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ABSTRACT: A novel set of thiazolylhydrazonothiazoles bearing
an indole moiety were synthesized by subjection reactions of
carbothioamide derivative and hydrazonoyl chlorides (or α-
haloketones). The cytotoxicity of the synthesized compounds was
evaluated against the colon carcinoma cell line (HCT-116), liver
carcinoma cell line (HepG2), and breast carcinoma cell line
(MDA-MB-231), and demonstrated encouraging activity. Further-
more, when representative products were assessed for toxicity
against normal cells, minimal toxic effects were observed, indicating
their potential safety for use in pharmacological studies. The
mechanism of action of the tested products, as inhibitors of the
epidermal growth factor receptor tyrosine kinase domain (EGFR
TK) protein, was suggested through docking studies that assessed their binding scores and modes, in comparison to a reference
standard (W19), thus endorsing their anticancer activity.

1. INTRODUCTION
The hallmark of cancer disease is an uncontrolled mechanism
that regulates abnormal growth in normal cells.1 The available
anticancer drugs have inadequate merits such as toxicity, lack of
selectivity, and long-dose resistance.2 Therefore, the develop-
ment of anticancer agents which have an advanced mechanism
of action for suppression of cells is considered to be a valuable
target in drug discovery. Triple-negative breast cancer could be
caused by epidermal growth factor receptors (EGFR).3

Compounds with a heterocyclic core play an important role in
the design and development of an entirely novel category of
structural features for medicinal purposes. Indole derivatives
represent an important structural class in drug discovery due to
its important biological activities.4−8 The Indole skeleton is one
of the most attractive structures with potent anticancer action,
and it is widely found in both active chemicals and natural
products.9 As currently known, various indole derivatives,
including mitraphylline, cediranib, indomethacin, indoximod,
tryptophol, vincristine, and topsentine, have been shown to be
effective anticancer medications10−18 (Figure 1). A lot of indole-
based derivatives additionally demonstrated tyrosine kinase
(TK) inhibitory action against breast cancer cell lines, according
to the literature study.19,20 On the other hand, thiazoles tethered
by heterocyclic compounds have a prominent role in medicinal
chemistry due to their wide range of activities in the field of drug
design and discovery. Their applications have been investigated
for inhibition of EGFR as potential antitumor agents.3

Pyrazolylthiazoles have revealed significant in vitro antiprolifer-

ative activity against MCF-7.21 Also, N-pyridinyl-2-(6-
phenylimidazo[2,1-b]thiazol-3-yl)acetamides have demonstra-
ted inhibitory activity against VEGFR2 kinase.22 Moreover, 5-
benzylidene- 2,4-thiazolidine diones have been evaluated as
VEGFR-2 kinase inhibitors and revealed anti-angiogenesis
activity.23 Recently, the utility of thiazolylhyrazono-thiazoles
has been endorsed as potential anticancer drugs.24−26 In
addition, azolylthiazoles have been handled in several clinically
available anticancer drugs, such as ixabepilone,27 dabrafenib28

and dasatinib29 (Figure 1). Otherwise, the conjugated
hydrazone system has been widely employed in pharmacological
research as antitumor30,31 agents (Figure 1). The integration of a
single species of two or more pharmacophores is a useful
structural modification method known as molecular hybrid-
ization. In recent years, hybrid drug design has been employed as
a primary strategy for generating innovative anticancer
medicines that can address many of the pharmacokinetic
shortcomings of existing anticancer medications32−36 (Figure
1).
Based on the examples described above, and in continuation

of our attempts to synthesize heterocycles with anticancer
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activity.24−26,31,37−41 We aimed in this study to prepare a hybrid
structural scaffold of thiazolylthiazoles, with hydrazone linker,
and investigate their potential activities as therapeutic agents for
cancer therapy. The molecular docking study of the isolated
products into epidermal growth factor receptor tyrosine kinase
domain (EGFR TK) binding site was also demonstrated to

predict the binding affinity and determine the interactions of the
proposed derivatives 7a−e, 9a−f and 11a,b (Figure 1).

2. RESULTS AND DISCUSSION
In our study, we have settled on the preparation of 1-{2-[2-(1-
(1H-indol-3-yl)ethylidene)hydrazinyl]-4-methylthiazol-5-yl}-
ethan-1-one (3), as a key intermediate, from the reaction of 2-

Figure 1. Indole and thiazole derivatives as anticancer drugs, as well as targeted compounds.

Scheme 1. Synthesis of Compound 5 and Compounds 7a−e
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(1-(1H-indol-3-yl)ethylidene)hydrazine-1-carbothioamide
(1)42 and 3-chloro-2,4-pentanedione (2) in ethanolic solution
and catalytic amounts of triethylamine under the thermal
condition as depicted in Scheme 1.
Construction of our target 2-{1-[2-(2-(-1-(1H-indol-3-yl)-

ethylidene)hydrazinyl)-4-methylthiazol-5-yl]ethylidene}-
hydrazine-1-carbothioamide (5), was achieved via condensation
of compound 3 with thiosemicarbazide (4) in ethanol and few
drops of hydrochloric acid as a catalyst (Scheme 1). Elemental
analyses and spectral data of IR, NMR, and MS were used to
confirm the structure of compounds 3 and 5 (see Experimental
Section).
Carbothioamide derivative 5was subjected to cyclization with

2-oxo-N-arylpropanehydrazonoyl chlorides (6a−e)26,37 via
nucleophilic substitution and condensation reactions to give 4-

methyl-5-(aryldiazenyl)-2-hydrazonothiazole derivatives 7a−e
(Scheme 1).
1H NMR spectrum of compound 7a, as a representative

example, was consistent with the assigned structure. It revealed
four singlet signals at δ = 2.26, 2.34, 2.41, and 2.48 ppm
attributed to methyl groups on thiazoles and hydrazone
moieties,24,26 respectively. H-2 and (NH) exchangeable protons
of the indole ring were resonated at δ = 8.26 and 11.85 ppm,43
respectively. In the mass spectrum, the molecular ion peak of 7a
was recorded at m/z 527 which acquiesced with the molecular
weight of the assigned structure.
The synthetic strategy of the previous cyclization reaction was

extended towards α-haloketones. Thus, carbothioamide de-
rivative 5 was allowed to react with 2-bromo-1-arylethan-1-ones
(8a−f) or 3-chloro-2,4-pentanedione (2) or ethyl 2-chloro-3-

