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Abstract: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective
treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one
of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator
of immune cell function. We recently developed a novel recombinant MET agonist optimized for
therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss
in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and
reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice.
This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK)
in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover,
reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4)
levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented
the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost
on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational
justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a
potential treatment for ALS.
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1. Introduction

The last decade has witnessed unprecedented progress in understanding the genetic complexity
of amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, and it is now clear
that regardless of the gene mutation, ALS results from both cell autonomous degeneration of cortical
and/or spinal motor neurons as well as non-cell autonomous cell damage [1].

Evidence from ALS mouse models, in particular the superoxide dismutase 1 (SOD1) mutant
transgenic mice, together with findings from ALS patients, indicate that multiple mechanisms are
involved in the death of the motor neurons (MNs) and the loss of muscular innervation. They include
a mix of molecular processes (e.g., protein aggregation, impaired RNA processing and metabolism,
mitochondrial dysfunction, oxidative stress, cytoskeletal alterations and impairment of axonal transport)
that cause cell-autonomous motor neuron dysfunction [2]. Other mechanisms involve the participation
of different cell types of the central nervous system (CNS) such as reactive astroglia and microglia [3],
Schwann cells of the peripheral nervous system (PNS) [4] and macrophages and T-cells of the peripheral
immune system [5,6] that may also elicit neuroinflammatory processes contributing actively to motor
neuron degeneration. However, motor neurons become vulnerable to these mechanisms in adult life
through activation of signaling pathways promoting cell death [7] or loss of compensatory pro-survival
mechanisms such as Protein kinase B (AKT) or the extracellular signal-related kinase (ERK) signaling
pathway [8,9] and/or the loss of an anti-inflammatory protective environment around damaged motor
neurons [10].

The hepatocyte growth factor/scatter factor (HGF/SF), through the activation of its receptor MET,
is one of the most potent survival-promoting factors for sensory and motor neurons during the
development and in adulthood in the event of tissue damage [11,12]. Interestingly, certain residual
anterior horn cells from post-mortem ALS patients overexpressed both HGF/SF and MET in comparison
with those of normal subjects [13]. Most importantly, transgenic overexpression or intrathecal delivery
of the growth factor markedly delayed the progression of the disease in SOD1G93A transgenic mice
and rats [14,15]. Hence, early clinical trials involving intramuscular administration of plasmid HGF/SF
DNA [16] or intrathecal delivery of HGF/SF protein [17] in ALS patients have displayed adequate safety
profiles and are now progressing to efficacy studies. However, HGF/SF has a complex multidomain
structure consisting of a 69 kDa alpha-chain comprising an N terminal domain (N) and four kringle
domains (K) linked via a disulfide bond to a 34 kDa beta-chain consisting of an inactive serine
protease homology domain (SPH) (Figure S1) and may be rapidly degraded in the proteinase-rich
microenvironment of degenerating motor neurons and activated glial cells typical of ALS, limiting its
efficacy. Therefore, fragments of HGF/SF engineered for superior stability, potency and ability to cross
the blood-brain barrier may be more suitable for therapy than the natural molecule.

We recently developed and tested in vitro stable and potent recombinant MET agonists based
on HGF/SE. They include NK1, a small natural fragment of the growth factor consisting of the N
and first kringle domain (K1) of HGF/SF and encompassing the high-affinity MET binding site [18]
(Supplementary Figure S1), and a novel dimeric form of the K1 domain, designated K1K1 [19].
After preliminary studies in vitro, we selected the most potent protein, K1K1, as the molecule of
choice to assess the neuroprotective effect in in vitro and in vivo models of ALS. To overcome potential
immunogenicity of the human proteins, a mouse version of K1K1 was generated and produced for the
in vivo experiments in SOD1G93A transgenic mice. We observed a delay in the disease course of mice
treated intraperitoneally with K1K1 and this effect was accompanied by a partial protection of motor
neurons and neuromuscular junctions as well as alterations in inflammatory and immune response
in the spinal cord and skeletal muscle. The molecular mechanisms involved in these effects of K1K1
were examined.
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2. Results

2.1. Production of Recombinant Proteins with Increased Stability

Native HGF/SF, the MET-agonists NK1 and K1K1 were produced in highly optimized expression
systems. NK1 is a natural splice-variant with reduced agonistic activity, while the design of recombinant
K1K1 is based on extensive functional and structural studies performed in our laboratories in
collaboration with colleagues at the Institute Pasteur in Lille, France [19] and is comprised of two
linked HGF/SF kringle 1 domains providing two MET receptor binding sites [19,20] (Figure S1).
For therapeutic purposes, K1K1 has several advantages over HGF/SF, one of which is superior stability
in buffered solutions such as phosphate buffer saline (PBS) as well as in mammalian cell culture
medium. To demonstrate this, purified HGF/SF and K1K1 were diluted to a final concentration of
10 uM in PBS and in RPMI medium containing 10% fetal calf serum (FCS) and incubated at 37 °C.
The coomassie analysis of samples taken every week over four weeks shows the gradual degradation
of HGF/SF in both conditions after two to three weeks (Figure S2A). In contrast, K1K1 does not
show degradation under the same conditions (Figure 52B). Moreover, measurements on a Tycho NT.6
(Nanotemper) confirmed a steady decrease in fluorescence signal (“brightness” at 330 and 350 nm) for
HGEF/SF while K1K1 remained stable over a three-week period (Figure S2C).

Overall, due to its size and superior stability, K1K1 is clearly optimal for application in vivo.
Furthermore, to minimize the chance of K1K1 invoking an immune response during the long-term
treatment in mouse, a recombinant mouse variant of K1K1 was generated and used for the in vivo
studies. Mouse kringle 1 domain differs from the human kringle 1 in only two amino acid positions:
G134 (R134 in human) and N152 (5152 in human). The mouse protein was produced as described for
human K1K1 in material and methods [19]. The mouse protein was tested in an MDCK assay and its
biological activity was confirmed to be comparable to that of human K1K1 and mouse and human
HGEF/SF showing observable colony scattering down to the picomolar concentration and differing only
by a half-log (3.16x) dilution (Figure S3).

