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Abstract

With increasing appreciation for the extent and importance of intratumor heterogeneity,

much attention in cancer research has focused on profiling heterogeneity on a single patient

level. Although true single-cell genomic technologies are rapidly improving, they remain too

noisy and costly at present for population-level studies. Bulk sequencing remains the

standard for population-scale tumor genomics, creating a need for computational tools to

separate contributions of multiple tumor clones and assorted stromal and infiltrating cell

populations to pooled genomic data. All such methods are limited to coarse approximations

of only a few cell subpopulations, however. In prior work, we demonstrated the feasibility of

improving cell type deconvolution by taking advantage of substructure in genomic mixtures

via a strategy called simplicial complex unmixing. We improve on past work by introducing

enhancements to automate learning of substructured genomic mixtures, with specific

emphasis on genome-wide copy number variation (CNV) data, as well as the ability to pro-

cess quantitative RNA expression data, and heterogeneous combinations of RNA and CNV

data. We introduce methods for dimensionality estimation to better decompose mixture

model substructure; fuzzy clustering to better identify substructure in sparse, noisy data;

and automated model inference methods for other key model parameters. We further dem-

onstrate their effectiveness in identifying mixture substructure in true breast cancer CNV

data from the Cancer Genome Atlas (TCGA). Source code is available at https://github.

com/tedroman/WSCUnmix

Author summary

One of the major challenges in making sense of cancer genomics is high heterogeneity

cell-to-cell, as a tumor is typically made up of multiple cell populations with distinct

genomes and gene expression patterns. The difficulty of working with such data has led to

interest in computationally inferring the components of genomic mixtures. We develop a
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new approach to this problem designed to take better advantage of the fact that mixtures

of cells across tumors or tumor regions can be expected to be highly non-uniform; sam-

ples that share greater common ancestry or progression mechanisms are likely to have

more similar mixtures of cell types. We present new work on reconstructing mixtures

from multiple genomic samples where the samples can be presumed to share such a pat-

tern of similarity. Our methods automate the process of reconstructing these mixtures

and the relationships between samples. We demonstrate their effectiveness on tumor

genomic data in comparison to alternative methods in the literature.

Introduction

Tumor heterogeneity is now recognized as a pervasive feature of cancer biology with implica-

tions for every step of cancer development, progression, metastasis, and mortality. Most solid

tumors exhibit some form of hypermutability phenotype [1], leading to extensive genomic var-

iability as tumor cell populations expand [2]. Studies of single cells by fluorescence in situ

hybridization (FISH) [3, 4] have long revealed extensive cell-to-cell variability in single tumors,

an observation that has since been shown, by single-cell sequencing technologies, to occur

with a far greater scale and variety of mechanisms than previously suspected (e.g., [5, 6]). Fur-

thermore, studies of clonal populations across progression stages have revealed that it is often

rare cell populations that underlie progression, rather than the dominant clones [4]. Indeed,

heterogeneity itself has been shown to be predictive of progression and patient outcomes [7].

All of these observations have suggested the importance of having ways of accurately profiling

tumor heterogeneity, for both basic cancer research and translational applications.

Experimental technologies for profiling tumor heterogeneity are constantly improving, but

are so far impractical for systematically profiling variability genome-wide in large patient pop-

ulations. FISH and related imaging technologies can profile many thousands of cells, but only

at limited sets of preselected markers [4]. Single-cell sequencing can derive genome-wide pro-

files of hundreds to thousands of cells in single tumors [5, 8, 9], but is so far cost-prohibitive

for doing so in more than very small patient populations. Furthermore, technical challenges

make it difficult to develop accurate profiles of structural variations, such as copy number

variations (CNVs), which are the major drivers of progression in most solid tumors [10].

Bulk regional sequencing can profile small numbers of tumor sites per patient in large patient

populations [11] but provides only a coarse picture of the heterogeneity within each site.

RNA sequencing (RNA-Seq) provides a measure of the quantity of RNA expression and is

practical on substantially larger numbers of single-cells than DNA-Seq [9]; however, it is sub-

ject to greater noise than DNA-Seq [12] and provides a more indirect measure of clonal

heterogeneity.

