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INTRODUCTION

Spontaneous intracerebral hemorrhage (ICH) accounts for 10 
to 15% of all strokes and has a mortality rate of approximately 
20 to 70%.1,2 The 30-day mortality rate is as high as 50%,3,4 and 
75% of survivors are left functionally dependent.1,5 Cerebral small 
vessel disease (SVD) has been thought of as chronic ischemia 
in an aging brain. However, SVD has been recently considered 
a major risk factor for cerebrovascular diseases, including ICH 
and cognitive impairment.6,7 On neuroimaging, SVD is char-
acterized by cerebral microbleeds (CMBs), white matter hy-

perintensity (WMH), enlarged perivascular space (EPVS), and 
lacunae.6 CMBs have been considered as predictors of sponta-
neous ICH development8 and are associated with Alzheimer’s 
disease9 and vascular dementia,10 along with higher incidences 
of stroke recurrence,8 new disabilities,11 and poststroke depres-
sion.12 WMH is thought of as a preexisting condition of cognitive 
decline.13 Lacunae are considered to be asymptomatic isch-
emic strokes. 

Despite recent advancement in this field, there is very little 
consolidated research on SVD markers as factors potentially 
related with ICH, and there are no reports on how these mark-
ers correlate with ICH. Although there have been some recent 
reports regarding the spatial locations of WMH,14 EPVS,15 and 
lacunae16 in relation to ICH location, no study has examined 
the associations between ICH and all SVD markers in a single 
cohort. Therefore, the purpose of this study was to explore 
whether individual SVD markers are a common finding in ICH 
patients, compared to control cases, and to examine the pat-
tern of all SVD markers with aging in both groups, focusing on 
CMBs and their relationship with ICH. 
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MATERIALS AND METHODS

Materials
The ICH group consisted of 150 consecutive patients who ex-
perienced a first primary parenchymal ICH from 2011 to 2017. 
Ninety patients were male; 60 patients were female. Patient 
ages ranged from 30 to 89 years (mean 62.0 years). This study 
was approved by the Institutional Review Board of Chung-Ang 
University Hospital as a retrospective observational study (IRB 
number 1707-010-16801). 

Patients who had appropriate MRI sequences were included 
in the study. The MRI images (3.0 T MRI scanners, Philips 
Achieva 3.0T, Amsterdam, the Netherlands) were composed of 
T2-weighted imaging (T2WI, repetition time/echo time 
2831.2/80 ms, 5 mm thickness), fluid attenuated inversion re-
covery (FLAIR: repetition time/echo time 11000/140 ms, in-
version time 2500 ms, 5 mm thickness), susceptibility weight-
ed imaging (SWI, repetition time/echo time 22.9/32.7 ms, 3 
mm thickness), or gradient echo. ICH due to brain tumor, vas-
cular malformation, hemorrhagic transformation from isch-
emic stroke, moyamoya disease, or aneurysm rupture was ex-
cluded. Patients treated with anticoagulants were excluded. 
Patients less than 30 years old were also excluded. Two expe-
rienced physicians (MS.C and YS.P) independently reviewed 
each MRI sequence, defined the ICH characteristics, and 
graded the degree of SVD. The control group consisted of 271 
age- and sex-matched individuals who had undergone brain 
MRI in a health care center from 2015 to 2017. Individuals 
with a past medical history of overt cerebral ischemic attack 
or hemorrhage stroke were excluded. The ages of the controls 
ranged from 32 to 87 years (mean 60.4), and there were 156 
males and 115 females. 

Methods 
The clinical variables collected were age, sex, presence of hy-
pertension, diabetes, and levels of high density lipoprotein 
(HDL) and low density lipoprotein (LDL) cholesterol. ICH lo-
cation was designated at one of four locations: 1) “deep nuclei,” 
when in the thalamus or basal ganglia, 2) “lobar,” when in the 
cortex or subcortex, 3) “brainstem,” or 4) “cerebellum.” ICH 
volume was calculated with ABC/2 on CT. 