2.2. MET Agonists Protects Motor Neurons in Astrocyte-Spinal Neuron Co-Cultures from Transgenic
SOD1G93A Mice

In our cellular model of ALS, a spontaneous and selective loss of large mutant motor neurons
expressing SOD1G93A transgene occurs after 6 days in vitro (DIV) when compared with non-transgenic
cultures under the same conditions [21,22]. To compare the activity of HGF/SF, NK1 and K1K1 in
this model, SOD1G93A and non-transgenic co-cultures were treated with vehicle (PBS), HGF/SF or
MET agonists, administered at different doses at 0, 2 and 4 DIV. At 6 DIV, cultures were fixed and
SMI32-positive MNs counted. Treatment with HGF/SF confirmed its neuro-protective properties,
preventing MNs loss in co-cultures expressing SOD1G93A (viable MNs 84.1% + 12.5, mean + SEM)
only at the highest dose of 107 M, compared to the untreated transgenic co-culture (viable MNs
43.8% + 2.0, mean + SEM) (Figure 1A). K1K1 showed a powerful neuro-protective effect with a total
recovery of the MNs viability at a ten-times lower concentration (1071° M, viable MNs 113.4% + 17.5,
mean + SEM) (Figure 1B), while NK1 reaches similar maximum protective action (as K1K1 at 1077 M)
at a ten times higher concentration (1078 M, viable MNs 100.9% + 11.3, mean + SEM) (Figure 1C).
K1K1 was then used for subsequent in vivo studies.
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Figure 1. MET agonists protect motor neurons (MNs) from death in a cellular model of Amyotrophic
Lateral Sclerosis (ALS). (A—C) Quantitative assessment of MN survival in non-transgenic (NTG,
white) or superoxide dismutase 1 G93A (SOD1G93A) (black) astrocyte-spinal neuron co-cultures after
6 days in vitro (DIV). Cells were treated at DIV 0, 2 and 4 with different doses of hepatocyte growth
factor/scatter factor (HGF/SF) or MET agonists or left untreated as controls. The columns show the
number of viable MNs calculated as the ratio between the MN number (SMI32-positive, maximum
diameter >20 um) and the number of total NeuN-positive neurons. Data are expressed as a percentage
of NTG untreated samples. The analysis of the MNs’ survival revealed that treatment with K1K1
showed the best neuroprotective profile even at a lower dose (1071° M), completely preventing MN
loss in transgenic co-cultures. Data are expressed as mean + SEM (n = 5 independent experiments).
Data were analyzed with Two-way ANOVA followed by Tukey’s post-hoc Test. * p < 0.05, ** p < 0.01.

2.3. K1K1 Delays the Onset of Neuromuscular Impairment of SOD1G93A Mice

For the in vivo study, we initially examined the effect of a dose response treatment with K1K1
on the disease progression and the neuropathological alterations in mSOD1 mice. Mice were treated
for 6 weeks from the onset of the symptoms (98 days of age) until the symptomatic stage (140 days
of age). Female C57BL/6 SOD1G93A mice were randomly divided into four groups and treated
intraperitoneally (IP) with PBS as vehicle or mouse K1K1 (0.25, 2.5, and 25 pg/injection) every day,
five days a week. The mice were examined for the assessment of neuromuscular deficit twice a
week during the entire period of treatment. The mice treated with the higher dose of K1K1 (25 ng)
performed the grip strength test significantly better than the vehicle group (Figure 2A), showing a
modest but significant delay of the onset of muscle force impairment, evaluated as the age (days) at
which the mouse displays the first failure in the grip strength test (K1K1 25 pg: 127.1 + 1.5 days vs.
vehicle 121.6 + 1.6 days, mean + SEM) (Figure 2B). No significant changes were observed at lower
concentrations of K1K1 (K1K1 0.25 pg: 119.5 + 1.4 days; K1K1 2.5 ug: 121.9 + 1.6 days, mean + SEM).

2.4. K1K1 Protects Motor Neurons and the NM]Js of SOD1G93A Mice

To evaluate the potential neuroprotective effect of treatments, the number of Nissl stained motor
neurons (with an area larger than 400 um?) in the lumbar spinal cord (LSC) was considered for
the analysis (Figure 2C). A marked motor neuron loss in SOD1G93A mice treated with vehicle was
observed (MNs per hemisection: 5.1 + 0.7, mean + SEM) with respect to non-transgenic mice (14.5 £ 1.7,
mean + SEM). Only K1K1 25 pg displayed a partial but significant reduction in motor neuron loss
(9.8 + 0.7, mean + SEM) (Figure 2D) while no effect was found at the lower doses (Figure S4A).

We also evaluated the neuromuscular junction (NMJ) innervation in tibialis anterior muscle (TAM)
identified by the co-localization of pre-synaptic (anti-SV2 antibody) and post-synaptic (Bungarotoxin,
BTX) terminal staining (Figure 2E). The number of denervated plaques (lack of SV2-BTX co-localization)
were calculated as a percentage of the total plaques. SOD1G93A mice treated with vehicle showed a
higher percentage (60.1% + 10.8, mean + SEM) of denervated plaques than NTG mice (14.1% + 2.8,
mean + SEM). Treatment with K1K1 25 pug partially but significantly reduced the plaque denervation
(32.7% + 4.8, mean + SEM) (Figure 2F). The TAM weight was reduced by 51% in SOD1G93A mice
treated with vehicle (25.1 + 5.2 mg; mean + SEM) compared to NTG (51.6 + 3.3 mg) but was not
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significantly modified by the treatment with K1K1 (31.8 + 2.5 mg; a reduction of 38%). No effect on
denervated plaques was found at the lower doses of K1K1 (Figure 54B).
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Figure 2. K1K1 25 ug delays neuromuscular impairment and protects the neuromuscular system in
SOD1G93A mice. (A) A significant improvement in the grip strength test performance is observed
in SOD1G93A mice treated intraperitoneally (IP) with K1K1 25 pg but not with lower dosages (0.25
and 2.5 ug) compared to vehicle treated mice. Each point represents the mean + SEM (n = 10).
Data were analyzed using Two-way ANOVA for repeated measures (time) and different groups
(treatment). (B) A Kaplan—-Meier curve showed that the onset of motor symptoms was significantly
delayed. Data were analyzed using the Log-rank test (p < 0.05, n = 10 animals for each group).
(C) Representative images of Nissl staining performed on lumbar spinal cord (LSC) sections from
non-transgenic (NTG) and SOD1G93A mice treated with phosphate buffer saline (PBS) (vehicle) or
K1K1 25 ug at the symptomatic stage of the disease (140 days). Scale bar: 100 pm. (D) Quantification
of the motor neuron number (cell body area >400 pm?) in lumbar spinal cord. MNs were decreased in
transgenic groups compared to NTG and 25 ug K1K1 displayed significant neuroprotection with a
partial reduction in motor neuron loss. (E) Representative confocal images of synaptic vesicle protein
2 (SV2, green) and bungarotoxin (BTX, red) co-localization in neuromuscular junctions (NMJs) of
Tibialis Anterior Muscle (TAM) from NTG and SOD1G93A mice treated with vehicle or K1K1 25 pg
(140 days of age). Scale bar: 50 um. (F) Denervated NM]Js represented by the lack of co-localization
between SV2 and BTX was higher in TAM of transgenic mice treated with vehicle and K1K1 25 pg
significantly reduced this effect. (D,F) Data are expressed as mean + SEM, n = 5 animals per group.
Data were analyzed by One-way ANOVA followed by post hoc Fisher’s least significant difference
(LSD). * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001.