These technical challenges to assessing heterogeneity experimentally have led to enormous

interest in computational deconvolution (also known as mixed membership modeling or

unmixing) methods as a way of computationally separating cell populations from mixed sam-

ples. Originally proposed as a way of correcting for stromal contamination in genomic mea-

surements [13], such methods were later extended to reconstructing clonal substructure [14]

and subclonal evolution [15] among tumor cell populations. The past few years have seen an

explosion of such methods for deconvolution of numerous forms of genomic data sources

(e.g., [16–31]). All such methods, however, are limited in accuracy and capable of resolving at

best a few major clonal subpopulations, a small fraction of the heterogeneity revealed by sin-

gle-cell experimental studies. These limits result from an inherent difficulty of separating high-
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dimensional mixtures, especially from sparse, noisy data. The gap between the heterogeneity

we know to be present and what we can resolve by deconvolution is enormous, suggesting a

need for further methodological advances.

Genomic deconvolution is a burgeoning field in which many different approaches are now

available, often differing in models, algorithms, and the kinds of data or study design for

which they are well suited. Leading contemporary approaches include TITAN [19], THetA

[18], THetA2 [32], PhyloWGS [33], SPRUCE [34], Canopy [35], BitPhylogeny [36], and

PyClone [37], each of which we briefly discuss here. TITAN uses a graphical model to estimate

subpopulations based on copy number alterations and loss of heterozygosity events for whole

genome or whole exome sequencing data, assuming as input read depths and allelic ratios at

single nucleotide variant (SNV) sites. THetA and its follow-up version THetA2 perform tumor

composition estimation using both SNV and copy number data derived from sequence read

depths. PhyloWGS uses a probabilistic model to perform deconvolution jointly with phylog-

eny inference specifically on low-coverage whole genome sequencing data, making use of copy

number estimates and variant allele frequencies (VAFs) of simple somatic variants. SPRUCE

uses SNV and CNV data similar to that of THetA/THetA2 to make inferences as to the compo-

sition of heterogeneous tumor samples, but via a combinatorial enumeration strategy to

explore the space of possible phylogenies consistent with a data set. Canopy optimizes for a

probabilistic model to perform joint phylogenetic inference and tumor deconvolution from a

data set based on several data sources, including VAFs and allele-specific copy numbers. Bit-

Phylogeny similarly performs joint phylogenetics and deconvolution using Markov chain

Monte Carlo (MCMC) sampling, but is unusual among methods in this domain in making use

of DNA methylation data. PyClone performs tumor deconvolution for multiple samples from

a single patient using SNV data, CNV data, and combinations thereof as input and is designed

to work specifically with targeted deep sequencing data (>1000X coverage).

In prior work, we proposed that one could better resolve genomic mixtures by taking

account of extensive substructure we would expect such mixtures to exhibit [21]. That is, an

individual tumor or tumor site is not likely to be a uniform mixture of all cell types observed

across all tumor samples in a study. Rather, one can expect distinct samples to group into sub-

sets that share more or fewer cells depending on how closely related they are to one another.

For example, all tumor samples can be expected to share some contamination by normal cells

while tumors with common subtypes can be expected to share both normal cells and cell states

characteristic of those subtypes. Likewise, tumor regions might be expected to share more sim-

ilarity with those nearby than those more distant in a single patient. This kind of substructure

is in principle exploitable to improve our ability to reconstruct accurate mixed membership

models. Specifically, by deconstructing tumor samples into subgroups with similar mixtures,

one can decompose the problem of reconstructing a high-dimensional mixture into the easier

problem of reconstructing several overlapping lower-dimensional mixtures.

We previously showed how to implement such an approach to substructured mixture

deconvolution, adapting an earlier deconvolution strategy for uniform mixtures that was

based on identifying geometric structures (simplices) of tumor point clouds in genomic space

[15, 38] but subdividing these point clouds into low-dimensional subsimplices that collectively

constitute a higher-level object known as a simplicial complex. This prior work used a pipeline

of several sequential steps to transform a genomic point cloud into a structured mixed mem-

bership model [21]:

1. Pre-processing / filtration

2. Dimensionality reduction
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3. Pre-clustering (partitioning) into uniform submixtures

4. Unmixing submixtures

5. Unifying mixtures into a structured simplicial complex model

The resulting pipeline established a proof-of-concept for the approach, but also introduced

several difficult computational challenges. For example, it required accurately pre-specifying

the number of partitions and the dimensionality of each of the partitions, both difficult infer-

ence problems in themselves that require significant knowledge of the system under study.

