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The symmetry of biological molecules has fascinated structural biologists ever since the
structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the
central global archive of three-dimensional (3D), atomic-level structures of biomolecules,
providing open access to the results of structural biology research with no limitations on
usage. Roughly 40% of the structures in the archive exhibit some type of symmetry,
including formal global symmetry, local symmetry, or pseudosymmetry. The Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member
of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disse-
minates the archive) provides a variety of tools to assist users interested in exploring the
symmetry of biological macromolecules. These tools include multiple modalities for
searching and browsing the archive, turnkey methods for biomolecular visualization,
documentation, and outreach materials for exploring functional biomolecular symmetry.

Functional symmetry of proteins
Symmetry of biological macromolecules is a classic example of the structural biology tenet: function
follows form. When browsing the PDB archive, we find myriad examples of individual proteins
arranged in the shape of rings, containers, channels, filaments, sheets, and complex molecular
machines, all tailored to fulfill particular functional roles. Figure 1 exemplifies the scope of what is
already known about symmetric assemblies. In most cases, these assemblies are composed of multiple
identical subunits arranged symmetrically. Such arrangements were predicted from first principles
before any atomic-level three-dimensional (3D) structures of biomolecules were determined. In 1956,
for example, Crick and Watson correctly predicted that cubic symmetries would be uniquely suited to
building the hollow shells of spherical viruses [1]. Principles of biomolecular symmetry, its functional
and evolutionary consequences, and the many structural and functional exceptions to symmetry have
been extensively covered elsewhere [2–9], and are beyond the scope of this brief review. After a short
introduction, we will devote the bulk of this article to describing tools at the Research Collaboratory
for Structural Biology (RCSB) Protein Data Bank (PDB) for finding, visualizing, analyzing, and
exploring aspects of symmetry within the PDB archive of more than 190 000 experimentally deter-
mined, atomic-level 3D structures of biological macromolecules.
Monod succinctly proposed ‘finiteness, stability, and self-assembly’ as drivers for the evolution of

symmetrical assemblies [10], and since then, the many morphological, energetic, and evolutionary
advantages of symmetry have been extensively studied and confirmed [2–9]. Figure 1A,B exemplify
one aspect of these imperatives: genetic parsimony. Large assemblies with finite size can be encoded
and self-assembled using a small number of genes if they are built of subunits arranged with one or
more intersecting rotational symmetries (i.e. point group symmetry). To demonstrate the potential
problem, the ribosome is one of the largest asymmetric assemblies in the cell. This asymmetry is
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needed because it performs a complex, asymmetric biochemical function, moving directionally along a strand
of mRNA and positioning multiple tRNA and protein factors to assemble the nascent protein chain. Cells
make a huge investment in manufacturing ribosomes. For example, yeast ribosomes include ∼5500 nucleotides
of RNA and 78 distinct proteins, and ∼200 accessory proteins are required to assemble them [11]. This
expense is vast compared with many viruses, which make enormous capsids but cannot afford to encode a
large number of proteins to package their genetic material. Instead, they build capsids using high degrees of
symmetry and quasisymmetry (approximate icosahedral symmetry with multiples of 60 subunits) [12], while
only committing modest genomic space to encode the subunit(s). A recent theoretical study supports the
hypothesis that this parsimony may also be one of the driving forces for evolution of symmetric assemblies in
cells [13].
Figure 1C shows a complex example of functional symmetry breaking. Deviations from perfect symmetry

occur widely in nature when macromolecular assemblies must carry out specialized tasks. ATP synthase is a
remarkable example. The yeast mitochondrial version includes two chemical motors [14]. The first motor (F1)

Figure 1. Examples of functional symmetry.

(A) Ribosomes are among the largest asymmetric assemblies found in living organisms (based on PDB ids 4v4q, 1rqu [39,40]).