2.5. K1K1 Activates p-ERK/ERK but not p-AKT/AKT in the Spinal Cord of SOD1G93A Mice

The two most important signaling cascades that the HGF/SF-MET axis is able to trigger are the
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and PI3K-AKT
pro survival pathways [23]. The activation of both these pathways have been shown to counteract
the motor neuron demise in SOD1G93A mice [8,9]. To investigate whether the recombinant fragment
KIK1 is capable of stimulating the same mechanisms, the activation of these pathways in the ventral
horn of LSC of SOD1G93A mice was analyzed. As shown in Figure 3A, the chronic treatment with
K1K1 was unable to increase the ratio between pAKT and AKT, when compared to vehicle treated
C57BL/6-SOD1G93A mice. On the contrary, the ratio between phosphorylated ERK (p-ERK) and
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total ERK was found significantly increased in the spinal cord of SOD1G93A mice treated with K1K1
compared with vehicle treated mice (Figure 3B). Levels of mutant SOD1 were unchanged by the K1K1
treatment (Figure S5).
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Figure 3. Treatment with 25 pg KI1K1 increased only extracellular signal-related kinase (ERK)
phosphorylation in lumbar spinal cord of SOD1G93A mice. (A,B) Representative immunoblots
of p- Protein kinase B (AKT)/ AKT and phospho-extracellular signal-related kinase (p-ERK)/ERK and
relative quantification performed on the ventral portion of lumbar spinal cord of transgenic SOD1G93A
mice treated with vehicle or 25 ug K1K1. (A) Chronic treatment with K1K1 does not change p-AKT/AKT
levels while increases the p-ERK/ERK activation in 140 days old SOD1G93A mice with respect to
vehicle treated mice. Bars represent mean + SEM (n = 4 — 5). All data were statistically analyzed using
Student’s ¢-test *** = p < 0.001.

2.6. Effect of K1K1 on the Sciatic Nerve Dysfunction in SOD1G93A Mice

Alterations of Schwann cells (S5Cs) and consequent demyelination of peripheral nerves have been
implicated in the disease progression in SOD1G93A mice [22,24]. Since HGF/SF and MET have been
reported to play important roles in SCs-mediated nerve repair by activating the ERK pathway [23],
we examined whether K1K1 may alter the activation of ERK and the expression level of Glia Acid
Fibrillary Protein (GFAP) in the sciatic nerves of SOD1G93A mice, involved in the de-differentiation
and proliferation of SCs, respectively [23,25]. We also examined the levels of acetyl-tubulin as index of
axonal transport which was reported to be reduced in the sciatic nerve of SOD1G93A mice [24].

Figure 4 shows that the levels of p-ERK (A) and GFAP (B) were increased in the sciatic nerve of
SOD1G93A mice treated with K1K1 with respect to the vehicle treated mice. On the contrary, the levels
of acetyl-tubulin were markedly reduced in SOD1G93A mice compared to non-transgenic littermates
and were not affected by K1K1 treatment (C).
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Figure 4. Treatment with 25 pg K1K1 increased ERK phosphorylation and Glia Acid Fibrillary Protein
(GFAP) expression in the sciatic nerve of SOD1G93A mice. (A) p-ERK levels were mildly higher
in SOD1G93A mice treated with vehicle compared to NTG mice and treatment with 25 pg K1K1
significantly increased the phosphorylation of ERK in SOD1G93A mice. A similar effect was observed
for the levels of GFAP (B). The levels of acetyl-tubulin (C) were significantly reduced in SOD1G93A mice,
an effect not modified by the K1K1 treatment. Bar graphs represents mean + SEM (n = 4-5). All data
were statistically analyzed using One Way ANOVA followed by post hoc Fisher’s least significant
difference (LSD). * p < 0.05.

2.7. K1K1 Dampens the Immune Dysfunction in the Lumbar Spinal Cord and in Tibialis Anterior Muscles of
SOD1G93A Mice

To evaluate the effect of the K1K1 treatment on the neuroinflammatory response in the spinal
cord, we measured the astrocyte and macrophagic microglia activation by immunohistochemical
analysis of the Glia Acid Fibrillary Protein (GFAP) and Cluster of Differentiation 68 (CD68) expression,
respectively. As seen in Figure 5, the increase in GFAP (A) and CD68 (B) immunostaining observed
in SOD1G93A mice treated with the vehicle was significantly reduced by the treatment with K1K1.
However, the transcript levels of pro-inflammatory cytokines Tumor Necrosis Factor (TNF)«x and
(C-C motif) ligand 2 (CCL2) that were significantly increased in SOD1G93A mice, were not modified
by treatment with K1K1 (Figure 5C,D). On the contrary, the mRNA expression of anti-inflammatory
interleukin 4 (IL-4) was significantly increased in K1K1 treated mice (Figure 5E).

As HGF/SF has been reported to exert immunosuppressive properties on both CD4* and CD8*
T cells in a mouse model of multiple sclerosis [26,27] and growing evidence suggest a role of the
adaptive immune system in the pathogenesis and progression of ALS [10,24], we investigated the
effect of K1K1 treatment on this mechanism in our ALS model. We measured the transcript levels of
markers for CD8" and CD4" T cells as markers of cytotoxic and helper T lymphocytes, respectively.
An increase in both transcript levels for CD8 and CD4 was observed in the LSC of SOD1G93A mice
at the symptomatic stage compared to non-transgenic littermates, and this effect was significantly
counteracted by the treatment with K1K1 (Figure 5F,G). On the contrary, the level of forkhead box P3
(FOXP3) mRNA, a key element for T regulatory (Treg) CD4 cell function, was unchanged between
SOD1G93A treated with vehicle or K1K1 (Figure 5H). As result the ratio between the transcript levels
of FoxP3 (Treg) and those of total CD4* T was higher in SOD1G93A treated with K1K1 (1.04 + 0.25,
mean + SEM) than in vehicle treated mice (0.39 + 0.14, mean + SEM).