In the present work, we improve on this proof-of-concept method by tackling several sub-

problems on the path to more completely automating inference of substructured genomic

mixtures from populations of tumor samples. We have eliminated several nuisance parameters

from the prior work, most notably by introducing methods for automated dimensionality esti-

mation of subsimplicies and automated maximum likelihood inference of other previously

user-defined parameters. We also improve upon our earlier work by proposing a model better

suited to capture the uncertainty in cluster assignments through use of a fuzzy clustering

representation of data points (samples) with respect to the inferred simplicial complex (and

therefore the tumor phylogeny), allowing tumor samples to exhibit partial or uncertain mem-

bership in multiple phylogenetic branches. This flexibility is of particular importance when a

sample is near a branch point in the simplicial structure, which corresponds biologically to a

sample having a genomic profile similar to a most recent common ancestor of multiple tumor

lineages. In addition, we develop a more comprehensive likelihood function, allowing us to

optimize over and thus eliminate nuisance parameters from prior work.

Although the approach we introduce makes inferences as to intraturmor heterogeneity, we

use information present across multiple patients (that is, intertumor heterogeneity) to make

those inferences. This application assumes that commonalities in progression processes can be

observed across subgroups of patients, even if the exact presentation is unique for each tumor.

Because the model presumes common subgroups of tumors proceeding along similar evolu-

tionary trajectories, an inferred mixture vertex will correspond to a coarse-grained model of a

shared progression stage among a subset of tumors. That is, the vertex, would be interpreted as

an approximate representation of a recurring cell type appearing in the course of progression

of multiple samples. Since no two samples have exactly the same evolutionary history, how-

ever, it would be expected to reflect the common features of a cluster of similar cell types while

averaging out their differences. The overall simplicial complex structure will correspond to a

model of the space of evolutionary trajectories among all of these progressions stages across all

observed tumor subgroups. Paths in the evolutionary tree will correspond to the recurring evo-

lutionary pathways between the averaged progression stages represented by the vertices. Based

on those reconstructions, we can then make inferences for each sample as to the relative

amounts of each progression stage represented in that tumor, providing a coarse-grained

inference of intratumor heterogeneity.

We validate the approach through application to breast tumor data from The Cancer

Genome Atlas (TCGA) [39] and comparison with the widely-cited PyClone software [37]. We

also compare with a more recent deconvolution method using DNA methylation data, provid-

ing an independent basis for comparison to the DNA copy number and RNA expression-

derived deconvolution of our method [28].

Materials and methods

In this section, we go through each step of our improved analysis pipeline, followed by a dis-

cussion of validation and application to real tumor data. We break the full inference problem
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into a series of sequential steps. Fig 1 provides a high-level overview of the process. The follow-

ing subsections provide details on each component.

Input and output data

We conceptually model input data as a matrixM 2 Rs�g , where the s 2 N rows correspond to

distinct samples (which might be biopsies of tumors in a patient population, tumor sites in a

single patient, or regions of a single tumor) and the g 2 N columns correspond to probes

along a genome (typically one per gene, although potentially at lower or higher resolution).

Note, however, that as the underlying data types input to the method are changed, the inter-

pretation of output is changed correspondingly. For instance, if the features used as input are

not gene copy numbers, but rather SNV sites, then the components of the matrix M will be

SNV VAFs for the given samples. Similarly, if samples are different regions from a single

patient, the inferred phylogeny is for a single patient, rather than across a patient panel. For

ease of exposition, we refer to rows as samples and columns as genes below. We use this

generic matrix format because data from many sources can be preprocessed into such a matrix