Scheme 2. Synthesis of Hydrazonothiazoles 9a−f and 11a,b

Table 1. Inhibitory Effects of the Tested Compounds against Various Carcinoma Cell Lines Were Evaluated through IC50
Measurements (The Mean ± Standard Error was Used to Express the Results)a

IC50 values (μM) CC50 values (μM)b

compound no HepG-2 MDA-MB-231 HCT-116 MRC-5

doxorubicin 6.18 ± 0.29 8.37 ± 0.64 7.18 ± 0.44 89.17 ± 2.75
3 93.2 ± 3.17 74.02 ± 3.39 138.38 ± 5.14 c

5 62.30 ± 1.49 44.26 ± 2.95 83.03 ± 1.38
7a 15.38 ± 1.46 13.39 ± 1.48 16.49 ± 1.08 315.94 ± 16.20
7b 9.36 ± 0.92 12.97 ± 1.00 12.34 ± 1.92 175.92 ± 18.24
7c 7.93 ± 0.84 9.28 ± 1.34 13.28 ± 1.04 181.89 ± 15.07
7d 27.35 ± 1.37 18.49 ± 3.39 47.40 ± 2.48
7e 39.48 ± 3.37 48.04 ± 4.58 83.04 ± 3.58
9a 48.01 ± 1.46 77.85 ± 4.03 36.29 ± 2.58 169.91 ± 11.37
9b 10.38 ± 1.82 14.47 ± 2.93 15.18 ± 4.48 177.28 ± 7.26
9c 13.39 ± 2.39 17.03 ± 3.05 17.29 ± 3.00 186.27 ± 10.65
9d 92.04 ± 2.38 83.28 ± 4.35 64.15 ± 3.33
9e 81.68 ± 1.74 133.45 ± 7.91 61.39 ± 2.25
9f 58.18 ± 2.28 81.02 ± 5.32 106.32 ± 6.02
11a 37.25 ± 1.45 63.28 ± 4.49 41.37 ± 2.34 195.16 ± 17.26
11b 13.04 ± 1.06 16.30 ± 4.35 31.26 ± 2.28 214.08 ± 9.36

aIC50 (μM): 1−10 (good results); 11−40 (moderate); 41−100 (poor) and above 100 (inactive). bThe data for CC50 values, which indicate the
cytotoxic effects on normal human lung fibroblast (MRC-5) cell line, were recorded as mean ± standard error. cNot measured.
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oxobutanoate (10) in dioxane and employed triethylamine as
basic catalyst under refluxing condition. This reaction allowed
for the synthesis of hydrazonothiazoles (9a−f) or 11a or 11b,
respectively, as illustrated in Scheme 2. The distinctive features
in the structure of isolated products were elucidated by
spectroscopic tools and elemental analyses. 1H NMR spectra
of products 9a−f showed in each case a singlet signal at δ =
7.40−7.48 ppm corresponding to H-5 of thiazole ring.44 In IR,
the bands of (C�O) group of compounds 11a and 11b were
revealed at 170045 and 169546 cm−1, respectively.
2.1. Cytotoxic Activity. The in vitro growth inhibiting

capability of the synthesized products was evaluated in
comparison to the Doxorubicin anticancer reference drug in
the liver carcinoma cell line (HepG-2), colon carcinoma cell line
(HCT-116), and breast carcinoma cell line (MDA-MB-231). A
dose−response curve was constructed from the obtained data,
and the IC50 (the concentration of the test chemical required to
kill 50% of the cell population) was calculated. The average IC50
of three independent studies was used to calculate cytotoxic
activity. The findings presented in Table 1 and Figure 2
demonstrated that the majority of the tested compounds
exhibited a considerable range of activity in comparison to the
standard drug.
Based on the SAR (structure−activity relationship) analysis, it

can be observed that certain structural features may contribute
to cytotoxic activity:

• Generally, the in vitro inhibition effect of the 5-
arylazothiazoles 7 is greater than 4-arylthiazoles 9 (7b >
9b; 7c > 9c) towards all the examined anticancer cell lines.

• The in vitro inhibition effect of most of the synthesized
compounds towards HepG-2 > MDA-MB-231 > HCT-
116 cell lines (For example, the IC50 of compound 7c
towards HepG-2, MDA-MB-231, and HCT-116 cell lines
= 7.93 ± 0.84, 9.28 ± 1.34, and 13.28 ± 1.04 μM,
respectively).

• The order of the in vitro inhibition effect of the
synthesized compounds against the liver carcinoma cell
line (HepG-2) is: 7c > 7b > 9b > 11b > 9c > 7a (good
results)≫> 7d > 11a > 7e (moderate results)≫> 9a > 9f
> 5 > 9e > 9d > 3 (poor results or inactive).

• The order of the in vitro inhibition effect of the
synthesized compounds against the breast carcinoma
cell line (MDA-MB-231) is: 7c > 7b > 7a > 9b > 11b > 9c
> 7d (good results) ≫> 5 > 7e (moderate results) ≫>
11a > 3 > 9a > 9f > 9d > 9e (poor results or inactive).

• The order of the in vitro inhibition effect of the
synthesized compounds against the colon carcinoma
cell line (HCT-116) is: 7b > 7c > 9b > 7a > 9c (good
results)≫> 11b > 9a > 11a > 7d (moderate results)≫>
9e > 9d > 5 > 7e > 9f > 3 (poor results or inactive).

• For thiazoles 7a−e: the electron donating groups (e.g.,
Me and MeO) at the 4-position of phenylazothiazoles
enhance the activity while the electron-withdrawing
groups (e.g., Cl) decrease the activity (7c, 7b ≫>7a
≫> 7d, 7e).

• For thiazoles 9a−f: the electron donating groups (e.g., Me
and MeO) at the 4-position of phenylazothiazoles
enhance the activity while the electron-withdrawing
groups (e.g., Cl, Br, NO2) decrease the activity (9b, 9c
≫> 9a ≫> 9d, 9e, 9f).

• For thiazoles 11a,b: Carboxylate group (COOEt) at
position 5 of the thiazole moiety has greater inhibition
activity than the acetyl group (COCH3) (11b > 11a).