Int. J. Mol. Sci. 2020, 21, 8542 8 0of19

SOD1%%*A Vehicle SOD1°%A K1K1 25
- - g‘
- B

TNFa mRNA CCL2 mRNA 1L4 mRNA

L@fﬂ LWT

o «© o )
& «°

GFAP immunoreactivity

3 @ 8

GFAP (Area

€068 (Area Fraction)

Fold Change (%)
Fold Change (%)
Fold Change (m

cDa mRNA
CD4 mRNA FoxP3 mRNA

i Bifls g

.
o

o
e o

Fold Change (%)

Figure 5. Treatment with 25 ug K1K1 reduces astrocytosis and macrophagic microglia and increases
interleukin (IL)-4 in the LSC of SOD1G93A mice. (A) Representative images of LSC ventral horn of
non-transgenic (NTG) and SOD1G93A mice treated with vehicle or 25 ug K1K1 at the symptomatic
stage of the disease (140 days), stained for GFAP (green), scale bar: 50 um. Quantification of GFAP
immunofluorescence showed elevated astrocytosis in the LSC ventral horn of SOD1G93A mice but
treatment with K1K1 significantly reduced the reactive astrocytosis. (B) Cluster of differentiation
(CD)68 positive macrophagic microglia (red) were labelled in ventral horn of LSC, scale bar: 50 pm.
The quantification of immunoreactivity showed an increase in CD68* cells in transgenic mice treated
with vehicle compared to NTG. This effect was significantly reduced by the treatment with 25 pg K1K1.
Data are expressed as mean + SEM, n = 5 animals per group. (CE) Real time PCR for pro-inflammatory
(Tumor Necrosis Factor (TNF)x and (C-C motif) ligand 2 (CCL2)) and anti-inflammatory (IL-4) marker
in the ventral portion of LSC of NTG and transgenic mice (140 days of age), treated with vehicle or
25 pg K1K1. For TNFo and CCL2, the increase observed in SOD1G93A mice treated with vehicle was
unchanged by 25 pg K1K1. On the contrary, for IL-4 we observed an increase in 25 pg K1K1 treated
mice suggesting an anti-inflammatory response. (F-G) 25 nug K1K1 reverted the increase in CD8" (F)
and CD4" T (G) cells in lumbar spinal cord of SOD1G93A mice (140 days) while levels of forkhead
box P3 (FOXP3) (H) that tend to be lower in vehicle SOD1G93A were unmodified by K1K1 treatment.
Bars represent the mean + SEM, 1 = 5 animals for each group. All data were statistically analyzed using
One-way ANOVA followed by post hoc Fisher’s LSD. * p < 0.05, ** p < 0.01, *** p < 0.005, *** p < 0.001,
n.s. = not significant.

Since the immune-inflammatory environment plays a key role in the skeletal muscle
regeneration [28], we examined whether K1K1 treatment modified the expression levels of
T lymphocytes and macrophages in the TAM of SOD1G93A mice. As shown in Figure 6, the levels of
CDS8 (A) and CD4 (B) that significantly increased in the TAM of SOD1G93A mice compared to NTG
mice, were reduced by the treatment with K1K1 although only for the CD8 the effect reached the
significance. Furthermore, CD68 and TNFalpha mRNA levels showed a similar trend (Figure 6C,D),
even if the effect was not statistically significant. Overall, these data suggest a prominent inhibitory
effect of K1K1 on the immune activation induced by mutant SOD1.
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Figure 6. Treatment with 25 pug K1K1 dampens the inflammatory response in Tibialis Anterior muscles
of SOD1G93A mice. (A-D) Real time PCR shows that 25 pg K1K1 decreases CD8* (A) and CD4* T (B)
cells in Tibialis Anterior Muscle. For the mediators of inflammation CD68 (C) and TNFa (D) we observe
a reduction after treatment with 25 pug K1K1. Data are expressed as the mean + SEM as percentage of
NTG (n = 3-5 mice per group). All data were statistically analyzed using One-way ANOVA followed
by post hoc Fisher’s LSD. * p < 0.05.

2.8. K1K1 Does Not Affect the Onset of Paralysis and Survival of C57BL/6 SOD1G93A Mice

Based on the promising results described above the long-term effect of K1K1 was examined in a
new, larger group of SOD1G93A mice treated with the same protocol until the end stage. In this new
group of mice, we confirmed that the onset of grip strength impairment was significantly delayed by
the treatment with 25 ug K1K1 (125.9 + 2.1 days vs. vehicle: 119.7 + 1.5 days, mean + SEM) (p < 0.05)
(Figure 7A). However, there was no effect on the age of paralysis (p = 0.2956) (Figure 7B), and on the
survival (p = 0.1048) of SOD1G93A mice (Figure 7C). The disease progression appeared accelerated
after 20 weeks of age resulting in a trend of reduced survival of the mice treated with K1K1 with
respect to vehicle treated mice (25 pug K1K1: 167.4 + 2.3 days vs vehicle: 172.9 + 3.2 days, mean + SEM).
We therefore examined whether the prolonged treatment with K1K1 was still able to activate the
ERK pathway in the spinal cord and the sciatic nerve and was able to counteract the immune cell
infiltration in the spinal cord and TAM at the end stage of the disease. We found that the increase in
p-ERK levels in both spinal cord and sciatic nerve observed in SOD1G93A mice treated for 6 weeks
with K1K1 was abolished after prolonging the treatment four more weeks up to the end stage of the
disease (Figure S5A,B). Similarly, the increased levels of mRNA for CD8" and CD4" T cells in the
spinal cord and TAM of SOD1G93A mice, compared to non-transgenic littermates, were not reduced
during long-term treatment with K1K1 (Figure S6A,B).
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Figure 7. 25 pg K1K1 delays neuromuscular impairment but not survival of SOD1G93A mice.
(A) Kaplan-Meier curve showing, in a second group of mice, that treatment with 25 pg K1K1
significantly delays the onset of motor symptoms (p < 0.05, Log-rank test). (B,C) Kaplan—-Meier curve
showing that treatment with 25 pug K1K1 did not affect the age of paralysis (p = 0.2956), considered as
the age at which the mice were no longer able to perform the grip strength test, nor the survival length
(p = 0.1048) in SOD1G93A mice. The curves were evaluated using the Log-rank test (n = 15 animals for
each group).
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3. Discussion