(e.g., array-based CNV, SNV, or expression data or whole-genome or whole-exome sequence-

derived CNVs, SNVs, or expression levels). Although the basic strategy is intended to be

generic with respect to platform and genomic datatype, we specifically consider here three sce-

narios: 1) CNV data as might be derived from array comparative genomic hybridization

(aCGH) or DNA-Seq read depths, 2) RNA expression data as might be derived from expres-

sion microarrays or RNA-Seq, and 3) a heterogeneous combination of DNA CNV and RNA

expression data. Our goal is to decompose the rows of M into an approximately convex

Fig 1. Overview of the full analysis pipeline: Input samples are represented by collections of copy number (CN) call files and/or

RNA expression measurements, which are converted to a matrix format. These matrix inputs are passed to our simplicial complex

inference code, which infers a mixed membership model of the data and associated model likelihood. The inference is computed by (1)

principal components analysis (PCA) to perform dimensionality reduction and denoising of geometric structure; (2) medoidshift pre-

clustering to identify low-dimensional sub-manifolds corresponding to distinct submixtures of the data; (3) dimensionality inference via sliver

estimation to estimate likely numbers of mixture components needed to model each submixture; (4) unmixing on each substructure to

identify preliminary mixture decompositions of the submixtures; and (5) a K-nearest-neighbor (KNN-based) reconciliation model to identify

likely shared vertices between submanifolds. Each of these steps is explained in more detail in the main text. The inferred low dimension

subspaces may be partially- or non-intersecting. We require, however, that the subspaces form a continuous structure, and merge

disconnected subspaces using a maximum likelihood model. The inferred mixture components are then used in downstream functional

annotation to identify dysregulated pathways or term associations.

https://doi.org/10.1371/journal.pcbi.1005815.g001
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combination of a smaller set of unknown mixture components (putative cell populations).

More formally, we seek a decomposition

M ¼ FV þ � ð1Þ

where F 2 Rs�k are mixture proportions, V 2 Rk�g are unmixed subpopulations, k 2 N is the

number of inferred cell subpopulations, and � 2 Rs�g is an error matrix. F is interpreted as the

mixture fractions of the pure subpopulations, also called mixing proportions, and V as the

inferred genomic profiles of the pure subpopulations, also called mixture components. This

interpretation leads to natural constraints on the problem: 1) ∑i Fij = 1 for a fixed j and 2) 8i, j:
0� Fi, j� 1. Given these constraints, the formal goal of the method is to compute F and V
givenM, with an intermediate step of determining the mixture dimension k.

Our approach to performing this deconvolution involves constructing a more involved sim-

plicial complex mixed membership model, which will imply F and V, through a series of dis-

crete inference steps. While most aspects of model inference are automated, as detailed in the

remainder of Materials and Methods, the following parameters and hyperparameters still

require manual selection:

1. Maximum number of dimensions for sliver estimation

2. Number of bootstrapped replicates for pre-clustering

3. Neighborhood size for pre-clustering

4. Number of nearest neighbors for vertex merger

5. Number of standard deviations for dimensionality estimation

6. Maximum number of iterations for fmincon

Pre-processing

To begin analysis, we first pre-process M into a matrix of Z-scores:

Mz ¼
M � mM

sM
ð2Þ

where μM is a vector of the mean copy numbers of each gene across all samples, and σM is a

vector of the standard deviations of the copy numbers.

This process is altered slightly to accommodate heterogeneous DNA and RNA data that

have been concatenated as features. We assume that the distributions of read counts will differ

for DNA and RNA data, so instead of μ and σ for all samples column-wise, we use a μ and σ for

pools of all data for each data type. That is, we evaluate the mean and standard deviation for Z-

score computation for all samples and for all DNA features, and separately for all samples and

all RNA features. In the RNA only case, we use the framework outlined in Eq 2. Next, to facili-

tate analysis of genomic point clouds, we reduce the dimension of the data using principal

components analysis (PCA) [40]. While there are more sophisticated dimensionality recon-

struction strategies available, we favor PCA as a simple, standard method that has relatively

modest data needs. We identify a total of kupper PCs, using the Matlab pca routine in economy

mode, where kupper 2 N < g is an upper bound on the number of cell subpopulations we will