Four types of SVD imaging markers were assessed on MRI. 
CMBs were defined as a black or hypointense round signal 
loss with a diameter up to 5 mm on SWI or gradient echo im-
ages. The number of CMBs was counted. CMBs were localized 
in a similar fashion to ICH location. CMBs that resulted from 
cavernomatosis and diffuse axonal injuries were excluded. 
WMH was defined on FLAIR MRI,6 appearing as multiple 
high signal spots or diffuse patches. The location and grade of 
WMH were defined according to the Fazekas scale classifica-
tion as “periventricular” and “deep white matter,” and were 
scored from being absent (0) to a large extension or confluent 
formation (3) at each location. EPVS was defined as round 

CSF intensity lesions with a diameter up to 3 mm on T2WI and 
was assessed on the contralateral side of the ICH at the basal 
ganglia and centrum semiovale. The absolute numbers were 
graded as absent (0), mild (1) for 1 to 20, moderate (2) for 21 to 
40, and severe (3) for over 41. Lacunae were defined as high 
signals on T2WI and low signals with surrounding hyperin-
tensity on FLAIR imaging between 3 mm and 15 mm in diam-
eter. The number of lacunae was counted. 

Statistical methods
We compared the clinical profiles and individual SVD mark-
ers between the two groups. Continuous variables were com-
pared using the independent t-test, and categorical variables 
were compared using the Chi-square test (IBM SPSS statistics 
23.0; IBM Corp., Armonk, NY, USA). Logistic regression analy-
sis was performed to examine associations between imaging 
markers and ICH after adjusting for age, sex, presence of hy-
pertension and diabetes, levels of cholesterol, and SVD imag-
ing markers. ROC curves were constructed by computing the 
sensitivity and specificity of significant variables. According to 
age groups, each SVD marker was compared between the ICH 
and control groups with two-way ANOVA test. The Pearson 
correlation test was performed to study the correlation be-
tween ICH volume and CMB count. To determine the relation-
ship between ICH and CMB location, the Chi-square test was 
used. p values <0.05 were considered statistically significant. 

RESULTS

General characteristics
Age and sex were not significantly different between the two 
study groups. Hypertension was more frequent in the ICH 
group (81/150, 54% vs. 93/271, 34%), and the frequency of dia-
betes was the same in the two groups (21/150, 14% vs. 49/271, 
18%). The level of HDL cholesterol was the same in the two 
groups (49.8±12.8 mg/dL in the ICH group vs. 52.1±12.2 mg/dL 
in the control group), while the level of LDL cholesterol was 
significantly lower in the ICH group (106.9±32.7 mg/dL vs. 
117.7±34.1 mg/dL) (Table 1).

Comparison of SVD markers 
We noted a total of 1278 CMB lesions in 121 of 150 ICH pa-
tients (80.6%). In the control group, a total of 77 CMB lesions 
were found in 32 of 271 individuals (11.8%). The difference in 
CMBs between the ICH and control groups was statistically sig-
nificant (p<0.001). In the ICH group, the most frequent location 
of CMBs was the deep nuclei, while that in the control group 
was the lobar region (Table 2).

Higher grade WMH was recorded in the ICH group than in 
the control group in both periventricular and deep white mat-
ter areas (p<0.001) (Table 2). EPVS also showed a higher grade 
in the ICH group, compared to the control group, in both the 
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basal ganglia and centrum semiovale areas (p<0.001) (Table 2). 
Lacunae were detected in 83 patients in the ICH group (55.3%) 
and in 36 individuals in the control group (13.3%, p<0.001). 
The mean numbers of lacunae were 1.45±1.90 and 0.18±0.56 
in the ICH group and control group, respectively (p<0.001). 