(B) Virus capsids use icosahedral quasisymmetry to build large structures from multiple identical subunits packed into slightly

different local environments (PDB id 2tbv [41]). (C) ATP synthase has a chemical F1 motor with three-fold symmetry (red) and a

membrane-embedded F0 motor with ten-fold symmetry (turquoise) connected by an asymmetric axle (dark blue), which are

then arranged in pairs with 2-fold symmetry (PDB id 6b8h [14]). (D) Aspartate carbamoyltransferase is a symmetrical allosteric

enzyme that transitions between inactive (left) (PDB id 5at1 [42]) and active (right) (PDB id 1d09 [43]) conformations. (E) Insulin

is stored in pancreatic cells as micro-crystals of hexamers of heterodimers stabilized by zinc ions (left, red and tan denoting

insulin α and β chains, respectively; cyan circle: zinc ion) (PDB id 4ins [44]), but is active as a single heterodimer when bound

to its receptor (receptor in blue at right) (PDB id 6pxv [45]). Images adapted from Molecule of the Month [46] and rendered here

at a consistent scale.
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is driven by ATP and has three-fold symmetry, with three binding-sites for ATP, but is pushed away from
perfect symmetry by an asymmetric axle that threads through the center of the motor running along the cyclic
symmetry axis. Progressive transition between three conformations of these three subunits ensures directional
rotation of the motor. In addition, this motor shows six-fold pseudosymmetry, with three structurally similar
subunits separating the three ATP-binding subunits. The second motor (F0) has ten-fold symmetry and inter-
acts with an asymmetric motor subunit that drives the rotation of the cylindrical ring of subunits. In the cell,
two of these assemblies are brought together to form an angled dimeric assembly that plays a role in modeling
the shape of membranes within the mitochondrion [15].
Figure 1D exemplifies a major functional advantage of assemblies composed of multiple subunits: cooperativ-

ity. Allosteric enzymes are most often symmetric assemblies, and more specifically, they frequently have
dihedral symmetry. Dihedral symmetries have several structurally-unique axes of rotational symmetry, forming
multiple structurally-unique interfaces between subunits. It has been hypothesized that these different interfaces
provide additional opportunities for the evolution of structural switches used in allosteric transitions [16].
Related to this, molecules such as antibodies and lectins use symmetrical assembly to bring together multiple
copies of a subunit, allowing cooperative binding to adjacent sites on a target.
Translational symmetries in one, two, or three dimensions are also used to support specialized biochemical

functions, particularly when large assemblies are needed. For example, insulin, itself an α/β-heterodimer, is
stored in small three-dimensional crystals inside pancreatic secretory vesicles, which then dissociate into hex-
amers and then the active heterodimeric hormone when released into the bloodstream (Figure 1E) [17].
Cytoskeletal filaments and filamentous viruses often combine one-dimensional translation with a rotation yield-
ing helical symmetry, as proposed by Pauling in 1953 [18]. Bacterial S-layers are examples of a two-dimensional
translational lattice, used to coat the surface of a bacterial cell with a protective protein mesh resembling chain-
mail armor [19]. Translational symmetries are also an integral part of biomolecular structure determination by
X-ray crystallography, which may cause methodological challenges, for example, when the helical symmetry of
a biological filament does not conform to the allowed symmetry of possible crystal packing arrangements [20].

The PDB archive and symmetry
The PDB is a core resource central to the global biodata ecosystem serving many millions of users drawn from
diverse scientific and educational communities. It provides a permanent and expertly curated data archive [21–
25] for structural biologists to disseminate their results, promotes reproducibility of the structural biology scien-
tific literature, and makes biomolecular structure information freely available to a wide community of research-
ers, educators, students, and the general public without limitations on data usage. The PDB was established in
1971 at Brookhaven National Laboratory as the first open-access, digital-data resource in biology [26]. Since
2003, the PDB has been managed by the Worldwide Protein Data Bank partnership (wwPDB; wwPDB.org)
[27,28]. Member organizations of the wwPDB (RCSB Protein Data Bank, RCSB PDB; Protein Data Bank in
Europe, PDBe; Protein Data Bank Japan, PDBj; Electron Microscopy Data Bank, EMDB; and Biological
Magnetic Resonance Bank, BMRB) together curate and annotate 3D biostructure data deposited by scientists
from around the globe, and make it publicly, freely, and easily available through user-friendly web portals and
host services. RCSB PDB, a founding member of the wwPDB, is responsible for US PDB operations, and serves
as the wwPDB-designated PDB Archive Keeper. The RCSB PDB web portal (RCSB.org) supports millions of
users worldwide [29–31]. In 2021, the website was visited each month by an average of ∼757 000 unique visi-
tors according to Google Analytics, with ∼4.7 million unique visitors annually. A total of 257.71 TB of data
were accessed. In 2021, 1.8 billion data files in various file formats, including structure files, experimental data
files, chemical and molecular reference data files, and validation reports, were downloaded and/or viewed from
RCSB PDB-hosted FTP and websites. Additional data were downloaded from wwPDB partners PDBe and
PDBj for a total of 2.3 billion data files. This research-focused website provides tools and services that support
users across scientific disciplines to access, analyze, and visualize up-to-date structural views of proteins and
nucleic acids important to fundamental biology, biomedicine, and bioenergy sciences.
Symmetry is found at many levels in the PDB archive. At the methodological level, X-ray crystallography