infer. In the present work, we use kupper = 12, intended to be approximately an upper limit on

the number of distinct mixture components a method of this class might be able to infer. We

denote the PCA scores, corresponding to amounts of each PC in each tumor, as SM 2 R
s�kupper .
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005815 October 23, 2017 6 / 23

https://doi.org/10.1371/journal.pcbi.1005815


Then, in order to fine-tune the automated dimensionality detection, we implement the sliver

method of dimensionality estimation described in [41]. The core model proposed by that work

relies on testing for the presence of “slivers”, geometric objects with poor aspect ratios, which

occur when the following expression, which we call Assertion 3, is satisfied:

n < d
jr

where r ¼
Lj

j!
ð3Þ

where

• ν represents the volume of some enclosing structure,

• j represents the current estimate of dimension, increasing for each time Assertion 3 is false

up until the limit of 12, and

• δ represents a tolerance factor between 0 and 1.

For a quick estimate of an enclosing structure, we use the algorithm proposed in [15]. We

then use the top j − 1 PCs after the algorithm terminates. To automate the selection of the δ
parameter, we use all values spaced 0.05 apart between 0 and 1. The range of possible δ values

is 0 to 1 for this parameter based on the approach outlined by [41]. Because some values of the

parameter lead to the same estimate of the dimensionality of the dataset, we choose one repre-

sentative value from each partition of the range of dimension estimate values, then choose the

model that has the highest likelihood.

Lastly, we normalize the scores for each PC to a [0, 1] range, which is then assumed by the

pre-clustering technique applied in the next section [42]. We compute the 0–1 normalized ver-

sion of SM as

S½0;1� ¼
SM � min SM

max SM � min SM
ð4Þ

where the minimums and maximums are computed for each PC, taken over all samples.

Pre-clustering

We next pre-cluster data to identify initial candidate subsets of samples inferred to have drawn

from the same set of mixture components. Each such subset will correspond to a distinct sub-

simplex of the full simplicial complex to be inferred. While this is a clustering problem, it is a

non-standard one in that we seek to cluster data into distinct low-dimensional subspaces of a

contiguous higher-dimensional point cloud, rather than into disjoint subclouds as is in con-

ventional clustering. We developed a specialized clustering method for this purpose [42],

based on a two-stage variant of medoidshift clustering [43]. We initially cluster in Euclidean

PC space to reduce the raw data to a smaller set of representative data points. We then cluster

these representatives under a negative-weight exponential kernel function using the ISOMAP

distance measure [44], a form of geodesic metric measuring distance between data points

through a k-nearest-neighbor graph of the input point cloud, which collectively draws on fea-

tures of manifold learning and related technologies. The combination of ISOMAP distance

and negative exponential kernel produces a clustering in which cluster representatives are

approximately extremal points of the simplicial complex that serve to pull apart distinct sub-

spaces of the point cloud. The initial Euclidean clustering suppresses noise, which otherwise

makes the negative exponential kernel highly sensitive to outlier data. We refer the reader

to [42] for full details. At the end of this process, we are left with a small set of cluster
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representatives M2stage, defined as the union over clusters i of a neighborhood N(xi) of points

associated with each cluster representative xi:

M2stage ¼ [iMNðxiÞ
; ð5Þ

where each representative is itself a point in S[0,1], and a corresponding clustering of all samples

C = {C1, . . ., Cr}, S[0,1] =
S
Ci2CCi.

We further assess uncertainty of the cluster assignments by determining a relative statistical

weight of each data point in each cluster. We use a weight function based on a folded multivar-

iate normal distribution, where the mean of the function is a 0 vector, the covariance matrix is

the identity multiplied by the distance from each cluster center to the mean of all cluster cen-

ters, and the value at which the density function is evaluated is the distance from xi to Cj in
ISOMAP space. After these relative weights have been derived, we convert them to probabili-

ties of assignment of each point to each cluster. If we denote the raw weight of the ith data

point as a vector Ri, then we can define the normalized weight vector:

Wi ¼
Ri � minCj2CRi

maxCj2CRi � minCj2CRi
ð6Þ

In the above formula, Cj refers to an arbitrary cluster in the clustering C, over which we maxi-

mize or minimize. The clustering in principle depends on a chosen neighborhood size for the

k-nearest-neighbors graph, although a scan over all possible neighborhood sizes found no sen-

sitivity of the final model likelihood to this parameter.