The present study strengthens the evidence that activation of the MET receptor by engineered
derivatives of HGF/SF results in a strong neuroprotective activity on the motor neurons of SOD1G93A
transgenic mice and demonstrates for the first time—to the best of our knowledge—that this result
can be accomplished through the systemic administration of a potent MET ligand. Treatment with
K1K1 resulted in the rescue of motor neurons from death in spinal-neuron astrocyte co-cultures as well
as in the lumbar spinal cord of SOD1G93A transgenic mice accompanied by a transient amelioration
of the muscle force impairment, although it did not prolong the mouse survival. This improved
outcome of K1K1 treated ALS mice was characterized by the protection of motor neurons both at
the level of their soma in the spinal cord and of the motor axons terminals as demonstrated by the
reduced neuromuscular junction denervation. In the spinal cord, we found that the neuroprotection
was accompanied by the activation (phosphorylation) of ERK but not AKT. This result complies with
a recent study showing that intrathecal delivery of recombinant AAV1 encoding HGF/SF protected
spinal motor neurons in SOD1G93A mice through an increase in phosphorylated ERK but no other
signaling molecules of the HGF/SF-MET pathway such as STAT3, cJUN and GSK3b [15]. This highlights
the importance of ERK activation in the rescue of motor neurons induced by HGF/MET signaling.
Interestingly, ERK was remarkably activated also in the sciatic nerves of SOD1G93A mice treated with
K1K1 together with the increased expression of GFAP. Activation of ERK and GFAP in the sciatic
nerve is essential to stimulate the de-differentiation and promote the proliferation of Schwann cells,
respectively, during re-innervation [25]. This is consistent with the recent evidence demonstrating
that HGF/SF increased the migration and proliferation of cultured Schwann cells by activating the
ERK pathway and accelerated the nerve regeneration process after nerve crush [29]. Interestingly,
we previously demonstrated that the expression of GFAP and p-ERK were higher in the sciatic nerves
of SOD1G93A mice showing a delayed disease onset and progression compared to those with fast
disease progression and this was associated with higher levels of acetyl-tubulin, a marker of axonal
function [24]. With K1K1 treatment, we did not find a rescue of acetyl-tubulin reduction in symptomatic
SOD1G93A mice, however it should be noted that while in the previous study the analysis had been
performed at the disease onset, here the mice were examined at the symptomatic stage. We cannot
rule out that a rescue of acetylated tubulin occurred at an earlier time point after K1K1 treatment.
Noteworthily, the prolonged treatment with K1K1 until the end stage of the disease lost its efficacy
in activating p-ERK/ERK in LSC and sciatic nerve of SOD1G93A mice (Supplementary Figure S5)
suggesting a mechanism of “drug tolerance” which could explain the transiency of the amelioration of
the neuromuscular deficit of SOD1G93A mice.

KIK1 treatment also produced a significant reduction in the reactive astrogliosis and microgliosis
in the LSC of SOD1G93A mice. We do not know whether this is a response to the partial rescue of
MN:s or is causative of the neuroprotection. Unexpectedly, the reduction in reactive gliosis did not
match with a reduction in proinflammatory cytokines TNFalpha and CCL2 that remained higher
in SOD1G93A mice after treatment with K1K1. However, we detected a concomitant increase in
anti-inflammatory IL-4 in the LSC of K1K1 treated mice, suggesting that reactive microglia, besides
being reduced in number, might have adopted a partial anti-inflammatory phenotype in response
to K1K1 treatment [30]. An association between motor neuron protection, reduction in microgliosis
and increased IL-4 was previously observed with other treatments in SOD1G93A mice sustaining the
protective role of this cytokine [22,31]. Interestingly, the intracerebroventricular delivery of IL-4 in
SOD1G93A mice, via a lentiviral-mediated gene therapy strategy, was able to modulate microglia and
to delay the disease onset in these mice but did not prolong their survival [32].

Another potential mechanism through which K1K1 treatment may exert it protective effect on
neuromuscular system relates to the modulation of the immune response in both the spinal cord and
the skeletal muscle. The MET signaling pathways have been implicated in the modulation of different
immune-inflammatory responses [33]. For example, in a multiple sclerosis mouse model HGF/SF has
been shown to modulate both CD4" and CD8* T cell effector responses [26,27]. Here, we show that
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the increased recruitment of CD8* and CD4" T cells in the spinal cord of symptomatic SOD1G93A
mice was significantly counteracted by treatment with K1K1 during the early progressing phase of the
disease, although this effect disappeared on the long-term treatment. Whether this effect may depend
on a direct action of K1K1 on the migratory activity of T cells or being a consequence of the protective
effect on the MNs needs to be investigated. We and other groups have recently demonstrated that
the ablation of CD8" T cells in SOD1G93A mice protected spinal motor neurons from death at the
early symptomatic stage [24,34] and this effect was associated with the reduction in macrophagic
microglia hyperactivation [24]. On the contrary, the lack of CD4* T cells in SOD1G93A mice showed
a detrimental effect on disease progression, in the presence of attenuated microglia and astrocyte
reactivity in the spinal cord [35]. The CD4* T lymphocytes in the spinal cord of SOD1G93A mice are
probably a mixture of Th1l and Th2 effector T cells (Teffs) and Th2 lymphocytes possibly provide the
increased, although not significant, levels of IL-4 mRNA found in vehicle treated SOD1G93A mice,
compared to NTG. However, IL-4 mRNA levels were further increased by the treatment with K1K1
despite the reduction in CD4" T cells mRNA in the spinal cord. IL-4 is also produced by the Treg,
a CD4* T lymphocyte subtype with marked neuroprotective effect in SOD1G93A mice [32]. Through
the analysis of FoxP3, a transcription factor typical of the Treg, we showed that the proportion of Tregs
present in the CD4" T cell population of SOD1G93A mice treated with K1K1 is higher than that present
in vehicle treated mice. This is consistent with the protective action of K1K1 in SOD1G93A mice.
In fact, growing evidence suggest that the expansion of Tregs plays a significant role in the modulation
of disease progression in ALS patients and mouse models [6,10]. Passive transfer of T-cell populations
enriched in Tregs were shown to sustain IL-4 levels and M2 microglia, lengthen disease duration,
and prolong survival of SOD1G93A mice [35]. Moreover, treatment of transgenic mice with interleukin
2 complex (IL-2c) with rapamycin, which is known to induced Treg expansion, significantly increased
the levels of FOXP3 mRNA in the spinal cord of SOD1G93A mice and this effect was associated to a
rescue of motor neurons and reduced glial activation [36]. It has been reported that dendritic cells
exposed to HGF/SF develop tolerogenic properties and facilitate the expansion of Tregs [37]. Dendritic
cells (DCs) were detected early in the spinal cord of SOD1G93A mice [38] as well as in post-mortem
ALS patient spinal cord [39]. Thus, we can speculate that infiltrated DCs could have been activated by
K1K1 in the spinal cord of SOD1G93A mice in an attempt to preserve the Treg population.