relies on an extensive body of knowledge about symmetries of crystals. A comprehensive set of space groups
(standard combinations of allowable lattices with self-consistent rotations and translations) defines allowable
packing arrangements of molecules within a lattice. The asymmetric unit is a key concept in this formalism,
defining the unique repeated unit making up the crystal lattice. Typically, atomic coordinates for only the
asymmetric unit are deposited into the PDB archive, since the entire lattice may be computationally generated
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using the geometric space group transformation matrices. A challenge emerges, however, when looking at sym-
metric biomolecules: the relevant biological state of an assembly does not always correspond to the crystallo-
graphic asymmetric unit. This challenge is further compounded for large assemblies, such as virus capsids, for
which structural biologists often improve structure-determination methodology by imposing so-called non-
crystallographic symmetry in cases where multiple identical subunits comprise the asymmetric unit. In such
cases, the PDB structure may include only one of these subunits, together with the 3D transformation matrices
required to generate the atomic coordinates for the remaining subunits.
In practice, the vast majority of PDB users are not expert in crystallographic methods (estimated to be

∼99%), so RCSB.org provides files that include the presumed biological assembly for each structure, removing
the need for non-expert users to generate the atomic coordinates (Figure 2). In some cases, the definition of
this biological assembly may not be obvious, so two methods are used to ascertain the most likely arrangement
of macromolecules constituting the assembly. PDB depositors are asked to define an ‘author assigned’ biological
assembly, and this is presented as the preferred assembly on the RCSB.org website. Second, software (most
often PISA [32]) is used to identify likely biological assemblies based on the size of interfaces between proto-
mers and their estimated importance in terms of overall stability.

Figure 2. Examples of biological assemblies in PDB.

(A) The hexagonal crystal lattice of insulin (also shown in Figure 1E) has two unique copies of the heterodimeric protein

hormone comprising the asymmetric unit (colored), so the PDB structure includes atomic coordinates for two insulin

molecules, corresponding to four protein chains. (B) Two biological assemblies may be produced from this lattice, choosing

one of the two copies for the active homodimeric form (PDB id 4ins, biological assemblies 1 and 2), and the hexamer of

heterodimers visible in the crystal lattice, which is the inactive storage form of the hormone (PDB id 4ins, biological assembly

3). (C) The PDB structure for faustovirus, determined by cryo-electron microscopy, includes coordinates for one trimeric

protomer of the virus as the asymmetric unit. (D) Atomic coordinates for the entire capsid may be generated using the 2760

transformation matrices provided in PDB structure 5j7v [47]. Visualized with Mol*.
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It might appear at first glance that symmetry should be easy to define and evaluate, but in biology there are
inevitable gray areas and exceptions. To address these challenges, the RCSB PDB currently evaluates three types
of symmetry: global symmetry, local symmetry, and pseudosymmetry (Figure 3). Global symmetry is the most
obvious and the most common: these are cases wherein the entire macromolecular assembly is defined by a
single type of symmetry, such as point group or helical symmetry. For global symmetry calculations, individual
components are considered equivalent when they are >95% sequence identical, which allows for analysis of
macromolecular machines containing quasi-identical subunits. Complexes with local symmetry have portions
that are symmetrical, but the overall symmetry is broken by association of subunits with different symmetry.
Currently local symmetries are calculated for assemblies lacking global symmetry (i.e. when they are identified

Figure 3. Types of symmetry annotated at RCSB PDB.

