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Abstract: Vesicular stomatitis virus (VSV), which belongs to the Vesiculovirus genus of the family
Rhabdoviridae, is a well studied livestock pathogen and prototypic non-segmented, negative-sense
RNA virus. Although VSV is responsible for causing economically significant outbreaks of vesicular
stomatitis in cattle, horses, and swine, the virus also represents a valuable research tool for molecular
biologists and virologists. Indeed, the establishment of a reverse genetics system for the recovery
of infectious VSV from cDNA transformed the utility of this virus and paved the way for its use
as a vaccine vector. A highly effective VSV-based vaccine against Ebola virus recently received
clinical approval, and many other VSV-based vaccines have been developed, particularly for high-
consequence viruses. This review seeks to provide a holistic but concise overview of VSV, covering
the virus’s ascension from perennial agricultural scourge to promising medical countermeasure, with
a particular focus on vaccines.

Keywords: vesicular stomatitis virus; VSV; vaccine; countermeasure; Ebola virus; VSV-EBOV; reverse
genetics; medical countermeasure

1. Vesicular Stomatitis Virus
1.1. The Virus and Its Replication

The Vesiculovirus genus comprises a group of morphologically and genetically related
viruses that infect mammals, birds, and reptiles [1]. Within this genus, the term “vesic-
ular stomatitis virus” encompasses a number of related viruses belonging to a common
serogroup, which is divided into the New Jersey and Indiana serotypes. The New Jer-
sey serotype contains vesicular stomatitis New Jersey virus (VSNJV), while the Indiana
serotype is further sub-divided into four distinct serological complexes. Indiana 1 contains
vesicular stomatitis Indiana virus (VSIV), Indiana 2 contains Cocal virus (COCV), Indiana
3 contains vesicular stomatitis Alagoas virus (VSAV), and Indiana 4 contains Morreton
virus (MORV). All of these VSVs, with the possible exception of MORV, are responsible for
causing vesicular stomatitis disease in livestock animals in the Americas (described below),
and VSIV is most commonly recognized as the type species for the genus Vesiculovirus. The
abbreviation “VSV” will be used to refer, in general, to members of the VSV serogroup,
with specific viruses identified as necessary. Notably, a number of other vesiculoviruses,
such as Piry virus from South America, Chandipura virus from South Asia, and Isfahan
virus from Western Asia, also cause disease in mammals but will not be considered in
this review.
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As part of the family Rhabdoviridae and the order Mononegavirales, all vesiculoviruses
possess a single-stranded, negative-sense RNA genome of approximately 11 kb [2]. In
the case of VSV, this genome encodes five structural proteins: the nucleoprotein (N), the
phosphoprotein (P), the matrix protein (M), the glycoprotein (G), and the RNA-dependent
RNA polymerase (L) (Figure 1) [3]. VSNJV and VSIV both encode two additional non-
structural proteins, known as C and C’, initiating from downstream start codons in the
P gene [4,5]. Each gene contains conserved transcription start and end signals, and all
genes are separated from each other by an intergenic region of two nucleotides [3]. The
genome itself is flanked by a 3′ leader and 5′ trailer region, which contain transcription
and replication promoters in addition to N protein encapsidation signals [3]. Together, the
five structural proteins produce the bullet-shaped virion characteristic of rhabdoviruses [6],
and the structures of each protein have been solved [7]. The viral genome is coated and
protected by the N protein [8,9]. The P protein links the polymerase L [10] to the N-
coated genome to form the nucleocapsid or ribonucleoprotein complex [11–14], which is
condensed into a helical structure through interactions with the M protein [15,16]. The
entire complex is wrapped in a cell membrane-derived envelope studded with G protein,
which exists in trimeric complexes [17,18].

Figure 1. The structure of VSV and its genome. A diagram of the characteristically bullet-shaped
virion is shown above a representation of the VSV genome. The negative-sense, single-stranded RNA
genome (depicted in blue within the virion) is completely encapsidated by the nucleoprotein (N),
which, together with the phosphoprotein (P) and the RNA-dependent RNA polymerase (L), forms
the nucleocapsid or ribonucleoprotein complex. The matrix protein (M) condenses the nucleocapsid
and drives virion budding. The glycoprotein (G) studs the surface of the virion and exists in trimeric
complexes. This figure was created with BioRender.com.

The VSV replication cycle has been extensively characterized and reviewed in detail
elsewhere [19,20]. Briefly, the G protein mediates attachment to the low density lipoprotein
receptor (LDLR), which, by virtue of its cellular ubiquity, accounts for the broad tropism of
VSV [21,22]. Following attachment, the virion is thought to be endocytosed in a process
that is dependent on both clathrin and actin [23]. As the virion subsequently travels
through the endocytic pathway, a drop in pH triggers a conformational change in the
G protein that exposes the hydrophobic fusion loop, which then inserts into the host
endosomal membrane and facilitates its fusion with the viral envelope [23]. Fusion of
the two membranes results in the release of the virion core into the cytoplasm of the host
cell, where the M protein dissociates from the nucleocapsid to permit transcription and
replication to occur [24].
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VSV transcription and replication is driven by the viral polymerase complex, com-
prised of L and P, and the entire process is considered typical of single-stranded, negative-
sense RNA viruses [19,20]. The first step is primary transcription of the initial viral genome,
which generates a full complement of viral mRNAs, all of which bear 5′ methylated caps
and 3′ poly-A tails. Importantly, the polymerase can only begin transcription at the 3′ end
of the genome and move processively to the 5′ end, thereby, sequentially synthesizing N,
P, M, G, and L mRNAs [25]. However, because the polymerase occasionally disengages
at each intergenic region and then reinitiates transcription at the 3′ end of the genome, a
transcriptional gradient is created, which results in reduced expression of a given viral
protein the further its gene is located towards the 5′ end of the genome. Viral mRNAs are
subsequently translated by host cellular machinery, and the accumulation of viral proteins,
particularly N, is thought to trigger the polymerase’s switch from transcription to genome
replication [26]. Replication is driven by a promoter in the 3′ leader of the negative-sense
genome and produces a complementary, positive-sense RNA molecule known as the anti-
genome, which is immediately encapsidated by N and subsequently serves as the template
for the production of more genome. Newly synthesized and encapsidated genomes also
serve as templates for the secondary transcription of viral genes, which, in combination
with continued replication, represents the major amplification step of the replication cycle.
Eventually, nucleocapsids are condensed via interactions with M protein, which also drive
budding of nascent virions from the plasma membrane at sites that are enriched with G
protein [27]. The entire VSV replication cycle, which ultimately kills the host cell, occurs
relatively quickly and results in high titers of virus—two features that have made VSV an
attractive tool in molecular biology research.