The immunomodulatory effect by K1K1 in SOD1G93A mice was detected at the skeletal muscle
level as well. In fact, the overexpression of macrophages and T lymphocytes found in the TAM
of symptomatic SOD1G93A mice were markedly reduced in K1K1 treated mice with consequent
partial reduction in the proinflammatory cytokine, TNFalpha. There is a consolidated hypothesis that,
following damage, the skeletal muscle activates a series of immune mediators and proinflammatory
cytokines that allow the recruitment of macrophages, neutrophils and adaptive immune T cells
important for the improvement and modulation of the muscle growth and regeneration [28].
We recently reported that a depletion of CD8" T cells in SOD1G93A mice lacking beta2-microglobulin,
while protecting the soma of MNs in spinal cord, accelerated the NM]Js denervation in the TAM and
this was accompanied by an anticipated onset of hind limb impairment [24]. However, the effect
was transient as at the later symptomatic stage there was no difference in TAM NM]Js denervation
between SOD1G93A mice with or without CD8* T cells while the onset of disability was delayed [24].
Apparently, this result is at variance with those obtained in the present study showing that the decrease
in CD8" T induced by K1K1 was accompanied by reduced NM]Js denervation. Nevertheless, unlike
the study on counteracting roles of MHCI and CD8" T cells [24], with K1K1 we induced a massive
immune suppression in the skeletal muscle that include both the macrophages and the CD4* T cells and
reduced the proinflammatory cytokine TNFalpha that may have contributed to the delay of symptoms.
Activated macrophages have been reported to infiltrate and accumulate in the skeletal muscles of
SOD1G93A mice beginning from disease onset [39] and its reduction by ablation of complement
signaling was reported to reduce NM]Js denervation and to improve hind limb grip strength in mice [40]
similarly to what we observed with K1K1. Noteworthily, although we found that K1K1 treatment
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partially rescued the denervation of NM]Js in TAM, the decrease in muscle mass was not counteracted
by the treatment. Since there is evidence that the recruitment of CD4* T cells in damaged skeletal
muscles is important for the repair and the regeneration of the muscle [28], we cannot exclude that
their reduction by K1K1 may have interfered with this process.

4. Materials and Methods

The wild-type human and mouse HGF/SF were produced in the myeloma line NSO (MRC, UK)
and purified as previously described [18]. The natural splice-variant NK1 was produced recombinantly
in the yeast expression system Pichia pastoris (Invitrogen, Carlsbad, CA, USA) [41]. The engineered
recombinant K1K1 was produced as described in Leclercq et al., 2020 [19]. Briefly, K1K1 was produced
in bacterial inclusion bodies using the E. coli strain BL21 (Invitrogen) giving yields of around 10 mg/litre.
The protein was extracted from the inclusion bodies using a Tris buffered 2 M arginine solution and
was subsequently diluted in a Tris pH 7.4 buffer and purified by Heparin Sepharose affinity and gel
filtration chromatography. Each batch of MET agonist was quantified by absorbance measurement at
280 nm or standard BCA assay (Pierce, Walthman, MA, USA).

4.1. Madin-Darby Canine Kidney Cell Colony Scatter Assay

For the testing of biological activity, mouse and human variants of HGF/SF and K1K1 were tested
in a sensitive colony dispersal (“scatter”) assay [18]. MDCK cells (ICRF, UK) were maintained in
DMEM (Gibco, Life Technologies, Grovemont, MD, USA) supplemented with 10% FCS (Gibco) in
a humidified incubator at 37 °C with 5% CO,. Small and compact colonies appear overnight after
seeding 1000 cells per well in a 96-well plate. The medium was replaced with DMEM + 10% FCS
supplemented with the ligands at different concentrations ranging from 10 uM down to 0.1 pM using
serial half-log dilutions. The next day, colony dispersal was observed at low magnification under an
inverted microscope and the endpoint of observable scattering was determined for each protein. Using
low magnification, three photos were taken of individual colonies at each concentration for all ligands.

4.2. Quantification of Protein Degradation

Purified HGF/SF and K1K1 was diluted to a final concentration of 10 uM in 200 pL Phosphate
Buffer Saline (PBS) at pH 7.4 and in 200 uL. RPMI medium (Gibco, Life Technology) supplemented
with 10% FCS (Gibco). The proteins were incubated at 37 °C for 4 weeks. Samples of 40 ul were
collected each week, flash frozen and stored at —80 °C for further analysis by SDS-PAGE and Thermal
shift assay. An amount of 5 ug HGF/SF and 3.5 ug K1K1 sample was loaded on a 12% SDS-PAGE
gel and subsequently stained with Coomassie Blue. A thermal shift assay was performed using the
Tycho NT.6 (NanoTemper Technologies, Miinchen, Germany) measuring changes in total fluorescence
intensity (“brightness”) at 330 nm and 350 nm with a 30 °C/min ramp (from 35 to 95 °C). The total
sample brightness was used for calculating the percentage reduction in soluble protein in the samples
using Excel (Microsoft) and the bar chart was produced using Prism (Graphpad, San Diego, CS, USA).

4.3. SOD1G93A Mice

Transgenic mice (C57B6.CgTg SOD1.G93A1Gur/]) were originally obtained from Jackson
Laboratories (Bar Harbor, ME, USA) and then maintained on a C57BL6/] background at the Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy (IRFMN). The animals were housed
under specific pathogen free (SPF) standard conditions (22 °C + 1, 55% =+ 10 relative humidity and 12 h
light/dark schedule), 3—4 per cage, with free access to food (standard pellet, Altromin, MT, Rieper)
and water. Procedures involving animals and their care were conducted in conformity with the
institutional guidelines of the Mario Negri Institute for Pharmacological Research IRCCS, Milan,
Italy, which are in compliance with national (D.lgs 26/2014; Authorization n.783/2016-PR issued on
8 August 2016 by Ministry of Health) and Mario Negri Institutional regulations and Policies providing
internal authorization for persons conducting animal experiments (Quality Management System
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certificate—UNI EN ISO 9001:2008-reg. N° 6121), the NIH Guide for the Care and Use of Laboratory
Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 2010/63/UE).

4.4. Primary Astrocyte-Spinal Neuron Co-Cultures

SOD1G93A and non-transgenic co-cultures were prepared as previously described [21,22]. Briefly,
astrocytes were obtained dissecting cortices of E13-E14 embryos from SOD1G93A mice or their
non-transgenic littermates and mechanically dissociation in Hanks’ balanced salt solution (HBSS)
containing 33 mM glucose. After centrifugation, the pellet was suspended in culture medium
(Dulbecco’s modified Eagle’s medium/F12, 2 mM L-glutamine, 33 mM glucose, 5 pg/mL gentamycin,
10% horse serum) and seeded (500,000 cells/mL) onto 48- or 6-well plates coated with 1.5 pg/mL
poly-L-ornithine. Repeated washing with HBSS, 12 h of orbital shaking at 200 rpm and treatment with
10 M AraC once they reached confluence, rendered astrocyte cultures free of microglia, oligodendrocytes,
and neurons. Spinal cords of E13-E14 embryos were dissected and mechanically dissociated in HBSS,
33 mM glucose. The cells were centrifuged onto a 4% bovine serum albumin cushion at 201 rcf for 10 min
and the pellet resuspended in neuron culture medium: Neurobasal (Gibco), 2 mM L-glutamine, 33 mM
glucose, 5 pg/mL gentamycin, 1 ng/mL brain-derived neurotrophic factor, 25 ug/mL insulin, 10 ug/mL
putrescine, 30 nM sodium selenite, 2 uM progesterone, 100 ug/mL apo-transferrin, 10% heat-inactivated
horse serum, 10 uM AraC. Cells were seeded (1,000,000 cells/mL) onto 48- or 6-well plates coated with
15 pg/mL poly-L-ornithine and 2 pug/mL laminin or onto a pre-established astrocyte confluent layer to
obtain spinal neuron-cortical astrocyte co-cultures. Non-transgenic and SOD1G93A co-culture were
obtained from non-transgenic and SOD1G93A neurons seeded on non-transgenic and SOD1G93A
astrocytes, respectively. Motor neurons obtained from E13-14 embryos are fully differentiated and
express the specific transcription factors Hb9 and Islet-1/2. A few days after plating, they show adult
characteristics such as profuse dendrite and axon outgrowth and synapse formation [21,22]. Co-cultures
were treated with HGF/SF, NK1 and K1K1. The molecules were administered at different doses every
other day starting from the plating of the neurons, days in vitro (DIV) 0, 2 and 4. Co-cultures were
fixed and analyzed at 6 DIV.