In order to establish a dose−response curve and calculate the
fifty percent cytotoxic concentration (CC50), the impact of both
the investigated compounds and the Doxorubicin were
evaluated on the normal human lung fibroblast (MRC-5) cell
line. The resulting values are presented in Table 1. The
selectivity index (SI) was calculated by dividing the CC50 by the
IC50 values. The outcomes indicated that the majority of the
compounds exhibited good selectivity index values (SI value
>1). Although the examined compounds displayed limited
toxicity against normal cells, indicating their safety, further
investigations in vivo and pharmacology may be required.
2.2. Molecular Docking. In order to propose the

mechanism of action of the screened compounds as protein
Epidermal Growth Factor Receptor Tyrosine Kinase Domain
(EGFR TK) inhibitors, docking studies were conducted using
the Molec-ular Operating Environment 2019.012 suite.47 This
was done by comparing the binding scores and modes of the
screened compounds to a compound named 4-[4-(1-benzo-

Figure 2. SAR of tested compounds against HepG-2, MDA-MB-231, and HCT-116.
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thiophen-4-yloxy)-3-chlorophenyl]4-{[4-(1-benzothiophen-4-
yloxy)-3-chlorophenyl]amino}-N-(2-hydroxyethyl)-8,9-dihy-
dro-7H-pyrimido[4,5-b]azepine-6-carboxamide (W19) as a
reference standard. The screened compounds were drawn
using PerkinElmer ChemOffice Suite 2017. The three-dimen-
sional (3D) structures of the small molecules were generated.
The structures were assigned appropriate bond orders, hydrogen
atoms, and ionization. The results were refined using the
London DG force and force field energy. All minimizations were
performed until a root mean square deviation (RMSD) gradient
0.01 kcal·mol−1Å−1 using MMFF 94× (Merck molecular force
field 94×), and the partial charges were determined automati-
cally. The binding affinity of the ligand was evaluated using the
scoring function and dock function (S, Kcal/mol) created by the
MOE software.48,49 The screened compounds and the co-

crystallized inhibitor (W19) were prepared for the docking
process toward (EGFR TK) by importing them into one
database and storing them as an MDB file. From the Protein
Data Bank (https://www.rcsb.org/structure/3W33), the
(EGFR TK) X-ray was retrieved.50 Furthermore, the docking
of the compound was conducted by meticulously adhering to
themethods that had been previously outlined.49,50 Importantly,
the protein that was obtained was corrected for errors, had 3D
hydrogen-loading performed, and underwent energy minimiza-
tion50,51 before the docking process began. The file for the ready
active site was loaded after which the overall docking procedure
began. The scoring method was (London dG), the docking
procedure site was (ligand atoms), and the placement strategy
was (triangle matcher). The scoring method was GBVI/WSA
dG, and the top 10 poses for each tested substance were chosen

Figure 3. Redocked co-crystalized ligand (W19) interactions with EGFR TK residues in two dimensions.

Figure 4. 3D, 2D, and mapping surface showing binding modes between 7a and EGFR TK residues at the sites of activity.
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Table 2. Tested Compounds’ Interactions and Binding Scores with the EGFR TK’s Binding Pocket (3W33)

compounds no binding scores (kcal/mol) hydrogen bond interactions distance (Å) hydrophobic interactions distance (Å)

7a −10.9 GLY 719 2.22 THR 790 3.83
LYS 745 3.71
ALA 743 3.75
LEU 788 3.55
LEU 844 3.93
ASP 855 3.84
MET 766 3.66
VAL 726 3.81
ALA 743 3.79

7b −10.2 LEU 718 1.99 LYS 745 3.44
ASP 855 3.35 LEU 788 3.60

PHE 997 3.97
PHE 856 3.88
ALA 1000 3.24
ALA 743 3.50
LYS 745 3.93
LEU 788 3.47

7c −10.2 ASP 855 2.15 PHE 856 3.22
ARG 841 2.37 CYS 797 3.64

ASP 800 3.31
MET 766 3.11
VAL 726 3.41
LEU 788 3.26
PHE 856 3.08

9a −10.3 ASP 855 2.70 VAL 726 3.79
ARG 841 3.16 ALA 743 3.47

THR 854 3.28
LEU 844 3.71
LYS 745 3.71

9b −10.9 ASP 855 2.70 LEU 788 3.24
CYS 797 2.78 PHE 997 3.33

VAL 726 3.76
ALA 743 3.43
PHE 856 3.20
ASP 800 3.11
LEU 844 3.75
MET 766 3.87
LEU 777 3.77

9c −9.4 ASP 800 3.11 ARG 841 3.92
LEU 718 3.64
CYS 797 3.82
ALA 743 3.22

11a −10.0 ASP 855 2.39 VAL 726 3.93
PHE 723 2.12 LEU 844 3.88

ALA 743 3.29
LYS 745 3.19
PHE 856 3.14
VAL 726 3.45

11b −10.4 LYS 745 2.38 LEU 788 3.23
ARG 841 2.12 GLY 721 3.18
ALA 722 2.11 ALA 743 3.92

LYS 745 3.26
PHE 723 3.21

W19 −10.5 MET 793 2.51 PHE 856 3.88
SER 720 2.29 LEU 788 3.82

LYS 745 3.48
LEU 844 3.93
ALA 743 3.81
VAL 726 3.68
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from a pool of 30 poses using rigid receptor docking as the
refining process. The MDB file for the examined ligands was
then supplied to the application, and the calculations for the
ongoing docking were carried out automatically. After every-
thing was done, the resulting poses were analyzed, and the best
ones with the largest scores, reasonable RMSD values, and better

ligand−protein target interactions were picked and kept for
subsequent studies. It is important to note that the co-
crystallized ligand (W19) was redocked at its binding pocket
on the prepared Target as part of a program validation phase for
the applicable MOE program52−54 (Figure 3). By getting a low
RMSD value (1.21) between the screened compounds and the

Figure 5. 3D, 2D, and mapping surface showing binding modes between 7b and EGFR TK residues at the sites of activity.

Figure 6. 3D, 2D, and mapping surface showing binding modes between 7c and EGFR TK residues at the sites of activity.
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redocked co-crystallized ligand (W19), a valid performance was
demonstrated. Discovery Studio 4.0 software was used to further
visualize the output from MOE software.
The binding interactions of the newly synthesized compounds

were analyzed using molecular docking studies with the MOE
2019 package. Blocking the growth pathway by inhibiting this

receptor is a promising strategy for developing anti-cancer
agents. Molecular docking studies were employed to investigate
the suggested binding interactions of the tested compounds with
the EGFR TK. Comparing the compounds to the native co-
crystallized ligand (W19), which serves as a reference control
and exhibits binding energy (G of −10.5 kcal/mol) as shown in

Figure 7. 3D, 2D, and mapping surface showing binding modes between 9a and EGFR TK residues at the sites of activity.