1.2. The Disease: Vesicular Stomatitis

Vesicular stomatitis is an acute disease of hoofed animals characterized by vesicular
lesions primarily afflicting the oral mucosae and feet [20,28,29]. In cattle, lesions develop
on the lips, tongue, gums, coronary bands, and/or teats, and, in pigs, vesicles develop
on the snout, lips, coronary bands, and interdigital spaces. Likewise, in horses, lesions
are present on the lips, tongue, gums, and palate, as well as the mammary glands and
prepuce on mares and stallions, respectively. Disease is accompanied by a fever and may
involve a period of viremia. Affected animals often develop anorexia, owing to the sores
within and around the mouth, which can lead to weight loss and, in the case of dairy
cows, decreased output. Animals typically recover completely in 2–3 weeks, although
horses and pigs can develop lameness as a result of lesions around the hoof. Notably, in its
early stages, vesicular stomatitis is clinically indistinguishable from the much more serious
foot-and-mouth disease (caused by foot-and-mouth disease virus), making rapid diagnosis
and reporting critical.

Vesicular stomatitis was first described following an outbreak in the United States
in 1916 [30]; however, the disease was probably prevalent much earlier than that, with
several descriptions of likely outbreaks stretching back to the early 1800s [29,31,32]. The
disease is now understood to be enzootic to parts of the equatorial Americas, with a range
extending from northern South America to southern Mexico, in addition to Ossabaw Island,
off the coast of the U.S. state of Georgia. Epizootic outbreaks of disease occur seasonally,
and stretch much farther south and north, through the central and southwestern U.S.
up to Canada [31]. From one such outbreak, centered on Richmond, Indiana in 1925,
VSIV was first isolated; similarly, VSNJV was isolated from another outbreak in New
Jersey in 1926 [32]. The mechanisms of VSV maintenance and transmission in the wild are
still incompletely understood, but evidence points toward the involvement of arthropod
vectors, such as mosquitoes, blackflies, and sand flies [33]. Indeed, phlebotamine sand flies
are known to contain virus in enzootic areas [34].

Humans are thought to contract VSV directly from infected animals [28] rather than
from an arthropod vector, and seroprevalence can be high in enzootic areas [29]. Dis-
ease in humans is thought to most often be subclinical or mild, although more severe



Pathogens 2021, 10, 1092 4 of 20

manifestations—including flu-like illness and the appearance of oral vesicular lesions—
have been reported [35]. Moreover, although vesicular stomatitis is primarily considered
to be a disease of livestock, neutralizing antibodies have been identified in a number of
different wild animals, including deer, elk, coyotes, bears, skunks, squirrels, and rats,
suggesting broad permissivity to VSV infection, if not susceptibility to disease [29].

2. VSV and Molecular Virology
2.1. VSV Reverse Genetics

As the prototype rhabdovirus, VSV has been widely used as a model system to study
the replication and assembly of mononegaviruses. Moreover, the VSV genome has been
engineered for use as a research tool, a vaccine platform, and an oncolytic vector [36]. Most
of these applications require the use of the VSV reverse genetics system that allows for
direct manipulation of the VSV genome using recombinant DNA techniques.

There are several challenges associated with generating infectious virus from a cDNA
clone of the VSV genome, as is the case for all negative-sense RNA viruses. Unlike positive-
sense RNA viruses, for which the genome is inherently infectious, negative-sense viruses,
such as VSV, must first undergo transcription to produce the viral proteins required for
subsequent rounds of transcription and genome replication. In addition, both negative-
sense genomes and positive-sense antigenomes must be encapsidated by the nucleoprotein
in order to be recognized by the viral RNA polymerase complex as templates for replication
and transcription. Thus, in the case of VSV, the viral proteins N, P, and L—which, along with
the RNA genome, make up the ribonucleoprotein (RNP) complex—need to be provided
in trans.

A breakthrough was made in 1994 when the infectious rabies virus, a close relative
of VSV in the Rhabdovirus family, was generated entirely from cloned cDNA [37]. Less
than a year later, VSV itself was recovered from a full-length cDNA clone by two labs
independently [38,39]. The secret of successful recovery of VSV and the rabies virus
largely relied on the use of plasmids encoding an anti-genomic instead of genomic RNA
analogue, with the inclusion of the hepatitis delta virus (HDV)-derived ribozyme sequence
to produce accurate 3′ ends. N, P, and L proteins were provided in trans from so-called
“helper” plasmids, and expression from all plasmids was driven by a T7 promoter. When
all the plasmids were transfected into BHK21 cells co-infected with recombinant vaccinia
virus expressing the T7 RNA polymerase, the infectious virus was successfully rescued.

Using similar techniques, reverse genetics systems have since been established for
numerous other negative-sense RNA viruses from the Paramyxoviridae, Filoviridae, and
Bornaviridae families, and the process has been progressively optimized over time [40].
In addition to precise processing of the 3′ ends of the initial round of anti-genomic RNA
molecules, precision at the 5′ end is also critical. For this purpose, the hammer-head
ribozyme sequence has been introduced at the 5′ end of the full-length viral cDNA to
ensure precise cleavage prior to the leader sequence [41,42]. Moreover, the conditions under
which the viral RNP proteins are provided have been made more feasible. Expression of
these proteins can be achieved either transiently from co-transfected plasmids or via stably
transfected cell lines used for rescue. Vaccinia virus-free reverse genetics systems have also
been developed, by either expressing the T7 polymerase from a co-transfected plasmid or
by replacing the T7 promoter with a cellular RNA polymerase II-driven promoter, such as
the CMV promoter [43–45].