4.5. Immunocytochemistry and Evaluation of Motor Neuron Survival In Vitro

Immunocytochemistry was performed as previously described [21,22,31]. After an incubation
with blocking solution containing 10% normal goat serum (NGS) and 0.1% Triton in phosphate-buffered
saline (PBS) 0.01 M, the cells were incubated overnight at 4 °C with the primary antibodies mouse
monoclonal anti-SMI32 (1:1000, Covance, Cambridge, MA, USA) and mouse monoclonal anti-NeuN
(1:250, Chemicon, Burlington, MA, USA), diluted in a solution containing 1% NGS and 0.1% Triton
in PBS 0.01M. Cells were then washed and incubated with the appropriate secondary fluorescent
antibody (1:500, Alexa Fluor Dyes, Life Technologies) or secondary biotinylated antibody (1:500, Vector
Laboratories, Burlingame, CA, USA) for tyramide signal amplification (TSA, Perkin Elmer, Walthman,
MA, USA) following the manufacturer’s instructions. Images were acquired with an Olympus BX41
fluorescence microscope. Motor neuron survival was evaluated as previously described [21,22].
The labelling with anti-SMI32 antibody highlights motor neurons with typical morphology and large
cell bodies (diameter > 20 pm) and anti-NeuN antibody was used to identify all neurons in twelve
adjacent frames per well at 10X-magnification. Data were calculated as the ratio of the number of
motor neurons to the total neurons and expressed as percentage of untreated non-transgenic co-culture
to compare different experiments.

4.6. MET Agonist K1K1 In Vivo Treatment

For the first in vivo treatment SOD1G93A female mice were treated intraperitoneally (IP) with
PBS vehicle or mouse K1K1 (0.25, 2.5, and 25 ug/injection) every day, five days a week, starting from
98 days of age, when the mice show the first signs of symptoms (hind limb tremors and reduced limb
abduction), and until the overt symptomatic phase (140 days of age). At 140 days of age, ten mice
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per group were sacrificed to perform histopathological, biochemical and molecular analyses. For the
second in vivo treatment, 15 female SOD1G93A mice per group were treated IP with vehicle or K1K1
(25 ng) every day, five days a week, starting at the onset of symptoms (98 days of age) and until the
end stage of the disease to assess the effect on survival.

4.7. Behavioural Analysis and Survival

Behavioral analyses were performed in all mice two times a week from the onset of the disease,
by the same investigator blinded to the treatment. The grip strength test was used to measure disease
progression by evaluation the limb resistance as previously described [21,22,31]. Mice were placed
on a horizontal metallic grid which was then gently inverted. The latency to fall of each mouse was
recorded. The test ended after 90 s. The measurement was repeated three times in case the mice fell off
before 90 s and the best performance holding on the grid was considered for the statistical analysis.
The onset of neuromuscular deficit was evaluated at the age when the mouse exhibits the first failure
in the paw grip strength test at two consecutive time points. The age at which the mice were no longer
able to perform the grip strength test was considered as time of paralysis. The mice were sacrificed
when they were unable to right themselves within 10 s after being placed on either side. This time was
considered the end stage of the disease and was used to calculate the survival.

4.8. Immunohistochemistry

Spinal cords were processed as previously described [22,31]. Briefly, under deep anesthesia,
mice were transcardially perfused with PBS followed by 4% paraformaldehyde (PFA) solution.
The spinal cords were quickly removed, post fixed for 24 h, and cryopreserved in 30% sucrose solution
at4 °C until they sank, embedded in Tissue-tek OCT (Sakura, AJ] Alphen aan den Rijn, The Netherlands),
frozen in n-pentane at —45 °C and stored at —80 °C until analysis. Spinal cord immunohistochemistry
was performed on free floating sections (30 um). The number of motor neurons was determined on
serial sections (20, one every 10th) from lumbar spinal cord (LSC) segments L2-L5 of 5 mice per group
as previously described [22]. The sections were stained with cresyl violet to detect the Nissl substance
of neuronal cells. Motor neuron counting was performed at 10X magnification using the free software
Image] (Windows v8.0, http://imagej.nih.gov/ij/), previously calibrated. Intense Nissl labelled neurons
with clear nucleus and nucleolus and an area of the cell body higher than 400 um? were identified as
motor neurons. The number of motor neurons was calculated for each hemisection and the means used
for statistical analysis. Immunofluorescence was evaluated on 5-7 coronal spinal cord slices (1 every 10)
from LSC per animal. After an incubation with blocking solution containing 3% NGS and 0.1% Triton
in 0.01 M PBS, primary antibodies mouse anti-GFAP (1:2500, Millipore, Burlington, MA, USA) and
rat anti-CD68 (1:200, AbDSerotec, Hercules, CA, USA) and appropriate fluoro-conjugated secondary
antibodies (1:500 dilution), Alexa 647 and Alexa 488 (Alexa Fluor® Dyes, Life Technologies) were
used. The sections were analyzed under Olympus Fluoview confocal microscope. The quantification
of GFAP and CD68 intensity in the ventral horns was carried out using the free software Image] by
determining the area fraction of fluorescent signal after setting a threshold value within a grey-scale
(corresponding to the maximum level of an unstained section background) and considering all the
pixels falling over this value as positive. These analyses were executed by the same operator blinded
to treatment.