Figure 8. 3D, 2D, and mapping surface showing binding modes between 9b and EGFR TK residues at the sites of activity.
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Table 1 and binding interactions shown in Figure 4, the decrease
in binding energy upon association of the compounds with the
target protein suggests a greater binding efficiency. The binding
scores, as well as the details of the binding interactions with their
corresponding bond types for the most promising synthesized

compounds (7a−c, 9a−c, 11a, and 11b) besides, the co-
crystallized ligand (W19), are depicted in Table 2.
It is worth noting that compounds 7a and 9b exhibited the

best binding scores among synthesized compounds. Hence,
compounds 7a and 9b revealed binding scores of −10.9 kcal/
mol, which is superior to that of the co-crystallized inhibitor.

Figure 9. 3D, 2D, and mapping surface showing binding modes between 9c and EGFR TK residues at the sites of activity.

Figure 10. 3D, 2D, and mapping surface showing binding modes between 11a and EGFR TK residues at the sites of activity.
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Compound 7a could compose H-bonds with the one key amino
acid GLY 719 at a distance of 2.22 Å. In addition, compound 9b
could interact with receptor-forming H-bonds with amino acids
ASP 855 and CYS 797 at a distance of 2.70 Å and 2.78 Å,
respectively (Table 1). Table 1 displays the findings from the in-
silico protein-screened compounds interaction, which revealed
the active participation of certain amino acids in the protein
target (PHE 997, PHE 856, LYS 745, MET 766, GLY 796, ASN
842, ASP 855, LEU 718, PHE 723, VAL 726, ALA 743, THR
790, LEU 844, THR 854) through a number of hydrogen and
hydrophobic interactions. The screened synthesized showed
binding energies from ΔG −9.4 to −10.9 kcal/mol with
potential possibility of interactions with EGFR TK active sites as
depicted in Table 1 and Figures 4−11.

3. EXPERIMENTAL SECTION
3.1. Instruments and Materials. The isolated products

were evaluated for their melting points using an electrothermal
Gallenkamp apparatus. To obtain the IR spectra, potassium
bromide discs were used along with a Pye-Unicam SP300
instrument. The 1H NMR and 13C NMR spectra were recorded
using a Jeol-500 spectrometer (500 MHz for 1H NMR and 125
MHz for 13C NMR). The mass analysis was performed using a
Thermo Scientific GC/MS model ISQ and/or an Agilent LC-
MSD IQ Infinity II 1260 [(SpectraLab Scientific Inc., Markham,
ON L3R 3V6, Canada)]. Using Merck silica gel GF254 plates
(Merck, Darmstadt Germany), analytical thin-layer chromatog-
raphy (TLC) was carried out. Finally, elemental analysis (C, H,
and N) was executed with the Perkin-Elmer 2400 apparatus
(Elementar Analysensysteme GmbH, Langenselbold, Ger-
many).

3.1.1. Synthesis of (E)-1-(2-(2-(1-(1H-Indol-3-yl)-
ethylidene)hydrazineyl)-4-methylthiazol-5-yl)ethan-1-one
(3). 2-(1-(1H-Indol-3-yl)ethylidene)hydrazine-1-carbothioa-

mide (1) (2.32 g, 0.01 mol) was licit to react with 3-chloro-
2,4-pentanedione (2) (1.34 g, 0.01 mol) in ethanol (50 mL) and
few drops of trimethylamine under reflux condition for 2 h. After
completion of the reaction, the assembled precipitate was
filtered off and rinsed by methanol. The isolated product was
crystallized from ethanol to give pure compound 3. Yellowish
white solid; (yield 2.8 g, 90%)mp: 217−219 °C; IR, υ 2942 (C−
H), 1698 (C�O), 1602 (C�N) cm−1; 1H NMR (DMSO-d6,
500MHz) δ: 2.36 (s, 3H, CH3), 2.41 (s, 3H, CH3−C�N), 2.51
(s, 3H, COCH3), 7.14−7.48 (m, 4H, Ar−H), 7.49 (s, 1H,
pyrrole-H), 8.34 (s, 1H, NH), 11.66 (s, 1H, NH) ppm; 13C
NMR (DMSO, 125 MHz) δ: 16.8 (CH3), 23.7 (CH3), 32.7
(CH3), 122.8, 124.5, 127.6, 128.2, 130.4, 133.9, 140.4, 149.6,
151.6, 154.0, 162.0, 167.0, 174.1 ppm; MS, m/z (%) 312 (M+,
18), 294 (27), 276 (100), 182 (86), 153 (67), 104 (26), 77 (38).
Anal. Calcd for C16H16N4OS (312.10): C, 61.52; H, 5.16; N,
17.94; S, 10.26. Found: C, 61.74; H, 5.22; N, 17.71; S, 10.48%.

3.1.2. Synthesis of (E)-2-(1-(2-(2-((E)-1-(1H-Indol-3-yl)-
ethylidene)hydrazineyl)-4-methyl thiazol-5-yl)ethylidene)-
hydrazine-1-carbothioamide (5). Compound 3 (3.12 g, 0.01
mol) and thiosemicarbazide (0.9 g, 0.01 mol) were licit to
dissolve in absolute ethanol (50 mL) under stirring conditions.
A few drops of HCl were added and the reaction mixture was
heated for 2 h. After cooling, sequential filtration and
crystallization from ethanol have been achieved to afford pure
product 5. Yellow solid; (yield 3.08 g, 80%) mp: 251−253 °C;
IR, υ 3410, 3248, 3158 (NH and NH2), 2962 (C−H), 1601
(C�N) cm−1; 1H NMR (DMSO-d6, 500 MHz) δ: 2.36 (s, 3H,
CH3), 2.41 (s, 3H, CH3−C�N), 2.43 (s, 3H, CH3−C�N),
4.27 (br, 2H, NH2), 7.14−7.49 (m, 4H, Ar−H), 8.26 (s, 1H,
pyrrole-H), 8.34 (s, 1H, NH), 10.85 (s, 1H, NH), 11.64 (s, 1H,
NH) ppm; MS,m/z (%) 385 (M+, 26), 366 (29), 280 (31), 252
(240), 158 (86), 142 (100), 138 (88), 89 (86), 75 (44). Anal.