In unadjusted analysis, all SVD markers were significantly 
more severe in the ICH group. After adjusting for age, sex, 
cholesterol level, and presence of hypertension and diabetes, 
all SVD markers were still significantly more severe in the ICH 
group. When the clinical variables and all imaging markers 
were analyzed with multivariate analysis, the presence of CMB 
(odds ratio 15.089, 95% confidence interval 7.253–31.391), 
periventricular WMH (5.532, 1.541–19.856), and basal ganglia 
EPVS (4.227, 1.676–10.656) were significant markers in the 
ICH group (Table 3). When the area under the ROC curve was 

Table 1. Demographic Data of the Intracerebral Hemorrhage and Con-
trol Groups

ICH group Control group p value
Number 150 271
Sex (male:female) 90:60 156:115   0.627
Age (yr) [mean (range)] 62.0 (30–89) 60.4 (32–87)   0.236
Presence of hypertension (n, %) 81 (54) 93 (34) <0.001
Presence of diabetes (n, %) 21 (14) 49 (18)   0.050
HDL cholesterol (mg/dL)   49.8±12.8   52.1±12.2   0.082
LDL cholesterol (mg/dL) 106.9±32.7 117.7±34.1   0.003

ICH, intracerebral hemorrhage; HDL, high density lipoprotein; LDL, low density 
lipoprotein.
Values are presented as mean±standard deviation or n (%) unless otherwise 
indicated.

Table 2. Distributions of Small Vessel Disease in the Intracerebral Hemorrhage and Control Groups

ICH group (n=150) Control group (n=271) p value
Cerebral microbleeds

Presence of lesions 121 (1278 lesions, 80.6%) 32 (77 lesions, 11.8%) <0.001
Locations <0.001

Deep nuclei 96 (526 lesions) 12 (23 lesions)
Lobar 84 (465 lesions) 19 (42 lesions)
Cerebellum 55 (146 lesions) 10 (10 lesions)
Brainstem 52 (141 lesions) 1 (2 lesions)

White matter hyperintensity (n, %)
Periventricular <0.001

0 12 (8.0) 172 (63.4)
1 57 (38.0)   78 (28.7)
2 50 (33.3) 18 (6.6)
3 31 (20.7)   3 (1.1)

Deep white matter <0.001
0 12 (8.0) 129 (47.6)
1 64 (42.7) 119 (43.9)
2 46 (30.7) 18 (6.6)
3 28 (18.7)   5 (1.8)

Enlarged perivascular space (n, %)
Basal ganglia <0.001

0 3 (2.0) 100 (36.9)
1 41 (27.3) 111 (40.9)
2 44 (29.3)   42 (15.4)
3 62 (41.3) 18 (6.6)

Centrum semiovale <0.001
0 6 (4.0)   55 (20.2)
1 43 (28.7) 145 (53.5)
2 59 (39.3)   60 (22.1)
3 42 (28.0) 11 (4.0)

Lacunae
Presence of lesions (n, %) 83 (55.3) 36 (13.3) <0.001
Mean number of lesions 1.45±1.90 0.18±0.56 <0.001

ICH, intracerebral hemorrhage.
Values are presented as mean±standard deviation or n (%) unless otherwise indicated.



777

Yong-Sook Park, et al.

https://doi.org/10.3349/ymj.2019.60.8.774

computed, the number of CMBs, the number of lacunae, peri-
ventricular and deep white matter WMH, and basal ganglia and 
centrum semiovale EPVS were significant (Table 4). The num-
ber of CMBs most significantly predicted ICH (Fig. 1).

CMB, WMH, EPVS, and lacunae with aging
The patterns of SVD markers with aging are displayed in Fig. 2. 
CMB, WMH, EPVS, and lacunae were more severe in all age 
groups of the ICH group than of the control group. CMBs were 
prominent starting in the 30s and remained consistently high 
with aging in the ICH group. WMH at the periventricular area 
and at the deep white matter, EPVS in the basal ganglia and cen-
trum semiovale, and lacunae increased gradually with aging in 
both groups. However, WMH and EPVS showed a consistently 
worse grade in the ICH group, even in young patients. 