Dimensionality inference in unmixing

We next seek to estimate the dimension of each cluster, which will correspond to the number

of mixture components inferred for that cluster. The major challenge of this step is distin-

guishing a genuine axis of variation from random noise stemming from biological and techni-

cal limitations, particularly when working with sparse, noisy genomic measurements.

Intuitively, we identify dimension by iteratively adding axes of variation via PCA until we can

no longer reject the hypothesis that variance in the next dimension is distinguishable from

noise.

We first build a model of expected noise per dimension by randomly sampling data points

of pure Gaussian noise with mean 0 and identity covariance. We then perform PCA on this

random point cloud and estimate the mean μG(i) and standard deviation σG(i) of the point

cloud for each PC i 2 1, . . ., kupper. We then identify the smallest i� kupper such that the stan-

dard deviation of the true data in PC i is smaller than μG(i) + κσG(i), where κ defines a signifi-

cance threshold in standard deviations. In the present work, we set κ = 3 to yield effectively a

significance threshold of< 0.001 for rejecting the hypothesis that the next dimension can

be explained by Gaussian noise. The result of this module, then, is a vector of inferred dimen-

sions of each of the clusters: D 2 {1, . . ., kupper}r. We would expect this test to be conservative

(underestimate true dimension), although less so as the size of the data set and its precision

increases. We found it necessary to use a custom-made conservative dimensionality estimator,

as opposed to a more standard technique (e.g., [41]), because the number of data points avail-

able in this application is much smaller than is typically assumed by methods in this problem

domain. We use the approach outlined in [41] in the initial phase, as it is prior to the pre-clus-

tering, and therefore typically has a several-fold increase in the minimum number of data

points considered, bringing it better in line with the data needs of that method.
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Cluster-wise unmixing

We next seek to establish an initial mixed membership model by separately unmixing each

cluster, using the inferred dimension from the previous step as the number of mixture compo-

nents. We establish the model by minimizing an objective function based on the noise-tolerant

geometric unmixing method of [38]:

PðyjXÞ /
Yr

i¼1

ðexpð �
Xs

j¼1

ðjxi � F
i
jV

i
j jW

i
jÞÞMSTðVj;AjÞ

� g
bÞ ð7Þ

Where

• γ is a regularization penalty set based on an estimated signal-to-noise ratio (SNR) of the data

source [21],

• V are the inferred vertices,

• A is the adjacency matrix,

• MST is a minimum spanning tree cost,

• W is the relative weight function computed above,

• F are the inferred mixture components,

• xi is the ith data point,

• β is a BIC penalty for model complexity [45] and,

• |�| is L1 distance.

The first term penalizes data points outside the bounding simplex via an exponentially-

weighted L1 penalty. The MST term captures a form of minimum evolution model on the sim-

plex itself intended to penalize the amount of mutation from a common source needed to

explain the simplex vertices (mixture components) [21]. We optimize for the objective func-

tion via the Matlab fmincon function, fitting V and F to assign mixture components and

mixture fractions to each cluster independently. In practice, we use a transformed version of

the equation into negative log space, as the optimization packages are built for minimization

rather than maximization, and log domain better handles underflow for small likelihoods

while preserving the ordering of solutions.

Reconciliation of subsimplices into a simplicial complex

We next seek to join the discrete simplices, each modeling a subset of samples as a uniform

mixture, into a unified simplicial complex. We accomplish this by merging simplex vertices if

we cannot reject the hypothesis that they represent distinct points in genomic space. We first

establish a probability model using the k-nearest-neighbors graph on samples and vertices by

modeling the set of overlapping neighbors between two vertices via a hypergeometric distribu-

tion. On the assumption two vertices draw their neighbor sets independently from the pool of

all samples, the expected number of data points in common would be

jN1jjN2j

N
ð8Þ

where there are N data points, |N1| nearest neighbors of the first vertex, and |N2| neighbors of

the second vertex. We merge two vertices when the number of observed overlapping nearest

neighbors is above expectation. We empirically determined on our synthetic data that the
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method is insensitive to the number of nearest neighbors for choices between 2 and
ffiffiffiffi
N
p

and

chose k = 15 nearest neighbors arbitrarily within this range for the real data. This approach

replaces computationally costly bootstrap estimates used in our prior work [21].

