies (respectively termed PRECOG and
PRECOG-GEMTA;see Methods). With the only excep-
tion of GNAI3 and �-arrestin2, PRECOGx outperformed
PRECOG-based models (Figure 2C). This trend is evident
also when aggregating the recall metric family-wise, partic-
ularly for Gs (Figure 2D).

We also trained the models based on the Unified Cou-
pling Map study generated by intersecting the TGF and
the GEMTA studies (37). The model trained on the UCM
study performed overall worse than the one trained on the
individual sets (Supplementary Figure S1B; Supplementary
Table S3). Notably, while the original PRECOG was lim-
ited by design only to class A receptors, PRECOGx can
be used to predict coupling specificities of any receptor re-
gardless of its class. In particular, PRECOGx is able to re-
capitulate well known Gs preferences for several class B
receptors, Gi/o for class C and G12/13 and Gq/11 for Friz-
zled receptors (Figure 2E; Supplementary Table S4). To
further validate the model, we have also compared PRE-
COGx predictions with reported couplings of four recep-
tors from the TRUPATH platform (15) (Supplementary Ta-
ble S5). A total of 112 non-olfactory GPCRs, correspond-
ing to 28% (112 out of 393) of the human GPCRome, have
reported coupling neither in GtoPDB nor in quantitative
binding studies. We now provide a comprehensive reper-
toire of predicted couplings for the entire non-olfactory,
human GPCRome(Supplementary Table S6). For example,
the model is able to correctly predict TASR1 and TASR2
coupling preference for GNAI1 and GoA. These receptors
are the members of T1R family of taste receptors which are
involved in the detection of sweet-tasting compounds and
have been shown to preferentially couple aforementioned
G proteins (38). We also successfully predicted coupling
preference for GNAI2 of TAS2R16, a taste receptor with a
role in bitter-tasting shown to signal mainly through with
GNAI2 in a Ric-8A mediated fashion (39).

Predicted intra-molecular contacts inform about transducer
family specific signatures

We employed the ESM contact prediction model to pre-
dict 3D intra-molecular contacts for each GPCR sequence
and used transduction information to compute differential,
intra-molecular contact maps (see Methods). This yielded a
bi-dimensional contact enrichment map which allows iden-
tifying contacts between secondary structure elements dif-
fering among transducer families (Figure 3A). Differential
contact maps can be visualized on a 3D structure to high-
light the intramolecular interactions most associated with
a give coupling class (Figure 3B). Bi-dimensional contact

maps can be linearized and aggregated on the basis of sec-
ondary structure elements to obtain a contact enrichment
signature for each G protein transducer family (Figure 3D).
We used these signatures to cluster the transducer fami-
lies on the basis of their similarity which recapitulated the
family membership and moreover highlighted the structural
features responsible for a specific coupling, either at the in-
dividual gene or family level (Figure 3D). Every transducer
family retains a highly specific intra-molecular contact sig-
nature. For instance Gs members are depleted in contacts at
multiple regions, including the selectivity filter (40) formed
by TM5 and TM6 regions flanking ICL3 (TM5-TM6 and
ICL3-TM6), which is instead enriched in Gi/o members
(Figure 3D). Overall, Gs receptors are characterised by a
larger fraction of depleted intra-molecular contacts (Figure
3C), supporting evidences that Gs binding is associated with
lower structural constraints and higher structural plasticity
to accommodate the bulkier Gs C-terminal tail at the recep-
tors binding crevice (40).