CMB and ICH 
The most frequent ICH location was the deep nuclei (77 cas-
es), followed by lobar (46 cases), cerebellum (15 cases), and 
brainstem (12 cases). When the spatial CMB distribution was 
grouped according to hypertensive ICH location, which in-
cluded the deep nuclei, cerebellum, and brainstem, vs. lobar 

Table 3. The Odds Ratio of Hemorrhage according to Small Vessel Disease Imaging Markers by Multiple Logistic Regression Analysis

Variables Model 1* OR (95% CI) Model 2† OR (95% CI) Model 3‡ OR (95% CI)
Presence of CMB 31.163 (18.015–53.906) 33.149 (17.574–62.529) 15.089 (7.253–31.391)
WMH periventricular 

Grade 0, I (Ref) 1 1 1
Grade II, III 13.975 (8.071–24.198)�� 31.623 (13.933–71.771)   5.532 (1.541–19.856)

WMH deep white matter
Grade 0, I (Ref) 1 1 1
Grade II, III 10.499 (6.156–17.905)�� 18.580 (8.759–39.413) � 1.271 (0.353–4.574)

EPVS basal ganglia
Grade 0, I (Ref) 1 1 1
Grade II, III 8.472 (5.382–13.335) 12.051 (6.661–21.801) �   4.227 (1.676–10.656)

EPVS centrum semiovale
Grade 0, I (Ref) 1 1 1
Grade II, III 5.806 (3.756–8.976)��� 6.129 (3.668–10.242) 1.301 (0.562–3.011)

Presence of lacunae 8.087 (5.023–13.018) 9.190 (5.088–16.600) 1.570 (0.651–3.785)
OR, odds ratio; CI, confidence interval; CMB, cerebral microbleeds; WMH, white matter hyperintensity; Ref, reference; EPVS, enlarged perivascular space.
*Unadjusted analysis; †Adjusted for clinical variables: age, sex, hypertension, diabetes, high density lipoprotein cholesterol and low density lipoprotein cholesterol; 
‡Adjusted for clinical variables and all imaging markers.

Table 4. Area Under the ROC Curves and the Significance of Each Imag-
ing Marker

Test result 
variable(s)

Area Asymptotic Sig.
Asymptotic 95% 

confidence interval
Lower bound Upper bound

PVWMH 0.845 0.000 0.806 0.884
DWWMH 0.792 0.000 0.747 0.836
BGEPVS 0.811 0.000 0.770 0.853
CSEPVS 0.747 0.000 0.698 0.796
No. of CMB 0.875 0.000 0.835 0.916
No. of lacunae 0.729 0.000 0.675 0.784
No., number; ROC, receiver operating characteristic; Sig., significance; PVWMH, 
periventricular white matter hyperintensity; DWWMH, deep white matter hy-
perintensity; BGEPVS, basal ganglia enlarged perivascular space; CSEPVS, 
centrum semiovale enlarged perivascular space; CMB, cerebral microbleeds.

1-specificity
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Fig. 1. Area under the receiver operating characteristic (ROC) curves were 
plotted with the number of cerebral microbleeds (CMB), the number of la-
cunae, periventricular (PVWMH) and deep white matter hyperintensity 
(DWWMH), and basal ganglia (BGEPVS) and centrum semiovale enlarged 
perivascular space (CSEPVS). The number of CMBs most significantly 
predicts intracerebral hemorrhage. No. of CMB, number of CMB; No. of 
lacune, number of lacunae.
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Fig. 2. The distribution of small vessel disease imaging markers by age group. Cerebral microbleeds (CMB) (A), lacunae (B), white matter hyperintensity 
(WMH) (C and D), and enlarged perivascular space (EPVS) (E and F) in the intracerebral hemorrhage (ICH) group and the control group. In all age groups, 
CMB, lacunae, WMH, and EPVS were more severe in the ICH group than in the control group. CMBs were prominent starting in the 30s and remained con-
sistently high with aging in the ICH group. WMH in the periventricular area and deep white matter, EPVS in the basal ganglia and centrum semiovale, and lacu-
nae all increased gradually with aging in both groups. These MRI markers had a consistently worse grade in the ICH group, even in young patients.
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ICH location, the coincidence between CMB and ICH location 
was statistically significant (p<0.001). Probable hypertensive 
ICH patients had 688 hypertensive CMBs (75.2%) vs. 227 lobar 
CMBs (24.8%). Lobar ICH patients had 125 hypertensive CMBs 
(34.4%) vs. 238 lobar CMBs (65.6%). In patients with ICH in the 
deep nuclei, cerebellum, or brainstem, CMBs were most fre-
quently found in the deep nuclei. For patients with lobar hem-
orrhage, lobar CMBs were most common (Table 5).