4.9. Neuromuscular Junctions (NM]s)

NM] denervation was detected according to the previously described protocol [22]. Briefly,
tibialis anterior muscles (TAM) were dissected from mice transcardially perfused with PBS under
deep anesthesia and snap-frozen in isopentane cooled on dry ice. Serial 20 um cryostat longitudinal
muscle sections were collected on poly-Lysine objective slides (VWR International), fixed in chilled
acetone for 10 min, incubated in a blocking solution (0.3% Triton, 10% NGS in 0.01 M PBS) for 1 h
at 22 °C and left overnight at 4 °C with anti-SV2 primary antibody (1:100, DSHB) in 0.15% Triton,


http://imagej.nih.gov/ij/

Int. ]. Mol. Sci. 2020, 21, 8542 15 0f 19

5% NGS, 0.01 M PBS. Then the sections were incubated with goat anti-rabbit 647 (1:500, Alexa Fluor®
Dyes, Life Technologies) secondary antibody and with bungarotoxin (1:500, Invitrogen) conjugated
with Alexa Fluor® 488 (Life Technologies). Innervated neuromuscular junctions were identified by
the bungarotoxin labelling, totally or partially co-localized with synaptophysin labelling. Endplates
marked with bungarotoxin only were considered denervated. Data were expressed as the percentage
of the denervated plaques over the total ones counted in 8 adjacent frames per section. Five sections
at 20x magnification were analyzed for each mouse. Fluorescence images along the z axis were
taken by Olympus confocal microscopy using a 20X objective and z-stacking was performed by using
Image] software.

4.10. Western Blot

Mice were sacrificed according to institutional ethical procedures by decapitation and the spinal
cord and sciatic nerve were rapidly dissected. The spinal cord was immediately frozen on dry ice
and stored at —80 °C. For each mouse, LSC was longitudinally transected at 50 pm in a cryostat with
ventral and dorsal spinal cord sections as separate samples. The resulting cryostat ventral material was
homogenized by sonication in ice-cold homogenization buffer (20 mM Tris-HCl pH 7.4, 2% Triton X-100,
150 mM NaCl, 1 mM EDTA, 5 mM MgCl,, 10% anhydrous glycerol, protease and phosphates inhibitor
cocktail by Roche), centrifuged at 15,700 rcf for 30 min at 4 °C and the supernatants were collected
and stored at —80 °C. The sciatic nerves were processed as previously described [24]. Briefly, tissues
were powdered in liquid nitrogen, next homogenized by sonication in ice-cold homogenization buffer
(20 mM Tris-HCl pH 7.4, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 5 mM MgCl,, 10% anhydrous
glycerol, protease and phosphates from Roche) and centrifuged at 15,700 rcf for 15 min at 4 °C.
Equal amounts of total protein homogenates were loaded on polyacrylamide gels and electroblotted
onto PVDF membrane (Millipore) as previously described [31]. Membranes were first blocked with
5% BSA (Sigma, St. Luis, MO, USA) in TBS with additional 0.1% Tween (TBS-T) for 1 h at room
temperature and then incubated over night at 4 °C with one of the following primary antibodies:
mouse monoclonal anti-GFAP (1:1000, Millipore), mouse monoclonal anti 3-actin (1:15,000, Chemicon),
rabbit monoclonal anti pAKT (1:750, Cell Signaling, Danvers, MA, USA), rabbit anti AKT (1:1000,
Cell Signaling), mouse anti pERK (1:1000, Santa Cruz Biotechnology, Dallas, Tx, USA ), rabbit anti ERK
(1:1000 Promega), rabbit anti human SOD1 (1:1000, Upstate, Burlington, MA, USA), mouse anti CNPase
(1:1000 Chemicon), mouse anti 3- III Tubulin (1:1000, Millipore), mouse monoclonal anti-Acetylated
Tubulin (1:1000, Sigma Aldrich). Membranes were then washed and incubated with horseradish
peroxidase-conjugated anti-rabbit, anti-mouse or anti-rat secondary antibodies (Santa Cruz) and
developed by Luminata Forte Western Chemiluminescent horse radish peroxidase (HRP) Substrate
(Millipore) on the Chemi-Doc XRS system (Bio-Rad, Hercules, CA, USA). Densitometry analysis was
performed with ImageLab (Bio-Rad) software.

4.11. Real-Time PCR

Spinal cords and muscles were freshly collected from mice transcardially perfused with PBS
under deep anesthesia. All tissues were immediately frozen on dry-ice. Tissue was homogenized
and total RNA was extracted using the Trizol method (Invitrogen) and purified with PureLink RNA
columns (Life Technologies). RNA samples were treated with DNase I and reverse transcription
was performed with High Capacity cDNA Reverse Transcription Kit (Life Technologies). Real-time
PCR was performed using the Taq Man Gene expression assay (Applied Biosystems, Foster City,
CA, USA) following the manufacturer’s instructions, on cDNA specimens in triplicate, using 1x
Universal PCR master mix (Life technologies) and 1X mix containing specific probes for Tumor
Necrosis Factor (TNFx, Mm00443258_m1), chemokine (C-C motif) ligand 2 (CCL2, Mm00441242_m1),
interleukin 4 (IL4, Mm00445259_m1), interleukin 10 (IL-10, MmO00439614_m1), forkhead box P3 (FoxP3,
Mm00475162_m1), cluster of differentiation 4 (CD4, Mm00442754_m1), cluster of differentiation 8 (CDS,
Mm01182107_g1), cluster of differentiation 68 (CD68, Mm03047343_m1) and 3-actin (Hs01060665_g1)
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all from Life technologies. Relative quantification was calculated from the ratio between the cycle
number (Ct) at which the signal crossed a threshold set within the logarithmic phase of the given gene
and that of the reference gene (3 actin). Mean values of the triplicate results for each animal were used
as individual data for 2-AACt statistical analysis.

4.12. Statistical Analysis

One-way ANOVA was used to compare differences between more than two groups, followed by
post hoc Fisher’s least significant difference (LSD) while Student’s “t” test was used for the analysis of
two groups. Two-way ANOVA was used for the analysis of dose response effect in NTG and SOD1G93A
cell cultures and for the analysis of repeated measures of grip strength test in mice. The Mantel-Cox
log rank test was used for comparing motor deficit onset, paralysis and survival between groups.

5. Conclusions

In summary, this study reveals a straightforward neuroprotective activity of the K1K1 protein
which resulted in a transient reduction in the pathological impact of the SOD1G93A mutation in mice
during the early symptomatic stage of ALS. The results suggest that MET activation is able to rescue the
damage of the neuromuscular system induced by the SOD1G93A mutation through different central
and peripheral mechanisms. They include the modulation of immune cell infiltration in the spinal
cord with a reduction in cytotoxic T cells and a prevalent enrichment of the Tregs. This effect which
disappears after long term treatment with K1K1 in concomitance with the loss of beneficial effects in the
later progressing phase of the disease, further implies that the control of T cells infiltration, particularly
the cytotoxic CD8*, is crucial to fostering and maintain the MNs and NM]Js integrity. Another key
process triggered by MET to protect MNss is the activation of the de-differentiation and proliferation
of Schwann cells, as demonstrated by the activation of ERK and GFAP, respectively, to promote the
regeneration of damaged motor axons and muscle reinnervation. Overall, these data provide a rational
justification for further exploring the activity of K1K1 in terms of possible dosage optimization and
further understanding of long-term loss of efficacy.
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