The establishment of plasmid-based VSV reverse genetics systems opened the pos-
sibility to manipulate the VSV genome, which greatly facilitated studies of cell tropism,
replication cycle, and pathogenesis of VSV and related viruses. More importantly, these
reverse genetics systems have provided the basis for the development of VSV as a widely
used research tool, as well as a vaccine platform and oncolytic vector.
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2.2. VSV as a Molecular Tool

VSV has several properties that make it a valuable tool for the study of molecular
virology. First, the biology of VSV is well-studied. Since the recovery of infectious VSV
from cDNA using reverse genetics, the virus has been extensively studied in various
respects, including cell entry, virus-host receptor interaction, and replication/transcription.
Second, VSV has a relatively small genome of about 11 kb that is easy to manipulate. In
addition, the VSV genome has the capacity to stably accept relatively large (4–5 kb) gene
insertions [46], and these genes can be expressed at high levels. Thirdly, VSV replicates
quickly and to high titers in most mammalian and insect cell lines, which makes it easier
to produce in large quantities and, thereby, facilitates the practical applications of this
tool. Finally, VSV has the capability to express unrelated glycoproteins on the surface of
the virion.

Currently, there are two types of recombinant VSVs (rVSVs) that are widely used as
tools in virology research: replication-incompetent rVSV and replication-competent rVSV
(Figure 2). The replication-incompetent rVSVs typically contain a genome in which the
VSV G gene has been deleted (VSV∆G) and replaced with a gene encoding a fluorescent or
luminescent reporter. Meanwhile, during virus rescue, transient expression of a heterolo-
gous glycoprotein from a different virus results in the production of “pseudotyped” virions
studded with the non-native glycoprotein. Since the genomes of replication-incompetent
rVSVs do not contain a glycoprotein gene, the viruses are only capable of replicating for a
single round, unless glycoprotein is supplied in trans. Conversely, replication-competent
rVSVs have genomes in which the VSV G gene has been swapped for that of a heterolo-
gous glycoprotein, thus, producing a pseudotyped virus capable of multiple rounds of
replication. In addition, these viruses can be engineered to encode a reporter gene to
facilitate quantitative applications. Both types of rVSVs have been widely used in various
applications for the study of different viruses [36,47]. Indeed, rVSVs are routinely used
to study cell tropism, cell entry, and virus–host interactions of different viruses. They are
also frequently used in high-throughput screens of antivirals/inhibitors that target cell
entry—taking advantage of the reporters expressed from the virus genome. rVSVs can also
be used to detect, evaluate, and titer neutralizing antibodies. Notably, both replication-
competent and replication-incompetent rVSVs can be used safely in biosafety level 2 (BSL-2)
laboratories, which has made them especially useful for studying the properties of many
high-containment viruses that would otherwise be inaccessible to the majority of research
laboratories around the world.

It is worth noting that, while pseudotyped rVSVs are common molecular tools, the
converse use of VSV G to pseudotype other viral particles is also common [48]. Indeed, its
wide-ranging tropism and good stability have made VSV G one of the most widely used
viral glycoproteins to pseudotype lentiviruses. These VSV G-pseudotyped lentiviruses,
in turn, have proven invaluable not only as a tool for experimental gene knockdown and
overexpression but also as a vector for gene transduction and gene therapy [36].
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Figure 2. Recombinant VSVs. (A) Manipulation of the VSV genome results in recombinant VSVs (rVSVs) that can be used
for a variety of purposes. Most rVSVs contain additional transgenes (i.e., transgene X or Y)—often in place of VSV G—that
drive the expression of additional proteins, including other viral glycoproteins or reporter molecules. Insertion of one or
more transgenes is flexible and can be accommodated at almost any position within the genome. (B) Replication-competent
rVSVs result when the added transgene supports virus replication. For example, in the case of VSV-EBOV, the EBOV
GP replaces VSV G but is still sufficient to facilitate the VSV replication cycle [49]. VSV-EBOV-GFP expresses GFP in
addition to EBOV GP [50], while VSV-EBOV-NiV G expresses both EBOV GP and the NiV attachment glycoprotein [51]. (C)
Replication-incompetent rVSVs result when the added transgene cannot support virus replication. For example, replacement
of VSV G with GFP results in a virus that must be pseudotyped with a glycoprotein in order to be infectious [52]. Similarly,
NiV G is unable to facilitate virus replication in the absence of VSV G [53]. This figure was created with BioRender.com.

3. VSV as a Vaccine Vector

Many of the properties that make VSV a valuable tool for molecular virology research—
such as its ability to express heterologous glycoproteins and replicate to high titers—also
make it an excellent vaccine platform. In addition, the apparent seroprevalence of VSV
antibodies is generally low within the human population, so there is little pre-existing
immunity to the vector, and because the VSV replication cycle takes place exclusively in
the cytoplasm of host cells, there is no potential for viral sequences to integrate into the
host genome. As a result, over the past several years, rVSV has emerged as a viable vaccine
vector, and many rVSV-based vaccines have demonstrated safety and immunogenicity in
multiple pre-clinical and clinical trials.

The history of VSV-based vaccine development is closely intertwined with research
on high-consequence pathogens—especially Ebola virus (EBOV). The early promise and
eventual success of a VSV-vectored EBOV vaccine has since led to the development and
characterization of a number of other candidate vaccines against emerging and deadly
viruses. Below, we have focused our discussion on the VSV-based EBOV vaccine, for which
data abound. However, we also describe VSV-based vaccines that have been developed for
many other high-consequence pathogens, including Marburg virus and other filoviruses,
Lassa virus, henipaviruses, and coronaviruses.