Predicting the functional consequences of GPCRs variants

We show applications of PRECOGx to interpret the func-
tional consequences of GPCRs either disease mutations or
alternative splicing variants. We predicted the functional
consequences of 2470 missense variants (for 214 unique
GPCRs) from ClinVar with PRECOGx (Supplementary
Table S7). We have also predicted the effects of interface
mutations known to affect the interaction of G proteins
with GPCRs (Supplementary Table S8). Whenever a muta-
tion is inputted, PRECOGx calculates the coupling prob-
abilities for both the mutant and wild type forms (Fig-
ure 4). By comparing predicted couplings for the variants
with the corresponding wild-types it is possible to identify
the mutations leading to a switch in coupling, i.e. either
gain (i.e. mutant coupled vs. WT uncoupled) or loss (mu-
tant uncoupled vs. WT coupled) (Figure 4A; Supplemen-
tary Table S7;Methods). For example, the variant MC1R
p.D294H7x49 (dbSNP id: rs1805009; superscript refers to
GPCRdb generic residue numbers) is classified as a risk
factor for melanoma and is reported to lose the capability
to stimulate cAMP levels (41). PRECOGx predicted that
this mutation enhances the coupling towards several Gi/o
family members, suggesting that the reduced cAMP levels
might follow an increased inhibition of Adenylate Cyclase
via Gi/o coupling (Figure 4A). Projections of the embed-
dings of the mutated sequence on the GPCRome embedded
space allows the user to visualize the trajectory of the mu-
tant with respect to the WT form (Figure 4B). Visualization
of the mutation site in the structure panel of web interface
allows the user to inspect the mutation site in the context of
the coupling specific contact network which differentiates
GNAI1 from GNAS (Figure 4C). Moreover, visualization of
the attention map derived from the most important atten-
tion head of the best performing layer during classification,
allowed us to interpret the effect of the D2947x49 mutation,
which participate to a characteristic attention signature im-
pinging on residue 170 (Figure 4D).

As an additional use case, we used PRECOGx to pre-
dict the impact of alternative splicing on GPCR signalling.
We considered a total of 1141 protein-coding, alternatively
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Figure 3. Differential contact analysis: (A) Calculation of predicted contacts of each GPCR using the function predict contacts in the ESM library and
grouping GPCR based on G protein binding specificity to compute differential contact maps (log-odds ratio); (B) Projection of transducer family-specific
predicted contacts on a structure in PRECOGx application (PDB 7JOZ); (C) Number of aggregated enriched(increase) or depleted(decreased) secondary
structure element pairs for each Gprotein transducer family; (D) Contact enrichment signature of each Gprotein transducer family on the basis of secondary
structure element.

spliced mRNA transcripts from 364 unique genes from
GTEx (35) and we used the classifier to profile both canon-
ical and alternatively spliced variants for binding probabili-
ties. A total of 265 alternative splicing transcripts were pre-
dicted to change coupling classification (either gain or loss
of binding with respect to the canonical sequence) for at
least one binding partner (either G proteins or �-arrestins),
out of which 105 were expressed in at least one tissue with
an abundance equal or greater than 1TPM (Supplementary
Table S9). Among our hits, we found several spliceforms
previously reported to alter intracellular signalling (Supple-
mentary Table S9) (42). For example, the TBXA2R alterna-
tive spliceform 2 is predicted to gain GNAS coupling with

respect to the canonical one (Figure 5A, B). The PCA panel
illustrates this functional effect by showing the TBXA2R
spliceform 2 (red dot) approaching a cluster of GNAS cou-
pled receptor (green dots) with respect to WT TBXA2R
(blue dot; Figure 5A). While variation at the C-terminal is
most often predicted to alter intracellular signalling, we pre-
dicted that also certain N-terminal variants might perturb
intracellular signalling via allosteric mechanisms (Supple-
mentary Figure S2). For example a N-terminal splice vari-
ant of GHRHR, which has been shown to alter the sig-
nalling properties (i.e. Gs vs �-arrestins), is also predicted to
mildly alter corresponding couplings (Supplementary Table
S9) (43).
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Figure 4. (A) Prediction of a missense mutation MC1R/D294H in PRECOGx(upper left); (B) PCA projection of the mutation in GPCRome PCA sequence
space(down left); (C) Projection of the mutation on a 3D structure along with predicted contacts for GNAI1 (upper right) or GNAS (down right) G proteins;
(D)left-panel: attention map of the most important attention head of the best layer for GNAI1 binding prediction; mid-panel: zoom caption of the attention
signatures involving the mutated residue (i.e. D294H); right-panel: 3D cylindrical cartoon model (PDB: 7f58) representation of the residue regions involved
in attention networks with the D294H site.
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Figure 5. Predicting GPCRs alternative splicing signalling consequences: (A) PCA projection of TBXA2R canonical sequence and its spliceform in
GPCRome embedded space; (B) Visualization of tissue expression in GTEx, PRECOGx predictions and structural differences between canonical se-
quence(*) and spliceform sequences for TBXA2R.