For those instances in which the process above does not result in a single connected simpli-

cial complex, we add a step of post-processing to reconcile the geometric body into a single,

connected simplicial complex. For those collections of bodies that do not consist of one con-

nected component after the hypergeometric distribution correction, we iterate over all pairs of

simplex vertices, merge the two vertices by creating a new vertex from the mean of the previ-

ous two vertices in all features, set the adjacency matrix to the union of the adjacency matrices

of the two previous vertices, and compute the value of the objective function outlined in Clus-

ter-wise Unmixing. We continue to merge points until there is at least one candidate consist-

ing of a single connected component. If there are multiple such candidates, the candidate with

the lowest objective function value, corresponding to the maximum of the likelihood function,

is chosen. Pseudocode for this algorithm is provided in Fig 2.

Application to TCGA tumor data

To demonstrate the efficacy of the algorithm, we use breast cancer (BRCA) CNV and RNA-

Seq data from The Cancer Genome Atlas (TCGA) [39]. We downloaded level 4 DNA CNV

data on 2 Jun 2016 (1,080 samples) and RNA-SeqV2 data on 1 Jun 2016 (1,041 samples), of

which 1,022 samples were in common, along with clinical data for this cohort. For copy num-

ber data at level 4, gene features are extracted and a list of genes is provided, in contrast to the

Fig 2. Pseudocode for merging protocol to select most likely from a set of candidate models provided none are simplicial

complexes.

https://doi.org/10.1371/journal.pcbi.1005815.g002
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blocking procedure required by earlier work [42]; however, the platform is flexible to represent

more or less granular data.

We ran the pipeline using the following parameters: maximum number of dimensions sup-

plied to the pre-processing sliver method: 12; number of bootstrapped replicates for pre-clus-

tering: 1000; neighborhood size for pre-clustering: 1; number of nearest neighbors for vertex

merger: 15; cutoff for dimensionality estimation: 3 standard deviations; maximum number of

iterations of fmincon per simplex: 1000. The choices reflect computational resource limita-

tions, as well as a stable number of bootstrapped replicates, and choices to ensure convergence

of the methods. The neighborhood size was chosen based on assumptions implicit in our nor-

malization technique—for full details, see [42]. The number of nearest neighbors was chosen

based on the test of simulated data similar to [42] demonstrating insensitivity to this parameter

up to approximately
ffiffiffiffi
N
p

neighbors. The 3 standard deviations chosen correspond to a p-value

of approximately 0.001. The runtime of the experiments depends largely on the dimension of

the maximally likely clusters (i.e., the number of subpopulations in the tumor dataset that our

model chooses as most likely) and the number of iterations in the minimization phase (itera-

tions of fmincon).

Sensitivity analysis

In order to assess the consistency of our method with respect to outlier data points, we con-

ducted a sensitivity analysis using the TCGA CNV data. The sensitivity analysis was structured

in an analogous fashion to 10-fold cross validation. For each of ten iterations, we excluded

10% of the data set, selected by a random uniform distribution. For the remaining data, the

model was run to completion to produce a simplicial complex and assignment of mixture

components and mixture fractions to the data points in that set of replicates. We then com-

pared inferences by several measures to assess consistency across subsamples of the data.

We assessed similarity of the inferred component sets between replicates. To assess similar-

ity of two sets of inferred vertex components A and B, we first identified for each component

in A the closest matching component B, based on normalized Euclidean distance in PC space.

We likewise identified for each component in B, the closest matching component in A. We

assigned a score for the similarity of two vertex sets based on the mean distance between each

component and its closest match relative to the mean distance between pairs of distinct com-

ponents within A and within B.