3.1. Ebola Virus
3.1.1. Pre-Clinical Development

VSV was first used in the study of filoviruses for the functional characterization of the
EBOV glycoprotein (GP) [52,54,55]. Interest in using VSV as a vaccine vector against EBOV
grew out of the success in generating a set of replication-competent rVSIVs expressing
the glycoproteins of several high-consequence viruses, including EBOV [49]. An EBOV
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GP-pseudotyped rVSV, initially named VSV∆G/ZEBOVGP and now widely called VSV-
EBOV or rVSV-ZEBOV, was generated by replacing the VSV G gene [56] with the GP gene
of EBOV (variant Kikwit). An initial test of its ability to provide prophylactic protection
against mouse-adapted EBOV (MA-EBOV) in mice was highly successful. VSV-EBOV
itself did not cause disease in mice, yet it resulted in 100% survival of the animals after
being challenged with a lethal dose of MA-EBOV following two doses of 2 × 104 plaque-
forming-units (PFU) of intraperitoneally delivered VSV-EBOV [49]. Similar results were
observed in guinea pigs [49]. A subsequent study in cynomolgus macaques demonstrated
that a single dose of 107 PFU of VSV-EBOV via intramuscular injection caused no disease
in the animals and fully protected them from EBOV challenge 28 days later [57]. This set
of studies demonstrated that replication-competent rVSV is a safe viral vector and that
VSV-EBOV is a promising vaccine candidate against EBOV.

VSV-EBOV has since undergone extensive pre-clinical studies to evaluate its efficacy
under different vaccination strategies and viral challenge methods. It was further assessed
in mice using decreasing vaccine doses, with as little as 2 PFU of VSV-EBOV showing
full protection from challenge with a lethal dose of 103 LD50 of MA-EBOV given 28 days
post-vaccination [58]. Likewise, a higher single dose of 2 × 104 PFU of the vaccine given
intraperitoneally, intramuscularly, or intranasally provided full protection against up to
106 LD50 of MA-EBOV. Immunization of cynomolgus macaques with 2 × 107 PFU of VSV-
EBOV via the oral or intranasal route also conferred complete protection against disease,
as did immunization via the intramuscular route [59], suggesting the effectiveness of the
vaccine is independent of administration routes.

VSV-EBOV was further evaluated for its ability to provide rapid protection soon
after vaccination or challenge. The vaccine proved to be fully protective in mice when
given 7 days before challenge with a lethal dose of MA-EBOV [58], and it also offered full
protection when administered to mice only 24 h before virus challenge [60]. VSV-EBOV
was also effective in guinea pigs, conferring survival rates of 66% when given 24 h before
challenge, and 87% or 50% when given 1 h or 24 h, respectively, after challenge with a lethal
dose of guinea pig-adapted EBOV (GPA-EBOV) [60]. In hamsters, VSV-EBOV conferred
100% survival when given as late as 1 day after MA-EBOV challenge [61]. Remarkably, in
rhesus macaques, one dose of 2 × 107 PFU of VSV-EBOV provided 50% protection when
given 20 to 30 min after challenge with EBOV variant Kikwit [60]. In addition, the same
dose of VSV-EBOV administered 24 h post-challenge protected 67% of rhesus macaques
from EBOV variant Makona, the agent responsible for the 2013–2016 West African EBOV
epidemic [62]. Together, these studies demonstrate that VSV-EBOV can induce rapid
protection and be used as a post-exposure treatment.

The durability of the protection offered by VSV-EBOV is another important feature of
the vaccine and was also assessed in rodents. A single dose of 2 × 104 PFU of VSV-EBOV
provided full protection from MA-EBOV in mice up to 9 months after vaccination, and
2 × 105 PFU of the vaccine conferred full protection against GPA-EBOV in guinea pigs
up to 18 months post-immunization [58,63]. The results indicated VSV-EBOV is able to
provide long-term protection.

3.1.2. Clinical Trials and Approval

The need for effective medical countermeasures against EBOV became extremely
urgent during the 2013–2016 West African epidemic—the largest EBOV outbreak so far
recorded. Since late 2014, many therapeutics and vaccines have been evaluated in clinical
trials, with VSV-EBOV evaluated in over 10 clinical investigations covering all three stages
of clinical trials. Recent publications have reviewed these clinical studies in detail [64,65],
and thus, a brief summary of published studies and an update of more recent clinical trials
are provided in this review.

A series of phase 1 or phase 1/2 clinical trials in adult participants, including many
dose-escalation studies, were conducted in countries across North America, Europe, and
Africa [66–72]. Generally, transient VSV-EBOV shedding lasting up to approximately
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3 days was observed among the participants. Typical adverse events included injection-site
pain, headache, fever, and myalgia, which are common for live virus vaccines and mostly
mild and self-limiting. Notably, however, VSV-EBOV immunization has been associated
with higher frequencies of arthritis, perhaps owing to immune cell targeting mediated by
EBOV GP, as well as rare instances of cutaneous lymphocytic vasculitis [66,67]. Robust
antibody responses against EBOV-GP, in addition to neutralizing antibody titers, were
observed in most vaccinees. A randomized, non-controlled phase 1 trial, comprising adults
as well as adolescents aged 13–17 years and children aged 6–12 years, showed that VSV-
EBOV caused no serious adverse reactions, though higher levels of vaccine replication
and shedding of virus in saliva and urine was observed in the non-adult groups [73].
High levels of EBOV GP-specific antibody titers were detected in the participants 28 days
post-vaccination, and these titers persisted or increased up to 3 months. Neutralizing titers
were detected in over 50% of the participants, with children showing significantly higher
titers of neutralizing antibodies compared to the adults and adolescents. Analysis of blood
samples collected from 30 healthy participants of two of the clinical studies [67,70] detected
antibody responses against the VSV matrix protein and CD8+ T cell responses against
the VSV nucleoprotein, which were both undetectable before vaccination [74], suggesting
pre-existing immunity against VSV-EBOV is unlikely in humans. Altogether, these clinical
studies demonstrated that VSV-EBOV is generally safe and highly immunogenic. These
studies also identified an optimal dose of 2 × 107 PFU, which has since been widely used
in vaccination.

Following the success of early-stage clinical studies, VSV-EBOV was advanced into
phase 3 trials to further evaluate its protective efficacy. The first trial, Ebola ça Suffit
(meaning “Ebola this is enough”), which started in Guinea in 2015 and was later expanded
to Sierra Leone, employed a unique design called ring vaccination. Based on this method,
a cluster (or “ring”) of contacts and contacts-of-contacts of EBOV-positive patients was
immunized with VSV-EBOV (2 × 107 PFU) either immediately or 21 days after case
confirmation. The final results revealed that no cases of Ebola virus disease occurred
at least 10 days after vaccination among the 5837 vaccinees who received the vaccine
immediately, whereas 23 cases were identified among those participants who received
the vaccine later or not at all [75]. The results showed an estimated 100% efficacy and
demonstrated that VSV-EBOV is highly effective in providing rapid protection amid an
outbreak. In a randomized phase 2/3 clinical study known as the Sierra Leone Trial to
Introduce a Vaccine against Ebola (STRIVE), there were no EVD cases or serious vaccination-
related adverse events identified among the participants [76]. Another randomized phase
3 trial conducted in North America and Europe evaluated the safety and immunogenicity
of VSV-EBOV at a dose of 2 × 107 PFU and a high dose of 1 × 108 PFU [77]. The vaccine
was generally well-tolerated among the groups and caused no serious adverse events.