Figure 11. 3D, 2D, and mapping surface showing binding modes between 11b and EGFR TK residues at the sites of activity.
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Calcd for C17H19N7S2 (385.11): C, 52.97; H, 4.97; N, 25.43; S,
16.63. Found: C, 52.79; H, 5.12; N, 25.61; S, 16.49%.
3.2. General Procedure for the Reactions of Thio-

semicarbazones 5 with α-Haloketones. 2-{1-[2-(2-(-1-
(1H-indol-3-yl)ethylidene)hydrazinyl)-4-methylthiazol-5-yl]-
ethylidene}hydrazine-1-carbothioamide (5) (0.385 g, 1 mmol)
was mixed with 2-oxo-N-arylpropanehydrazonoyl chlorides
(6a−e) or 2-bromo-1-arylethan-1-ones (8a−f) or 3-chloro-
2,4-pentanedione (2) or ethyl 2-chloro-3-oxobutanoate (10) [1
mmol of each] in dioxane (20 mL) and catalytic amount of
triethylamine. The reaction mixture was heated under constant
volume for 4 h. TLC (EtOAc/n-hexane 1:1) was used to
monitor the reaction progress. Excess solvent was evaporated
under reduced pressure and the formed precipitate was collected
by filtration. Crystallization was achieved using an ethanol/
dioxane mixture to isolate products 7a−e or 9a−f or 11a,b,
respectively.

3.2.1. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-4-
methyl-5-((E)-1-(2-(4-methyl-5-((E)-phenyldiazenyl)thiazol-
2-yl)hydrazineylidene)ethyl)thiazole (7a). Red solid; (yield
0.43 g, 80%) mp: 194−196 °C; IR, υ 3310, 3230, 3218 (3NH),
2914 (C−H), 1608 (C�N) cm−1; 1H NMR (DMSO-d6, 500
MHz) δ: 2.26 (s, 3H, CH3), 2.34 (s, 3H, CH3), 2.41 (s, 3H,
CH3−C�N), 2.48 (s, 3H, CH3−C�N), 7.04−7.68 (m, 9H,
Ar−H), 8.26 (s, 1H, pyrrole-H), 8.34 (s, 1H, NH), 8.43 (s, 1H,
NH), 11.85 (s, 1H, NH) ppm; 13C NMR (DMSO, 125MHz) δ:
9.1 (CH3), 15.6 (CH3), 16.3 (CH3), 24.6 (CH3), 112.0, 115.6,
116.3, 119.1, 120.8, 122.6, 123.9, 125.0, 128.2, 128.7, 128.9,
129.2, 130.3, 137.6, 138.6, 139.6, 141.3, 145.6, 158.7, 167.9
(Ar−C and C�N) ppm; MS,m/z (%) 527 (M+, 18), 276 (28),
200 (14), 155 (37), 138 (100), 75 (33). Anal. Calcd for
C26H25N9S2 (527.17): C, 59.18; H, 4.78; N, 23.89; S, 12.15.
Found: C, 58.99; H, 4.62; N, 23.61; S, 12.29%.

3.2.2. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-4-
methyl-5-((E)-1-(2-(4-methyl-5-((E)-p-tolyldiazenyl)thiazol-
2-yl)hydrazineylidene)ethyl)thiazole (7b). Red solid; (yield
0.43 g, 80%) mp: 188−190 °C; IR, υ 3312, 3232, 3220 (3NH),
2916 (C−H), 1604 (C�N) cm−1; 1H NMR (DMSO-d6, 500
MHz) δ: 2.18 (s, 3H, CH3), 2.23 (s, 3H, CH3), 2.29 (s, 3H,
CH3), 2.33 (s, 3H, CH3−C�N), 2.37 (s, 3H, CH3−C�N),
7.04−7.77 (m, 8H, Ar−H), 8.27 (s, 1H, pyrrole-H), 8.36 (s, 1H,
NH), 8.43 (s, 1H, NH), 11.88 (s, 1H, NH) ppm; 13C NMR
(DMSO, 125 MHz) δ: 10.9 (CH3), 13.8 (CH3), 17.2 (CH3),
21.7 (CH3), 23.8 (CH3), 113.8, 114.9, 120.6, 121.7, 122.8,
124.3, 126.6, 127.2, 128.7, 129.3, 130.1, 132.4, 133.4, 136.1,
137.6, 141.4, 160.6, 163.0, 169.0, 170.1 ppm (Ar−C and C�
N); MS, m/z (%) 541 (M+, 24), 412 (31), 317 (19), 263 (74),
229 (40), 183 (39), 138 (100), 96 (64), 77 (38). Anal. Calcd for
C27H27N9S2 (541.18): C, 59.87; H, 5.02; N, 23.27; S, 11.84.
Found: C, 59.93; H, 4.92; N, 23.16; S, 12.02%.

3.2.3. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-5-
((E)-1-(2-(5-((E)-(4-methoxyphenyl)diazenyl)-4-methylthia-
zol-2-yl)hydrazineylidene)ethyl)-4-methylthiazole (7c). Red
solid; (yield 0.46 g, 82%) mp: 174−176 °C; IR, υ 3312, 3230,
3221 (3NH), 2922 (C−H), 1600 (C�N) cm−1; 1H NMR
(DMSO-d6, 500 MHz) δ: 2.29 (s, 3H, CH3), 2.30 (s, 3H, CH3),
2.36 (s, 3H, CH3−C�N), 2.41 (s, 3H, CH3−C�N), 3.71 (s,
3H, OCH3), 7.11−7.37 (m, 8H, Ar−H), 7.79 (s, 1H, pyrrole-
H), 8.35 (s, 1H, NH), 8.42 (s, 1H, NH), 11.88 (s, 1H, NH)
ppm; 13CNMR (DMSO, 125MHz) δ: 11.9 (CH3), 14.1 (CH3),
17.3 (CH3), 23.0 (CH3), 51.8 (OCH3), 114.3, 115.4, 120.6,
121.7, 122.6, 124.4, 126.7, 127.2, 128.7, 129.3, 130.4, 131.9,
134.1, 136.1, 137.6, 141.4, 161.6, 164.0, 168.0, 169.7 ppm (Ar−

C and C�N); MS, m/z (%) 557 (M+, 34), 412 (50), 341 (39),
246 (37), 188 (73), 117 (100), 83 (69), 77 (53). Anal. Calcd for
C27H27N9OS2 (557.18): C, 58.15; H, 4.88; N, 22.60; S, 11.50.
Found: C, 58.23; H, 4.94; N, 22.46; S, 11.62%.