DISCUSSION

We present a new method, called PRECOGx, to predict
GPCRs coupling specificities which represents an improve-
ment over its predecessor (PRECOG (18)). Our previous
approach was trained on hand-crafted features comprising
sequence-based descriptors, either from the 7TM bundle
or the intra-cellular loops, which were found to be statisti-
cally associated with a certain coupling. This set of features
was discrete, encompassing a few regions of the 7TM archi-
tecture, and was highly tailored to the experimental bind-
ing study that we used to train the model (i.e. 144 Class A
GPCRs from the TGF assay). A key addition to this new re-
source is the use of protein embeddings derived from state-
of-art protein language model (ESM1b) which has been
pre-trained on hundreds of millions sequences. ESM em-
beddings encode intra-sequence amino acids contextual de-

pendencies which have been shown to well recapitulate the
structure and function of proteins (19). We therefore ex-
ploited the generalisability of this model to obtain deep,
numerical representations for all human GPCRs, which al-
lowed us to model the signalling properties of receptors
from classes other than A, which were excluded from our
previous analysis. The performances of PRECOGx for all
the GPCR classes are even more remarkable if we consider
that the training sets that we employed are generally en-
riched in Class A members.

The construction of our model entailed a critical and sys-
tematic assessment of the predictive power of classifier al-
gorithms trained on distinct quantitative binding studies,
such as TGF� shedding or GEMTA. While performances
are overall comparable, we observe that optimal outcomes
for certain interactors are study specific (e.g. GNA15 based
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on GEMTA assay or GNAS based on Shedding; Supple-
mentary Table S2), suggesting that certain experimental set-
tings might be more accurate and lead to more generalizable
models for specific interaction partners. It is also possible
that the observed slight differences might be due to intrin-
sic differences of the assays and generated binding data as
well as to the different specific cutoff choices employed.

One clear advantage of the previous classifier was its in-
herent interpretability due to hand-crafted features. On the
other hand, interpretability of transformers models such as
the ESM is still an open area of research (44). Here we
addressed this issue by outputting for each best perform-
ing embedding layer for a given coupling partner the atten-
tion map of the head receiving higher weights in the model,
which is instrumental in understanding receptor’s residue
contextual dependencies associated with a certain coupling.
Moreover, we also computed a map of differentially pre-
dicted contacts which allows us to visualize the intramolec-
ular contacts recurring for certain couplings. We noted that
different layers, encoding different contextual properties,
are associated with different couplings. Understanding the
structural, dynamical and functional nature of these cou-
plings will be a matter of future investigations.

The new method also allows to predict the effect of muta-
tions at virtually any position within the sequence as well as
it can deal with larger variation such as splicing variants. On
one hand, it can complement ongoing efforts to catalogue
the functional impact of the myriad of cancer somatic mu-
tations observed in GPCRs (7,45). On the other hand, our
approach can provide mechanistic interpretation to recent
systematic analysis showing the widespread role of alterna-
tive splicing to modulate GPCR signalling in healthy tis-
sues (42). We also provide novel functionalities in the web-
server frontend, such as the PCA panel, which allows the
user to visualize the trajectories of variants with respect to
a reference low-dimensional sequence space of the human
GPCRome. Future efforts will focus on using more robust
pre-trained models to account for mutation effects at the
interaction interfaces with both the ligands as well as the
transducers as well as within the network of intra-molecular
contacts governing allosteric transitions.

In summary, the novel PRECOGx functionalities will be
of great help to better understand GPCR signalling mech-
anisms, to interpret GPCRs disease variants, as well as to
assist future receptor design efforts.

DATA AVAILABILITY

PRECOGx webserver is freely available at: https://precogx.
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The underlying code is freely available at: https://github.
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