Taken together, VSV-EBOV has proven to be a highly effective vaccine candidate with
multiple clinical trials demonstrating efficacy across diverse geographic and demographic
settings. Indeed, during the more recent outbreaks in the Democratic Republic of the Congo,
VSV-EBOV was swiftly implemented as the first choice of preventive countermeasure and
played an important role in controlling disease spread [78,79]. In 2019, as a result of
extensive pre-clinical and clinical evaluation demonstrating remarkable safety and efficacy,
the U.S. Food and Drug Administration licensed VSV-EBOV (also known by its brand
name, Ervebo) for use in humans against EBOV infection [80].

3.1.3. Mechanisms of Protection

With tremendous effort devoted to evaluating the efficacy of VSV-EBOV, a lot of
interest has also been focused on understanding how this vaccine provides protective
immunity. Early studies showed that humoral immunity induced by VSV-EBOV likely
plays a main role in the protection against EBOV. Passive transfer of serum from mice
immunized with VSV-EBOV to unvaccinated mice protected 80% of the animals from
MA-EBOV infection, an effect not seen by transferring naïve serum or immune serum
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from mice inoculated with wild type rVSV [58]. In mice that were immunized with VSV-
EBOV, GP-specific IgM and IgG responses were detected by ELISA after one week, with
a nearly 20-fold decrease in IgM levels and a five-fold increase in IgG2a levels by day
28 post-immunization. Intriguingly, neutralizing activity was inconclusive in these mice.
Similarly, increasing EBOV GP-specific IgG titers were detected in cynomolgus macaques
following immunization of VSV-EBOV, while neutralizing antibody titers were absent
before EBOV challenge (but present afterwards) [57]. Several clinical trials have since
provided the opportunity to characterize vaccine-induced anti-GP immune responses in
humans. One study profiled the antibody response elicited by VSV-EBOV in participants
of a phase 1 clinical trial [81], demonstrating a diverse profile of GP-specific antibodies
exhibiting strong binding and neutralization capabilities. Interestingly, this study also
revealed high levels of IgM antibodies with neutralizing activity, suggesting that this
antibody isotype may play an important role in vaccine-induced immunity against EBOV.
Another study, focusing on the humoral response in a small subset of vaccinees, identified
robust polyclonal but convergent antibody responses that, in each individual, resulted
in highly potent neutralizing antibodies [82]. Overall, these studies demonstrate that an
antibody response is essential to the immune protection conferred by VSV-EBOV.

Studies on the role of cellular immunity induced by VSV-EBOV have presented mixed
results, although the contribution of CD4+ T cells to the humoral immune response is clear.
In a study involving immunocompromised rhesus macaques infected with simian-human
immunodeficiency virus (SHIV), VSV-EBOV vaccination was shown to protect four of
six animals from death due to EBOV infection [83]. The two animals that succumbed to
infection exhibited the lowest CD4+ T cell count, suggesting that these cells may play a role
in the immune protection offered by VSV-EBOV [83]. This observation was corroborated
by a more recent study that focused on the immunological mechanisms underlying VSV-
EBOV-mediated protection [84]. Cynomolgus macaques that were depleted of CD4+ T
cells at the time of VSV-EBOV vaccination did not mount an anti-GP IgG response and
succumbed to infection. Conversely, however, animals that were depleted of CD4+ T
cells at the time of EBOV infection, rather than at the time of vaccination, produced an
EBOV-specific antibody response and survived. These results demonstrate that while CD4+
T cells do not play a direct role in VSV-EBOV-mediated protection, they do play an indirect
role, presumably by supporting a robust B cell response. The subsequent discovery that
levels of circulating follicular helper T cells (a subset of CD4+ T cells) positively correlate
with anti-GP antibody titers in human VSV-EBOV vaccinees provides additional evidence
for the indirect role of CD4+ T cells in the immunity elicited by VSV-EBOV [85]. Above
all, these results further underscore the importance of an antibody response in conferring
immunity against EBOV.

The importance of CD8+ T cell responses to VSV-EBOV-mediated immunity is less
clear. Depletion of CD8+ T cells 25 days post-vaccination in mice [58] or 7 days prior to
vaccination in cynomolgus macaques [84] had no impact on protection against EBOV, sug-
gesting that CD8+ T cells do not play a significant role in VSV-EBOV-mediated protection.
On the other hand, profiling of cellular immunity in vaccinees demonstrated activation of
CD8+ T cells 7 days post-vaccination [70]. Although the response was low to moderate in
magnitude and no significant expansion of polyfunctional CD8+ T cells was observed at
day 56, some contribution to vaccine-induced immunity cannot be ruled out. Interestingly,
analysis of CD8+ T cell immunity among survivors of the 2013–2016 EBOV epidemic
identified the viral nucleoprotein as the most dominant target of CD8+ T cells responses,
with GP identified as a minor target [86], suggesting GP may not be a strong stimulator
of CD8+ T cell response after all. More work is required to clearly establish a role for the
CD8+ T cell response in VSV-EBOV efficacy.

The ability of VSV-EBOV to confer some level of protection immediately before or after
EBOV inoculation suggests that innate immune responses to the vaccine are also critical.
NK cells have been implicated in protecting 50% of rhesus macaques inoculated with EBOV
20–30 min prior to treatment with VSV-EBOV [60], and this cell type has proven critical to



Pathogens 2021, 10, 1092 10 of 20

the rapid protection offered by a virus-like particle-based vaccine in mice [87]. Furthermore,
three days after immunization with VSV-EBOV, cynomolgus macaques showed increased
levels of cytokines associated with NK cell and macrophage activation [88]. These results
were corroborated by transcriptomic analyses, which revealed that the magnitude of the
innate immune transcriptional response at day 3 post-vaccination correlated with viral
burden and disease outcome [89]. Collectively, the cellular and molecular signatures associ-
ated with the activation of an innate immune response shortly after VSV-EBOV vaccination
are suggestive of a generic role for innate immunity in providing rapid protection.