3.2.4. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-5-
((E)-1-(2-(5-((E)-(4-chlorophenyl)diazenyl)-4-methylthiazol-
2-yl)hydrazineylidene)ethyl)-4-methylthiazole (7d). Yellow
solid; (yield 0.47 g, 83%) mp: 203−205 °C; IR, υ 3312, 3236,
3219 (3NH), 2921 (C−H), 1599 (C�N) cm−1; 1H NMR
(DMSO-d6, 500 MHz) δ: 2.28 (s, 3H, CH3), 2.32 (s, 3H, CH3),
2.36 (s, 3H, CH3−C�N), 2.46 (s, 3H, CH3−C�N), 7.11−
7.34 (m, 8H, Ar−H), 7.79 (s, 1H, pyrrole-H), 8.34 (s, 1H, NH),
8.42 (s, 1H, NH), 11.82 (s, 1H, NH) ppm; 13C NMR (DMSO,
125 MHz) δ: 9.1 (CH3), 14.7(CH3), 16.2 (CH3), 20.9 (CH3),
109.8, 114.0, 114.1, 115.8, 118.2, 121.9, 122.3, 125.9, 126.1,
128.6, 129.8, 130.1, 132.1, 138.3, 142.7, 149.6, 149.7, 150.0,
156.5, 167.1 (Ar−C and C�N) ppm; MS, m/z (%) 563 (M+ +
2, 5), 561 (M+, 16), 320 (11), 252 (16), 197 (67), 138 (68), 126
(100), 116 (87), 77 (48). Anal. Calcd for C26H24ClN9S2
(561.13): C, 55.56; H, 4.30; N, 22.43; S, 11.41. Found: C,
55.49; H, 4.42; N, 22.61; S, 11.29%.

3.2.5. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-5-
((E)-1-(2-(5-((E)-(2,4-dichlorophenyl)diazenyl)-4-methylthia-
zol-2-yl)hydrazineylidene)ethyl)-4-methylthiazole (7e). Yel-
low solid; (yield 0.48 g, 81%) mp: 236−238 °C; IR, υ 3315,
3232, 3224 (3NH), 2935 (C−H), 1605 (C�N) cm−1; 1H
NMR (DMSO-d6, 500 MHz) δ: 2.28 (s, 3H, CH3), 2.33 (s, 3H,
CH3), 2.36 (s, 3H, CH3−C�N), 2.46 (s, 3H, CH3−C�N),
7.11−7.57 (m, 7H, Ar−H), 7.85 (s, 1H, pyrrole-H), 8.34 (s, 1H,
NH), 8.40 (s, 1H, NH), 11.82 (s, 1H, NH) ppm; 13C NMR
(DMSO, 125 MHz) δ: 10.9 (CH3), 13.4 (CH3), 17.9 (CH3),
20.9 (CH3), 114.7, 115.8, 120.5, 121.8, 122.9, 124.6, 125.8,
126.7, 127.3, 128.9, 129.4, 130.3, 132.6, 133.4, 135.9, 136.6,
140.4, 142.3, 161.7, 163.9, 168.8, 170.1 ppm (Ar−C and C�
N); MS, m/z (%) 595 (M+, 21), 447 (26), 312 (83), 252 (62),
191 (28), 117 (100), 96 (29), 77 (79). Anal. Calcd for
C26H23Cl2N9S2 (595.09): C, 52.35; H, 3.89; N, 21.13; S, 10.75.
Found: C, 52.49; H, 3.72; N, 21.21; S, 10.69%.

3.2.6. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-4-
methyl-5-((E)-1-(2-(4-phenylthiazol-2-yl)hydrazineylidene)-
ethyl)thiazole (9a). Yellow solid; (yield 0.43 g, 90%) mp: 173−
175 °C; IR, υ 3318, 3236, 3228 (3NH), 2951 (C−H), 1598
(C�N) cm−1; 1H NMR (DMSO-d6, 500 MHz) δ: 2.29 (s, 3H,
CH3), 2.41 (s, 3H, CH3−C�N), 2.49 (s, 3H, CH3−C�N),
7.04−7.34 (m, 9H, Ar−H), 7.40 (s, 1H, thiazole-H5), 8.13 (s,
1H, pyrrole-H), 8.34 (s, 1H, NH), 8.43 (s, 1H, NH), 11.85 (s,
1H, NH) ppm; 13C NMR (DMSO, 125 MHz) δ: 13.2 (CH3),
16.0 (CH3), 20.8 (CH3), 110.1, 113.0, 114.2, 115.8, 116.5,
117.0, 118.6, 120.1, 121.9, 125.3, 129.5, 129.9, 130.3, 131.9,
134.0, 141.9, 143.0, 150.7, 159.6, 163.3 (Ar−C and C�N)
ppm; MS,m/z (%) 485 (M+, 19), 313 (48), 270 (52), 243 (60),
190 (69), 138 (100), 117 (88), 91 (46), 75 (39). Anal. Calcd for
C25H23N7S2 (485.15): C, 61.83; H, 4.77; N, 20.19; S, 13.20.
Found: C, 61.99; H, 4.63; N, 20.31; S, 13.29%.

3.2.7. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-4-
methyl-5-((E)-1-(2-(4-(p-tolyl)thiazol-2-yl)hydrazineylidene)-
ethyl)thiazole (9b). Brown solid; (yield 0.45 g, 90%) mp: 181−
183 °C; IR, υ 3318, 3233, 3221 (3NH), 2950 (C−H), 1599
(C�N) cm−1; 1H NMR (DMSO-d6, 500 MHz) δ: 2.29 (s, 3H,
CH3), 2.34 (s, 3H, CH3), 2.39 (s, 3H, CH3−C�N), 2.48 (s,
3H, CH3−C�N), 7.18−7.34 (m, 8H, Ar−H), 7.46 (s, 1H,
thiazole-H5), 8.12 (s, 1H, pyrrole-H), 8.34 (s, 1H, NH), 8.42 (s,
1H, NH), 11.87 (s, 1H, NH) ppm; 13C NMR (DMSO, 125
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MHz) δ: 12.3 (CH3), 18.4 (CH3), 21.4 (CH3), 22.6 (CH3),
115.7, 116.3, 120.5, 121.7, 123.4, 125.8, 126.6, 127.5, 129.3,
130.2, 131.9, 134.4, 137.8, 140.5, 142.2, 145.1, 151.8, 156.8,
162.2, 168.9 ppm (Ar−C and C�N); MS, m/z (%) 499 (M+,
14), 301 (100), 218 (76), 115 (74), 81 (51). Anal. Calcd for
C26H25N7S2 (499.16): C, 62.50; H, 5.04; N, 19.62; S, 12.83.
Found: C, 62.38; H, 4.93; N, 19.41; S, 13.01%.