Four examples of pentameric ligand-gated ion channels are shown here, viewed down the central pore. (A) The alpha7 nicotinic

channel is composed of identical subunits with 5-fold rotational global symmetry. (B) The ELIC channel complex with a

nanobody shows local 5-fold symmetry for the pentameric channel, but overall asymmetry in the entire complex. The

alpha4beta2 nicotinic receptor (C) and the torpedo ray acetylcholine receptor (D) are pseudo-symmetric pentameric

complexes, composed of several types of structurally-similar subunits with approximate 5-fold symmetry. Visualized in Mol*

from PDB structures 7kox [48], 6ssp [49], 5kxi [50], 2bg9 [51].
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as C1). Assemblies with pseudosymmetry include two or more types of homologous subunits that form an
assembly with approximate symmetry, if homologous subunits are considered to be equivalent. In this case,
subunits are considered equivalent when constituents are more than 40% sequence identical or the α-carbon
atoms of their structures align with root-mean-square-deviations (RMSDs) <3 Å. Detection of symmetry at
RCSB PDB is performed by a custom algorithm that is implemented within the BioJava open-source software
library [33]. The algorithm detects symmetry by efficiently superposing the subunits in a combinatorial
fashion, finding rotation axes and orders. The algorithm runs as part of the RCSB PDB weekly update process,
keeping the symmetry annotations up-to-date for the whole archive. To save computation time, the calculation
is performed only for entries that are new or modified.
Table 1 provides a general survey of symmetries detected within current holdings for homo-oligomeric

assemblies. Figure 4 presents the distribution of observed symmetries for structures deposited each year since
the inception of the PDB. These include structure entries from all methods of structure determination, includ-
ing structures from X-ray crystallography, NMR spectroscopy, and cryoelectron microscopy. Not surprisingly,
X-ray crystallography has proven to be an amenable method for determination of symmetrical assemblies: 38%
of crystallographic entries have some type of symmetry. Cryoelectron microscopy is similar, at 41%, however
NMR has primarily been used to determine asymmetric, monomeric structures, with 10% of current entries
showing some symmetry. Similar high-level statistics are available on the RCSB.org website at https://www.rcsb.
org/stats/symmetry/growth to give users quick overviews of current archival content. RCSB.org also provides
extensive annotations for all structures that facilitate deeper study by interested researchers. For example, a
recent study of functional determinants of protein assembly [16] correlated homomeric symmetries with a
variety of functional annotations, for example, finding a correlation between dihedral symmetries and metabolic
enzymes. With the RCSB PDB Search Application Programming Interface (API), it is possible, for example, to
programmatically query for the distribution of symmetry types and enzyme classification. A worked example is
included on the RCSB PDB website at https://search.rcsb.org/#search-example-14, querying the distribution of
enzyme classification terms per symmetry type for homo-oligomers. (N.B.: Identical searches, using the same
API, can be made from the RCSB.org Advanced Search webpage.)

Tools for exploring protein symmetry at the RCSB PDB
website
Given that symmetry is a pervasive property of PDB structures that is often essential for biological function,
RCSB.org provides multiple methods for identifying and exploring symmetry. These tools fall into three
general categories: at-a-glance annotation of symmetry and stoichiometry of each structure, symmetry-specific
search and browse tools, and interactive 3D visualization of molecular symmetry.
The RCSB.org Structure Summary Page (SSP) for each PDB structure includes annotations related to sym-

metry. These annotations include symmetry types (cyclic, helical, icosahedral, etc.), symmetry classes for assem-
blies with global, local or pseudo-symmetric point groups, and stoichiometry of subunits in the assembly.
Options are available to view 3D structures of these assemblies in Mol* [34] and display relevant symmetry
axes. In addition, a link is provided to search for similar assemblies across the PDB archive. This tool performs
a real-time search of all assemblies in the PDB archive, based on the BioZernike algorithm [35] that matches
global shapes of assemblies, no matter their size. The method by which the assembly was defined (author-
assigned or programmatic) is presented together with experimental evidence of the oligomerization state of the
assembly (wherever possible).
Several tools are available for identifying macromolecular assemblies with particular symmetry (Figure 5).