3.1.4. Challenges

Although VSV-EBOV has proven to be highly efficacious in many pre-clinical and
clinical studies, there have been some concerns about its effectiveness and safety throughout
development. One question often raised against a viral vaccine vector is whether pre-
existing immunity to the vector itself will re-shape the immune response against the
vaccine and compromise its efficacy. It has previously been reported that pre-existing
immunity against VSV is generally limited among humans [90], and removal of VSV G in
most vaccine constructs is expected to further mitigate the impact of potential pre-existing
immunity. Nevertheless, to evaluate the impact of anti-VSV immunity on the effectiveness
of VSV-EBOV, cynomologus macaques that had survived infection with Lassa virus (LASV)
following immunization with a VSV vaccine expressing the LASV glycoprotein (VSV-
LASV) were immunized again with 107 PFU of VSV-EBOV [91]. All animals developed
a robust EBOV GP-specific antibody response, and all survived challenge with a lethal
dose of EBOV, indicating that pre-existing immunity against VSV had no impact on the
effectiveness of VSV-EBOV.

Because wild-type VSV is neurotropic and can cause neurological disorders in rodents
and primates [92], the potential for neurovirulence of VSV-EBOV has been considered.
Cynomologus macaques were inoculated with 107 PFU of VSV-EBOV or VSV-MARV (dis-
cussed below) through intra-thalamic injection; however, the animals did not develop any
neurological symptoms and exhibited only mild histologic changes in the brain [93]. In
contrast, the control animals that received wild type VSV demonstrated severe neurological
symptoms and profound histological lesions in the brain and spinal cord. Conversely, a
recent study in neonatal mice demonstrated that VSV-EBOV was associated with neurolog-
ical symptoms, virus replication in the eyes and brain, and death in inoculated animals [94].
Thus, while nonhuman primates do not appear susceptible to neurovirulence caused by
VSV-EBOV, the results from neonatal mice suggest that vaccine may pose a risk to the
very young, including human infants. Along similar lines, the tolerability of VSV-EBOV
in immunocompromised individuals was tested in NOD-SCID mice [58] and immunod-
eficient rhesus macaques (infected with SHIV) [83]. Despite receiving very high doses
of VSV-EBOV, neither the mice nor the macaques showed any signs of disease related to
immunization. Moreover, four of the six macaques survived a lethal challenge of EBOV.
These data suggest that VSV-EBOV is well tolerated and at least partially protective in
individuals with compromised immune systems.

Finally, the potential of VSV-EBOV to cause spillover infection and disease in livestock
animals has also been assessed. In an initial study, pigs inoculated with 106 PFU of VSV-
EBOV showed low levels of virus shedding and no obvious signs of disease [95], suggesting
that spillover of the vaccine virus into animal populations is unlikely to pose a significant
risk. A follow up study, using an even higher dose of VSV-EBOV (4 × 107 PFU), did result
in vesicular lesions on the snout and feet of inoculated pigs, but—importantly—the virus
was not transmitted to naïve pigs in close contact [96]. Thus, it appears that VSV-EBOV is a
safe and effective human vaccine that poses little threat to livestock animals.

3.2. Marburg Virus and Other Filoviruses

The development of rVSV-vectored vaccines against other filoviruses has paralleled
the development of VSV-EBOV, although none has progressed as far. VSV-MARV, which



Pathogens 2021, 10, 1092 11 of 20

encodes the Marburg virus (MARV) GP in place of VSV G, is analogous to VSV-EBOV and
was initially generated at the same time [49]. Subsequently, it was shown that a single
dose of 107 PFU VSV-MARV (encoding GP from the Musoke variant) could completely
protect cynomolgus macaques from lethal MARV (variant Musoke) infection 28 days post-
vaccination [57]. Further, the same vaccine, administered at a dose of 2 × 107 PFU, was
able to provide full protection to cynomolgus macaques following challenge with the
MARV variant Angola or the related Ravn virus [97], indicating that the vaccine confers
protection against multiple different marburgviruses. Strikingly, the immunity provided
by VSV-MARV is durable: cynomolgus macaques challenged with MARV 14 months after
vaccination were completely protected and did not show any clinical signs of disease [98].
Similar to VSV-EBOV, VSV-MARV is also able to protect animals when administered post-
exposure, although the efficacy may depend on the variant and dose of MARV used to
challenge animals. VSV-MARV (expressing Musoke GP) given 20–30 min after inoculation
with MARV (variant Musoke) was sufficient to protect 100% (5/5) rhesus macaques [99],
and when vaccine administration was extended to 24 or 48 h post-inoculation, 83% (5/6)
and 33% (2/6) animals were still protected [100]. VSV-MARV (expressing Angola GP) given
within 20–30 min after inoculation with MARV (variant Angola) protected only 25% (1/4)
of the animals; however, when lower doses of MARV were used, survival improved to as
high as 75% (3/4) [101]. Similar to the VSV-EBOV vaccine, the production of GP-specific
antibodies seems to be critical to protection [57], aided by appropriate innate immune
signaling and a Th1 T-cell response [102,103].

The success of VSV-EBOV and VSV-MARV has been recapitulated with VSV-based
vaccines against other human-pathogenic filoviruses, particularly Sudan virus (SUDV)
and Bundibugyo virus (BDBV) [104,105]. Moreover, since GP-based rVSV vaccines against
filoviruses offer limited cross-protection against heterologous viruses [57,104,106,107], a
number of different approaches have been used to develop multivalent VSV vaccines.
Blended, single-dose vaccines consisting of a mixture of different VSV vectors, each ex-
pressing a different GP, have proven successful in nonhuman primate models against
all human-pathogenic filoviruses, as well as LASV [108–110]. Similarly, a single rVSV
expressing three different filovirus GPs was able to protect guinea pigs from EBOV, MARV,
and SUDV [111].