3.2.8. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-5-
( ( E ) - 1 - ( 2 - ( 4 - ( 4 -m e t h o x y p h e n y l ) t h i a z o l - 2 - y l ) -
hydrazineylidene)ethyl)-4-methylthiazole (9c). Yellow solid;
(yield 0.45 g, 88%) mp: 209−211 °C; IR, υ 3318, 3233, 3220
(3NH), 2951 (C−H), 1600 (C�N) cm−1; 1H NMR (DMSO-
d6, 500 MHz) δ: 2.30 (s, 3H, CH3), 2.36 (s, 3H, CH3−C�N),
2.47 (s, 3H, CH3−C�N), 3.82 (s, 3H, OCH3), 7.18−7.35 (m,
8H, Ar−H), 7.47 (s, 1H, thiazole-H5), 8.12 (s, 1H, pyrrole-H),
8.32 (s, 1H, NH), 8.41 (s, 1H, NH), 11.77 (s, 1H, NH) ppm;
13C NMR (DMSO, 125 MHz) δ: 13.0 (CH3), 16.7 (CH3), 19.0
(CH3), 56.5 (OCH3), 113.1, 116.5, 117.9, 119.4, 120.1, 125.2,
125.3, 129.6, 129.9, 131.6, 133.1, 133.4, 143.0, 143.4, 150.8,
153.8, 159.4, 159.6, 161.4, 164.5 (Ar−C and C�N) ppm; MS,
m/z (%) 515 (M+, 23), 399 (92), 269 (100), 185 (42), 138 (81),
112 (40), 96 (33), 77 (46). Anal. Calcd for C26H25N7OS2
(515.16): C, 60.56; H, 4.89; N, 19.01; S, 12.43. Found: C, 60.42;
H, 4.97; N, 19.11; S, 12.21%.

3.2.9. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-5-
((E)-1-(2-(4-(4-chlorophenyl)thiazol-2-yl)hydrazineylidene)-
ethyl)-4-methylthiazole (9d). Yellow solid; (yield 0.45 g, 86%)
mp: 190−192 °C; IR, υ 3321, 3235, 3228 (3NH), 2961 (C−H),
1602 (C�N) cm−1; 1HNMR (DMSO-d6, 500MHz) δ: 2.30 (s,
3H, CH3), 2.41 (s, 3H, CH3−C�N), 2.46 (s, 3H, CH3−C�
N), 7.18−7.58 (m, 8H, Ar−H), 7.48 (s, 1H, thiazole-H5), 8.13
(s, 1H, pyrrole-H), 8.34 (s, 1H, NH), 8.42 (s, 1H, NH), 11.88
(s, 1H, NH) ppm; 13CNMR (DMSO, 125MHz) δ: 12.8 (CH3),
17.9 (CH3), 22.4 (CH3), 115.7, 116.3, 120.8, 121.7, 123.5,
125.8, 126.8, 127.5, 129.5, 130.5, 132.3, 134.5, 136.4, 140.8,
142.6, 145.2, 152.1, 156.8, 162.2, 168.9 ppm (Ar−C and C�
N); MS, m/z (%) 521 (M+ + 2, 4), 519 (M+, 13), 320 (98), 279
(83), 238 (52), 159 (74), 117 (100), 88 (78), 77 (42). Anal.
Calcd for C25H22ClN7S2 (519.11): C, 57.74; H, 4.26; N, 18.85;
S, 12.33. Found: C, 57.98; H, 4.33; N, 18.71; S, 12.29%.

3.2.10. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-
5 - ( ( E ) - 1 - ( 2 - ( 4 - ( 4 - b r omoph e n y l ) t h i a z o l - 2 - y l ) -
hydrazineylidene)ethyl)-4-methylthiazole (9e). Yellow solid;
(yield 0.46 g, 82%) mp: 212−214 °C; IR, υ 3321, 3230, 3218
(3NH), 2958 (C−H), 1604 (C�N) cm−1; 1H NMR (DMSO-
d6, 500 MHz) δ: 2.30 (s, 3H, CH3), 2.40 (s, 3H, CH3−C�N),
2.46 (s, 3H, CH3−C�N), 7.18−7.50 (m, 8H, Ar−H), 7.48 (s,
1H, thiazole-H5), 8.14 (s, 1H, pyrrole-H), 8.34 (s, 1H, NH),
8.44 (s, 1H, NH), 11.79 (s, 1H, NH) ppm; 13C NMR (DMSO,
125MHz) δ: 12.8 (CH3), 17.6 (CH3), 21.9 (CH3), 114.9, 115.8,
120.8, 121.8, 123.6, 125.9, 126.9, 127.5, 129.6, 130.5, 132.2,
134.8, 136.4, 141.1, 143.2, 145.2, 152.7, 156.8, 163.9, 168.8 ppm
(Ar−C and C�N); MS, m/z (%) 563 (M+, 24), 385 (70), 251
(37), 197 (58), 138 (100), 115 (40), 77 (53). Anal. Calcd for
C25H22BrN7S2 (563.06): C, 53.19; H, 3.93; N, 17.37; S, 11.36.
Found: C, 53.06; H, 3.83; N, 17.51; S, 11.28%.

3.2.11. 2-(2-((E)-1-(1H-Indol-3-yl)ethylidene)hydrazineyl)-
4-methyl-5-((E)-1-(2-(4-(4-nitrophenyl)thiazol-2-yl)-
hydrazineylidene)ethyl)thiazole (9f). Yellow solid; (yield 0.42
g, 80%) mp: 219−221 °C; IR, υ 3320, 3240, 3230 (3NH), 2961
(C−H), 1608 (C�N) cm−1; 1H NMR (DMSO-d6, 500 MHz)
δ: 2.28 (s, 3H, CH3), 2.36 (s, 3H, CH3−C�N), 2.48 (s, 3H,
CH3−C�N), 7.12−7.51 (m, 8H, Ar−H), 7.44 (s, 1H, thiazole-

H5), 8.13 (s, 1H, pyrrole-H), 8.34 (s, 1H, NH), 8.42 (s, 1H,
NH), 11.81 (s, 1H, NH) ppm; 13C NMR (DMSO, 125MHz) δ:
12.8 (CH3), 18.4 (CH3), 22.7 (CH3), 114.8, 115.4, 120.6, 121.7,
123.8, 125.9, 126.9, 127.7, 129.6, 130.8, 132.6, 134.8, 137.9,
140.7, 142.2, 145.4, 152.3, 156.8, 162.2, 168.9 ppm (Ar−C and
C�N); MS, m/z (%) 530 (M+, 6), 390 (26), 273 (45), 191
(71), 117 (100), 77 (50). Anal. Calcd for C25H22N8O2S2
(530.13): C, 56.59; H, 4.18; N, 21.12; S, 12.08. Found: C,
56.78; H, 4.23; N, 20.99; S, 12.19%.