The mean ICH volume was 21.8 mL (±30.3, 2–147). The mean 
number of CMBs was 8.5 (±12.0, 0–76) in the ICH group. ICH 
volume was correlated with the number of CMBs (r=0.2, p= 
0.014). ICH volume in the deep nuclei was correlated with the 
number of CMBs in the deep nuclei (r=0.331, p=0.003), but 
was not correlated with the number of lobar CMBs. Lobar ICH 
volume was correlated with the number of lobar CMBs (r=0.415, 
p=0.004), but was not correlated with the number of deep nu-
clei CMBs.

DISCUSSION

In this study, all SVD markers were more severe in the ICH 
group than in the control group. After adjusting for age, sex, 
hypertension, diabetes, and cholesterol level, CMBs, periven-
tricular WMH, and basal ganglia EPVS were significant. 

In terms of CMBs, they were observed in 80.6% (121/150) of 
the ICH patients, compared to 11.8% (32/271) in the control 
group. The frequency of CMBs has been reported as low as 54% 
and as high as 80% in ICH patients.17 In the control group, CMBs 
were reported in 15% in the 45 years and older age groups,18 in 
26.5% in the 53 to 68 year old age group,17 and in 11.8% in the 
32 to 87 year old age group in our study. A previous report us-
ing an older adult community survey found that the frequen-
cy was higher in the older adult population (mean age of 84.5 
years) with a CMB prevalence of 27%.19 We found that CMBs 
increased with aging in the control group. However, CMB prev-
alence was not related with aging in the ICH group, and a high 
percentage of CMBs affected young patients in the ICH group. 
Out of 9 patients in their 30s, eight had CMBs in a non-lobar 
location. Our result is similar to findings from a city cohort 
study in young (≤49 years) stroke patients, which reported that 
the presence of CMBs was related with male sex, hyperten-
sion, moderate-severe WMH, and ICH.20 

Charidimou, et al.14 reported that peri-basal ganglia WMH 

correlated with hypertensive ICH, and subcortical white mat-
ter spots correlated with lobar hemorrhage. Recently, WMH has 
been considered to be an independent risk factor for CMB,21 
stroke and its mortality,22,23 and poor outcomes after ICH in-
cluding hematoma expansion.24,25 The presence of WMH has 
been reported as a risk factor for major intracranial bleeding 
during anticoagulation.26 WMH is thought to be closely related 
to cognitive decline and dementia in older adults.27 WMH be-
comes more common with advancing age28 and is more pro-
nounced in patients aged ≥65 years.29 In this study, WMH in 
both the ICH and control groups increased with age. However, 
in the ICH group, the grade of WMH was approximately one 
grade more severe than in the control group, and the changes 
appeared in young ICH patients. Further study is required to 
determine whether WMH is an independent risk factor for ICH 
or a common phenomenon related to small arteriolopathy. 

EPVS has been suggested as a marker of SVD30 and may be 
related to interstitial fluid drainage impairment.31 Charidimou, 
et al.15,30 reported a higher degree of centrum semiovale EPVS 
in relation to lobar CMB and lobar ICH, similar to cases with 
WMH. Hypertensive arteriopathy corresponds to basal gan-
glia EPVS, while amyloid angiopathy correlates with centrum 
semiovale EPVS. In our study, the degrees of EPVS in the basal 
ganglia and centrum semiovale were more severe in the ICH 
group than in the control group. Basal ganglia EPVS was sig-
nificant in multivariate analysis. This imaging marker seems to 
reflect hypertensive vascular change. The EPVS was also prom-
inent from a young age in the ICH group, although it showed a 
gradual increasing pattern with aging in both groups. 