The RCSB.org Advanced Search page includes a wide range of searchable ‘Assembly Features’, including point
group symmetry symbol, oligomeric state, symmetry type (cyclic, helical, etc.), and symmetry class (global,
local, pseudo). These search attributes may be combined with other search functions available from the
Advanced Search page (structural or chemical attributes, sequence, etc.) to develop more targeted searches.
When search results are returned, a ‘Refinement’ option is provided in the left-hand menu that allows narrow-
ing of any search result based on symmetry types and a variety of other annotated features. A Browse function-
ality is also available, providing direct links to all holdings with a particular symmetry symbol or class.
RCSB.org provides interactive visualization of each structure using Mol*, an advanced, open-source, web-

based visualization tool designed to address the current challenges of increasing size and complexity of bios-
tructure data. Mol* includes several tools for visualizing symmetry (Figure 6). First, the ‘Assembly Symmetry’
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Table 1 Global symmetries for homo-oligomeric assemblies in current PDB holdings (as of April 20th
2022) Part 1 of 2

Class Stoichiometry Symmetry type Count redundant1 Count non-redundant2

Cyclic 2 C2 56 568 13 590

Cyclic 3 C3 6836 1639

Cyclic 4 C4 1920 394

Cyclic 5 C5 1173 173

Cyclic 6 C6 699 204

Cyclic 7 C7 247 67

Cyclic 8 C8 95 35

Cyclic 9 C9 48 21

Cyclic 10 C10 28 13

Cyclic 11 C11 52 11

Cyclic 12 C12 61 26

Cyclic 13 C13 7 5

Cyclic 14 C14 16 9

Cyclic 15 C15 21 12

Cyclic 16 C16 7 2

Cyclic 17 C17 7 2

Cyclic 18 C18 2 1

Cyclic 21 C21 1 1

Cyclic 22 C22 3 2

Cyclic 24 C24 2 2

Cyclic 26 C26 1 1

Cyclic 27 C27 1 1

Cyclic 30 C30 1 1

Cyclic 31 C31 1 1

Cyclic 32 C32 1 1

Cyclic 33 C33 2 2

Cyclic 34 C34 3 1

Cyclic 38 C38 1 1

Cyclic 39 C39 2 1

Dihedral 4 D2 10 688 2319

Dihedral 6 D3 3036 908

Dihedral 8 D4 1030 318

Dihedral 10 D5 385 102

Dihedral 12 D6 219 70

Dihedral 14 D7 116 25

Dihedral 16 D8 55 23

Dihedral 18 D9 11 5

Dihedral 20 D10 4 3

Dihedral 22 D11 4 2

Dihedral 24 D12 2 2

Dihedral 32 D16 2 2

Continued

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

237

Emerging Topics in Life Sciences (2022) 6 231–243
https://doi.org/10.1042/ETLS20210267

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


preset option generates a view that highlights point group and helical symmetry. This view includes symmetry
axes with traditional rotation order symbols and a bounding polygon with the same symmetry, which is par-
ticularly useful in cases with complex local symmetry, as seen in Figure 6A. Second, several options in the
‘Structure’ panel allow easy display of the asymmetric unit, biological assembly, or packing of molecules within

Table 1 Global symmetries for homo-oligomeric assemblies in current PDB holdings (as of April 20th
2022) Part 2 of 2

Class Stoichiometry Symmetry type Count redundant1 Count non-redundant2

Dihedral 34 D17 4 2

Dihedral 78 D39 5 1

Dihedral 96 D48 1 1

Helical n3 H 508 248

Icosahedral 60 I 483 179

Octahedral 24 O 608 69

Tetrahedral 12 T 473 145

1
‘Redundant’ where all PDB assemblies are counted;

2
‘Non-redundant’ where assemblies are clustered by 50% sequence identity;

3Helical symmetries are unbounded and helices of arbitrary lengths may be generated.