3.2.12. 1-(2-(2-((E)-1-(2-(2-((E)-1-(1H-Indol-3-yl)-
ethylidene)hydrazineyl)-4-methylthiazol-5-yl)ethylidene)-
hydrazineyl)-4-methylthiazol-5-yl)ethan-1-one (11a). Yellow
solid; (yield 0.37 g, 80%) mp: 170−172 °C; IR, υ 3310, 3230,
3218 (3NH), 2914 (C−H), 1700 (C�O), 1604 (C�N) cm−1;
1H NMR (DMSO-d6, 500 MHz) δ: 2.28 (s, 3H, CH3), 2.34 (s,
3H, CH3), 2.39 (s, 3H, COCH3), 2.44 (s, 3H, CH3−C�N),
2.47 (s, 3H, CH3−C�N), 7.14−7.42 (m, 4H, Ar−H), 8.29 (s,
1H, pyrrole-H), 8.31 (s, 1H, NH), 8.34 (s, 1H, NH), 11.81 (s,
1H, NH) ppm; 13C NMR (DMSO, 125 MHz) δ: 13.1 (CH3),
16.7 (CH3), 17.8 (CH3), 19.1 (CH3), 25.3 (CH3), 116.5, 117.8,
119.9, 124.6, 125.3, 125.8, 129.6, 131.6, 133.1, 135.4, 143.4,
143.9, 150.8, 153.8, 159.6, 164.5 (Ar−C and C�N), 193.0
(C�O) ppm; MS, m/z (%) 465 (M+, 27), 230 (39), 270 (44),
187 (60), 138 (100), 115 (52), 83 (41), 77 (69). Anal. Calcd for
C22H23N7OS2 (465.14): C, 56.75; H, 4.98; N, 21.06; S, 13.77.
Found: C, 56.91; H, 4.82; N, 21.11; S, 13.82%.

3.2.13. Ethyl 2-(2-((E)-1-(2-(2-((E)-1-(1H-indol-3-yl)-
ethylidene)hydrazineyl)-4-methylthiazol-5- yl)ethylidene)-
hydrazineyl)-4-methylthiazole-5-carboxylate (11b). Yellow
solid; (yield 0.39 g, 80%) mp: 214−216 °C; IR, υ 3312, 3235,
3221 (3NH), 2918 (C−H), 1695 (C�O), 1604 (C�N) cm−1;
1H NMR (DMSO-d6, 500 MHz) δ: 1.16 (t, 3H, CH3), 2.32 (s,
3H, CH3), 2.39 (s, 3H, COCH3), 2.44 (s, 3H, CH3−C�N),
2.46 (s, 3H, CH3−C�N), 4.20 (q, 2H, CH2), 7.15−7.43 (m,
4H, Ar−H), 8.29 (s, 1H, pyrrole-H), 8.34 (s, 1H, NH), 8.36 (s,
1H, NH), 11.82 (s, 1H, NH) ppm; 13C NMR (DMSO, 125
MHz) δ: 13.2 (CH3), 14.9 (CH3), 16.2 (CH3), 17.1 (CH3), 18.2
(CH3), 114.6, 115.7, 120.3, 121.8, 122.6, 128.7, 131.9, 133.5,
134.1, 137.6, 141.2, 151.7, 152.2, 156.6, 156.9, 168.0, 169.2
(Ar−C andC�N), 172.3 (C�O) ppm;MS,m/z (%) 495 (M+,
17), 243 (48), 297 (28), 270 (31), 216 (24), 197 (37), 138
(100), 115 (38), 96 (28), 77 (26). Anal. Calcd for
C23H25N7O2S2 (495.15): C, 55.74; H, 5.08; N, 19.78; S,
12.94. Found: C, 55.82; H, 4.92; N, 19.58; S, 12.81%.
3.3. Biological Evaluation. 3.3.1. Cytotoxicity Assay. For

the cytotoxicity and antitumor tests, cell lines were seeded in 96-
well tissue culture plates at a cell density of 5 × 104 cells/well in
media. Following a 24 h incubation period, compounds were
added to the 96-well plates at eight different concentrations with
six repetitions. Control wells containing only medium or 0.5%
DMSOwere included. After 24 h of incubation, cell viability was
assessed using the MTT test.55,56

3.3.2. Safety and SI. To establish a dose−response curve and
determine the 50% cytotoxic concentration (CC50) of newly
synthesized compounds and the reference drug doxorubicin, a
normal human lung fibroblast (MRC-5) cell line procured from
the American Type Culture Collection in Rockville, MD was
utilized. GraphPad Prism software was utilized to perform the
aforementioned calculations. The SI was calculated by dividing
the CC50 by the IC50 values. Previous research has suggested that
a compound is safe if its SI value is greater than 10.57
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4. CONCLUSIONS
In conclusion, three novel sets of thiazolylhydrazonothiazoles
were synthesized from reactions of carbothioamide derivative 5
with various hydrazonoyl chlorides (or α-haloketones). The
structure of the synthesized compounds was characterized and
confirmed to be promising candidates for adjunctive therapeutic
agents for cancer therapy. The cytotoxicity of the synthesized
compounds was evaluated against the HCT-116, HepG2, and
MDA-MB-231 cell lines and demonstrated that compounds 7a−
c, 9a−c, 11a, and 11b have interesting activity. Based on the
SAR analysis, it can be observed that the in vitro inhibition effect
of the 5-arylazothiazoles 7 is greater than 4-arylthiazoles 9 (7b >
9b; 7c > 9c) towards all the examined anticancer cell lines. For
thiazoles 7a−e and 9a−f: the electron donating groups (e.g., Me
and MeO) at 4-position of phenylazothiazoles enhances the
activity while the electron withdrawing groups (e.g., Cl, Br,
NO2) decrease the activity (7c, 7b≫>7a≫> 7d, 7e) and (9b,
9c≫> 9a≫> 9d, 9e, 9f). Most of the compounds tested in the
set showed good selectivity index values. Also, the majority of
them showed modest harmful effects when their toxicity against
normal cells (MRC-5) was assessed, indicating that they might
be used safely, however more in vivo and pharmacological
research may be necessary. Furthermore, the docking studies for
the most promising synthesized compounds (7a-c, 9a-c, 11a,
and 11b) utilizing the MOE 2019 suite toward the EGFR TK
protein were studied and recorded high binding scores in
comparison to a reference standard (W19), thus endorsing their
anticancer activity.
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