Lacunae are cavitating infarcts and are most commonly found 
in the putamen, caudate nucleus, thalamus, pons, internal cap-
sule, and cerebral white matter. Lacunae have been considered 
as a marker of SVD32 and reported to be related with WMH, 
CMB, EPVS,6,7,33 and ICH.7 One report found that lobar lacu-
nae are associated with amyloid angiopathy, and deep lacunae 
are more frequent in hypertensive SVD and have a close rela-
tionship with WMH.16 In our study, lacunae were more frequent 
in the ICH group than in the control group. However, when the 
clinical variables were adjusted, the frequency of lacunae was 
not significantly different, and the aging patterns of lacunae 
were similar to those of other SVD markers (Fig. 2). The Fram-
ingham study showed that lacunar stroke and ICH shared hy-
pertension as a common risk factor.34 WMH and EPVS in the 
ICH group showed similar slope with them in control group 
with aging. While these imaging markers should be considered 
as phenomena of the aging process, they definitely appeared 
earlier and to be more severe in the ICH group. 

In terms of CMBs and ICH, there has been a consistent ten-
dency of identical locations.17,35 Our study also showed signifi-
cant correlation with the corresponding location when we 
compared the ICH locations to the CMB locations (p<0.001). 
ICH volume was correlated with the number of CMBs. In par-
ticular, the ICH volume in the deep nuclei was correlated with 

Table 5. Comparison of Cerebral Microbleeds in Two Representative ICH 
Locations 

Location Hypertensive† CMB Lobar CMB p value
Hypertensive* ICH 688 (75.2) 227 (24.8)

<0.001
Lobar ICH 125 (34.4) 238 (65.6)
ICH, intracerebral hemorrhage; CMB, cerebral microbleeds.
Values are presented as n (%).
*Hypertensive ICH includes deep nuclei, cerebellum, and brainstem ICH; †Hyper-
tensive CMB includes deep nuclei, cerebellum, and brainstem CMBs.
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the number of CMBs in the deep nuclei, and lobar ICH volume 
was correlated with the number of lobar CMBs. Some ICH pa-
tients had numerous CMBs that were crowded around the 
ICH area, especially in cases of deep nuclei ICH. Fisher referred 
to this phenomenon as an “avalanche or domino style.”36 Si-
multaneous spontaneous ICHs at different sites could be an-
other example of this domino phenomenon. Intuitively, a large 
number of CMBs seems to suggest advanced multiple arterial 
vasculopathies. Larger CMB counts seem to develop along with 
a larger hemorrhage, and CMBs predict a future risk of symp-
tomatic ICH.37,38 However, the Boston group reviewed the re-
lationship of microbleeds in patients with and without ICH.39 
They reported that microbleed counts were greater in the non-
ICH group, even though the groups had the same profiles re-
garding demographics, radiologic features, presence of apoli-
poprotein E, and vascular risks. These different results may be 
due to their study frame, as their study examined patients 
with high microbleed counts and included anticoagulation-
treated ICH patients. Other reports suggest that CMBs may 
predict lesions for macrobleeding.17,40 The total number of 
(micro) hemorrhages predicted the risk of future ICH. Higher 
numbers of (micro) hemorrhages increased the risk of cogni-
tive impairment, loss of independence or death, along with 
the risk of subsequent ICH.37

A limitation of this study is that it did not include ICH pa-
tients without appropriate MRI sequences. Patients with large 
volume hemorrhage were not included due to early death or a 
poor general state for MRI acquisition. However, we included 
a large number of patients consecutively. Also, it is not known 
if WMH, EPSV, lacunae, CMB, and spontaneous ICH result 
from common risk factors or whether they have causal relation-
ships with each other. Further study is necessary to investigate 
these relationships.

SVD markers have been commonly considered as neurode-
generative findings in the aging brain. Many studies on SVD 
have focused on ischemic stroke, cognitive decline, or physical 
disabilities. In our study, MRI markers for SVD were all worse 
in the ICH group than in the control group and were promi-
nent in young ICH patients. All SVD markers should be con-
sidered due to their potential relationship with spontaneous 
ICH. Further studies are required to validate these results and 
to identify modifiable factors for the prevention of disastrous 
ICH development. 
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