3.3. Lassa Virus

LASV, a member of the Arenaviridae family, is the etiologic agent of Lassa fever, a severe
viral hemorrhagic fever that is common in West Africa. The VSV-based LASV vaccine,
which expresses the LASV pre-glycoprotein complex (GPC) in place of VSV G, traces its
origins to the same study that produced VSV-EBOV and VSV-MARV [49]. Although this
vaccine, referred to here as VSV-LASV but also known as rVSV∆G/LASVGPC, has proven
to be highly efficacious in animal models, its clinical development has lagged far behind
that of VSV-EBOV.

In the first study to demonstrate the efficacy of VSV-LASV, four cynomolgus macaques
were vaccinated intramuscularly with a single dose of 2 × 107 PFU and were challenged
with 1 × 104 PFU of LASV (strain Josiah) 28 days later [112]. Blood samples collected
prior to challenge demonstrated moderate-to-high levels of LASV-specific IgG antibodies,
including low-titer neutralizing responses, in all animals. After virus challenge, none of
the animals manifested clinical signs of disease, and biochemical and hematological values
remained within normal or near-normal limits. Viremia was noted on day 7 post-infection,
but it was gone by day 10. Importantly, CD8+ T cells were detected in three of the four
vaccinated macaques, suggesting both cellular and humoral immunity may be involved in
the protection afforded by VSV-LASV.

Unlike EBOV, LASV isolates display significant genetic variability, raising the question
of whether the VSV-LASV vaccine could provide protection from a heterologous LASV
strain. To address this, strain 13 guinea pigs were immunized with 106 PFU of VSV-LASV
(expressing G from the Josiah strain of LASV) and then challenged 28 days later with
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1 × 104 TCID50 of LASV (strain Josiah) or a variety of heterologous strains [113]. Not only
did VSV-LASV protect animals from the Josiah strain, but it also protected them from
Liberian (LASV Z-132), Malian (Soromba-R), and Nigerian (LASV Pinneo) strains, further
demonstrating the efficacy and broad cross-reactivity of this vaccine. Indeed, immunization
of cynomolgous macaques with 1 × 107 PFU of VSV-LASV followed by challenge with
a lethal dose of the Liberian LASV strain resulted in complete protection of the animals
and no signs of disease, corroborating the guinea pig data as well as the initial nonhuman
primate studies.

An important feature of any vaccine is the duration for which it provides immune
protection, and VSV-LASV has been shown to elicit an immune response that persists
for at least 12 months [114]. A dose of 106 PFU of VSV-LASV protected 87.5% and 77%
of Hartley guinea pigs following challenge with guinea pig-adapted LASV at 189 and
355 days, respectively. While most of the vaccinated guinea pigs had peak LASV-specific
IgG titers by 51 days post-vaccination, the protected animals exhibited a higher response,
suggesting a correlation between antibody levels and survival.

Notably, the effect of storage temperature variation on vaccine efficacy has also been
studied using VSV-LASV in an effort to determine whether strict cold chain conditions
are required [115]. Stocks of VSV-LASV were maintained for one week at 4 ◦C, ~21 ◦C
(room temperature), or 32 ◦C; an additional stock was subjected to three freeze–thaw
cycles over the course of the same week. Hartley guinea pigs were immunized with
the sub-optimally stored vaccines and then challenged with guinea pig-adapted LASV
28 days later. Remarkably, all vaccinated animals showed some degree of protection, with
the vaccine stored at 32 ◦C performing the worst but still protecting 66% of the animals.
Similar experiments performed with VSV-EBOV showed even better performance, with all
vaccinated animals surviving challenge, regardless of the sub-optimal storage conditions.
Thus, prolonged and multiple breaks in the cold chain of VSV-LASV and VSV-EBOV do
not significantly alter their protective efficacy.

3.4. Henipaviruses

Nipah virus (NiV) and Hendra virus (HeV), which both belong to the family Paramyx-
oviridae, are high-consequence pathogens that can cause severe pulmonary and neurologic
disease in humans. The VSV platform has been used to develop candidate vaccines against
both viruses, although much more work has been done with NiV.

NiV vaccine candidates currently use NiV fusion (F) and attachment (G) glycoproteins
as antigens. The rVSV NiV vaccines have been designed according to three strategies:
(1) replacement of VSV G with NiV G or F [53]; (2) insertion of NiV G or F into the wild
type VSV genome [53]; or (3) replacement of VSV G with EBOV GP and insertion of
NiV G or F [51]. Notably, the first strategy results in a replication-incompetent vaccine
vector, while the latter two strategies produce replication-competent vectors. Whether the
rVSV vector contained VSV G or not, vaccines expressing NiV G or NiV F both elicited
neutralizing antibodies in intranasally immunized mice, as did an immunization strategy
that combined VSV G-deficient vectors expressing either G or F [53]. Importantly, however,
intranasal inoculation of two-week-old mice with the same combination of VSVs expressing
G and F resulted in significant mortality [116], raising safety concerns about immunization
strategies that involve both the NiV glycoproteins. Nevertheless, immunization of ferrets or
Syrian hamsters with these replication-incompetent vaccines provided complete protection
against subsequent NiV challenge, demonstrating the efficacy of the individual vaccine
vectors [117,118]. In order to develop a safe and effective replication-competent VSV-
based NiV vaccine, Debuysscher et al. leveraged the VSV-EBOV platform to generate VSV
G-deficient vaccines expressing EBOV GP and either NiV F or G, referred to as VSV-EBOV-
NiV F and VSV-EBOV-NiV G, respectively [51]. Both vaccines offered full protection in
hamsters against lethal NiV infection when administered 28 days prior to challenge [51].
Incidentally, a similar vaccine expressing the NiV nucleoprotein (N), VSV-EBOV-NiV N,
provided no protection [51]. In a follow up study, complete protection in hamsters was
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achieved following vaccination with VSV-EBOV-NiV G as late as one day before challenge;
however, the survival rate dropped to 17% when the vaccine was administered one day
after challenge and no protection was conferred when the vaccine was administered three
days after challenge [119]. Importantly, African green monkeys immunized with the
replication-competent VSV-EBOV-NiV G or the replication-incompetent VSVs expressing F
or G were all completely protected from lethal NiV infection, demonstrating the efficacy of
each vaccine platform in a “gold-standard” nonhuman primate model [120,121].