Figure 4. Symmetry statistics available at https://www.rcsb.org/stats/symmetry/growth.

In this screenshot only dihedral and cyclic symmetries are shown, using the checkboxes near the top. The interactive view available on RCSB.org

supports further exploration.
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the crystal lattice. For example, in PDB structures of icosahedral virus particles, in addition to the complete
icosahedral symmetry, sub-assemblies such as the icosahedral asymmetric unit, icosahedral pentamer, and
where appropriate the crystal asymmetric unit can also be displayed (Figure 6B). For crystallographic structures,
the ‘Structure’ panel also has options for exploring the packing of assemblies within the crystal lattice
(Figure 6C).
The RCSB PDB website provides full documentation to explain use of these symmetry-related tools for stu-

dents, educators, and other interested users. Documentation has been authored and updated based on user
input, both through periodic surveys and feedback from the website help functionality. Documentation helps
users identify tools on the website, guides them through methods to explore the type(s) of symmetry in an
assembly, explains how to visualize and analyze them, and finally presents how to use the search and browse
tools to find other examples of similar assemblies in the PDB archive. PDB-101, the RCSB PDB outreach and
education web portal (pdb101.rcsb.org, [36]), also provides several user-friendly materials to help new users get
started. A dedicated page explaining biological assemblies is available in the ‘Guide to Understanding PDB
Data’, together with related introductory materials on biomolecules and how their structures are determined.
PDB-101 also provides several educational materials related to symmetry, including a poster and paper-folding
activity on viral quasisymmetry, paper models of icosahedral viruses, and illustrations of packing within protein
crystal lattices.

Figure 5. RCSB PDB tools for exploring symmetry.

The RCSB.org Structure Summary Page for each PDB structure includes images of biological assemblies and asymmetric units and a summary of

symmetries found within the assembly (circled at left). Two tools are provided to find proteins with particular symmetries (circled at top and insets at

right): ‘Advanced Search’ queries the archive based on symmetry characteristics and ‘Browse Annotations: Protein Symmetry’ offers a drill-down

tree browser of symmetry types.
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Figure 6. Examples of Symmetry Presets in Mol*. Part 1 of 2

(A) The Mol* ‘Assembly Symmetry’ option displays symmetry elements and a polygon representing the symmetry of the

assembly. A ring with C34 local symmetry is highlighted here in a structure from a bacterial flagellar motor (PDB id 7cgo [52]).
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Conclusions
RCSB PDB strives to provide nimble mechanisms for accessing, visualizing, and exploring the PDB archive of
atomic-level 3D biostructures. Tools presented herein are focused on functional symmetry that can readily
display and support the exploration of global, local, and pseudo symmetries to help generate hypotheses regard-
ing the functional significance of these assemblies. Analogous tools are available for applications to computer-
aided drug discovery (reviewed in [37]), protein fold prediction (reviewed in [38]), and all manner of other
topics that are being explored by the structural biology community. The PDB archive is growing by more than
12 000 structures per year, so these tools have been built with extensibility in mind, to ensure that newly depos-
ited structures are accessible, and to facilitate the development of new tools that address new and evolving
needs of the community.

Summary
• Structural biologists have revealed that biomolecules exploit symmetry to achieve a wide

variety of functions.

• The Protein Data Bank (PDB) is the single global repository of 3D biostructures and includes
many examples of functional symmetry of biomolecules.

• The RCSB PDB website (RCSB.org) provides user-friendly tools for finding and visualizing
biostructures and understanding the role of symmetry in their function.
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Figure 6. Examples of Symmetry Presets in Mol*. Part 2 of 2

Options in the ‘Structure’ panel allow display of assemblies, asymmetric units, or crystallographic lattices. Shown here are (B)

the ‘Icosahedral Pentamer’ assembly intermediate for poliovirus (PDB id 2plv [53]) and (C) the ‘Symmetry (indices)’ view of

ferritin packing within the crystallographic lattice (PDB id 2fg8 [54]).
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