A VSV-based HeV vaccine was generated by inserting the HeV glycoprotein (G) gene
into the VSV genome downstream of VSV G, such that resulting replication-competent
rVSV expressed both glycoproteins [122]. Immunization of BALB/c mice resulted in
a robust humoral immune response with high levels of HeV G-specific antibodies and
neutralizing activity detected. Further work is required to assess the efficacy of this vaccine
in a suitable animal model.

3.5. Coronaviruses

VSV-based vaccines have also been developed for diseases caused by the human
coronaviruses: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East
respiratory syndrome (MERS)-CoV, and SARS-CoV-2. A replication-competent rVSV
expressing the Spike (S) protein of SARS-CoV in addition to VSV G induced neutralizing
antibodies in mice after a single vaccination and was able to protect against SARS-CoV
challenge 1 or 4 months later [123]. Interestingly, a replication-incompetent rVSV expressing
SARS-CoV S instead of VSV G elicited a much more robust neutralizing response in mice,
demonstrating the effectiveness of this platform [124]. Liu et al. demonstrated that a
replication-competent rVSV expressing MERS-CoV S in place of VSV G was able to induce
neutralizing antibodies and T cell responses in rhesus macaques after a single intramuscular
or intranasal immunization dose, indicating a potential to confer protection against MERS-
CoV infection [125]. Several labs have also developed different rVSV-based SARS-CoV-2
vaccines expressing the S protein of this virus. Each of these VSV-based vaccines has
induced neutralizing antibody responses, reduced virus infection, and conferred protection
against SARS-CoV-2 infection in mice, hamsters, and nonhuman primates [126–129]. In
particular, a replication-competent rVSV expressing SARS-CoV-2 S instead of VSV G rapidly
and potently induced neutralizing antibodies after a single-dose vaccination of hamsters
and protected the animals against SARS-CoV-2 challenge [128]. The development of this
vaccine has progressed into phase 1/2 clinical trials (https://clinicaltrials.gov/ct2/show/
NCT04608305, accessed on 29 July 2021).

3.6. Zika Virus

The VSV platform has been used to generate a number of different vaccines against
Zika virus (ZIKV), a re-emerging flavivirus. By inserting the ZIKV pre-membrane and
envelope proteins (prME) or the pre-membrane and soluble envelope proteins (prMsolE)
into the VSV-EBOV backbone, Emanuel et al. generated two novel VSV-based vaccines that
capitalized on the immune cell-targeting nature of EBOV GP while still providing ZIKV-
specific epitopes [130]. Both vaccines, known as VSV-ZIKVprME and VSV-ZIKVprMsolE,
conferred 100% protection against a lethal dose of ZIKV in IFNAR-/- mice when a dose
of 1 × 104 PFU was administered intramuscularly 28 days prior to challenge. Similar
to VSV-EBOV, VSV-ZIKVprME provided rapid immunity, with 50% of IFNAR-/- mice
surviving if immunized one day prior to ZIKV infection and 100% of mice surviving if
immunized three or more days prior to infection. Notably, mice immunized with these
vaccines were also protected from mouse-adapted EBOV infection. Not only does this
study demonstrate the effectiveness of a novel ZIKV vaccine, but it also highlights the
potential utility of VSV-EBOV as a platform for designing vaccines against other viruses.

A separate group developed a set of ZIKV vaccines using an rVSV backbone that had
been attenuated by abolishing the methyltransferase activity of L rather than removing
VSV G [131]. Methyltransferase defective (mtd) rVSVs expressing either the ZIKV pre-
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membrane protein (mtdVSV-ZIKVprM) or the pre-membrane protein, in addition to the
envelope and non-structural 1 (NS1) proteins (mtdVSV-ZIKVprM-E-NS1), were able to
elicit potent humoral and cellular immune responses and protect BALB/c and A129 mice
from disease associated with ZIKV challenge. Interestingly, a vaccine expressing only
NS1, mtdVSV-ZIKVNS1, was able to partially protect A129 and IFNAR-/- mice from ZIKV
challenge, likely owing to a robust T cell response since a neutralizing antibody response
was absent [131,132].

3.7. Crimean-Congo Hemorrhagic Fever Virus

The VSV platform has recently been leveraged to develop a novel vaccine against
Crimean-Congo Hemorrhagic Fever Virus (CCHFV), which is a tick-borne bunyavirus that
can cause severe hemorrhagic disease in humans. Rodriguez et al. generated an rVSV
in which the CCHFV GPC replaced VSV G; however, this virus could only be rescued if
VSV G was provided in trans [133]. To circumvent this constraint, the virus was serially
passaged first in BHK cells expressing VSV G and then in BHK cells alone. The resulting
virus, referred to here as VSV-CCHFV-GPC, contained several mutations in the GPC that
rendered it replication-competent. Immunization of STAT-1 knockout mice with 107 PFU
of VSV-CCHFV-GPC followed 35 days later by challenge with a lethal dose of 50 PFU
CCHFV resulted in complete protection. Administration of a booster dose 14 days after the
prime dose also resulted in complete protection, in addition to a reduction in the severity
of weight loss.

4. Conclusions

From the isolation of VSIV in 1925 to the clinical approval of VSV-EBOV in 2019, VSV’s
ascent from agricultural pathogen to model virus and, eventually, proven countermeasure
has been remarkable. VSV has played a central role in our understanding of single-stranded,
negative-sense RNA viruses, and the molecular tools—including reverse genetics—that
have been developed to work with this virus have since been adapted and applied to
other viruses. Recombinant technologies created the possibility to use VSV as a surrogate
for studying the glycoproteins of high-consequence pathogens, which ultimately resulted
in one of the first clinically approved EBOV vaccines and sparked the development of
numerous other vaccines. Moreover, although not discussed here, VSV is also being actively
pursued as an oncolytic vector, owing to its lytic replication cycle and sensitivity to type
I interferon-dependent immune responses [134]. Indeed, VSV is a versatile, safe, and
effective platform that has already delivered impactful new countermeasures, with the
promise of more to come.
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