Results

To demonstrate the utility of our method, we consider three applications to data derived from

the TCGA breast cancer cohort [46]. Breast tumors were chosen as an application case for two

key reasons. First, there are a larger number of breast tumor samples than any other organ can-

cer type in TCGA, valuable for cross-cohort deconvolution. Second, breast tumors have well-

documented clinical subtypes (HER2+; ER/PR+, and Triple Negative), a useful feature for vali-

dation since we would expect tumors and cell lineages within them to partition largely by

subtype.

Application to breast tumor RNA data

RNA-Seq data was downloaded from TCGA. The data consists of lists of gene expression in

normalized counts, as well as gene name lists identifying each feature. Data from each of the

samples were concatenated into a matrix of samples by genes. Using the parameters described

above, the weighted unmixing procedure produces a tetrahedral simplex. Although other
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simplicies and simplicial complexes were considered by our algorithm, the tetrahedron was

determined to be the maximum likelihood model. The results are illustrated in Fig 3, which

shows the true point cloud as well as our inferred structure, where samples are colored by the

clinical subtype. The DNA level 4 data consists of log2(�) copy number ratios, which are expo-

nentiated and Z-scored prior to unmixing following the methods outlined above.

Application to breast tumor DNA CNV data

We also considered application to DNA CNV data from TCGA. The results are visualized in

Fig 4. The decreased noise of DNA CNV technology relative to RNA-Seq technology results in

a more sharply defined simplicial complex structure than was apparent with RNA-Seq data,

consisting of three lines connected at a shared fulcrum. We attribute the clearer structure to

the lower inherent stochasticity of DNA versus RNA data, which would be expected to better

approximate the assumption that mixtures of cells will behave as linear combinations of their

underlying cell types. We note that the central vertex, labeled 4, appears skewed away from the

apparent junction of the three subsimplices. We attribute this skew in the position of the junc-

tion to the difficulty of accurately clustering samples near such subsimplicial boundaries, lead-

ing to imprecise positioning of the shared vertex in the distinct subsimplices that is only partly

corrected when the vertices are merged.

Fig 3. Visualization of TCGA RNA-Seq data with inferred maximum likelihood simplicial complex structure. Note that the

tetrahedron inferred was considered alongside other simplices and simplicial complex but considered most likely. The data are enclosed in

the tetrahedron, and as such can be approximated as mixtures of the vertices. Data points, corresponding to distinct tumor samples plotted

in principal component space, are color coded by immunohistological subtype (red circle: Her2+, purple plus: ER/PR+, blue asterisk: triple-

negative).

https://doi.org/10.1371/journal.pcbi.1005815.g003
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Application to breast tumor combined RNA and DNA CNV data

Lastly, we considered a combination of DNA and RNA features. Because of the varying noise

profiles of the data types [12], we adjusted the normalization procedure as outlined above. We

have plotted the results of the unmixing below in Fig 5, using the same color code for tumor

subtypes as with the RNA-only and DNA-only data. The combined data leads to a somewhat

more complex structure than either individual data type alone, consisting of a tetrahedron and

triangle connected at a point. The higher dimension compared to the individual data types

may reflect changes in the overall noise profile or to the complementary aspects of progression

that are revealed by the two data types in isolation.

Sensitivity analysis

We further used the TCGA CNV data to assess sensitivity of the method to subsamples of the

data. We assessed reproducibility across ten replicates of 90% subsamples of the TCGA data

and quantified reproducibility of inferred mixture component sets based on the ratio of

Euclidean distances between best matching component pairs between replicates versus Euclid-

ean distances within replicate sets. A score below one would then indicate general consistency

between vertex sets relative to variability within each set, while a higher score would then be

interpreted to mean that vertex components are highly distinct between runs relative to the

variability among components within a set. Across all 45 comparisons among pairs of

Fig 4. Visualization of TCGA CNV data with inferred maximum likelihood simplicial complex structure. The inferred structure of

three arms sharing a point corresponds to a phylogeny of one most recent common ancestor, and three branches of a tree. Data points,

corresponding to distinct tumor samples plotted in principal component space, are color coded by immunohistological subtype (red circle:

Her2+, purple plus: ER/PR+, blue asterisk: triple-negative).

https://doi.org/10.1371/journal.pcbi.1005815.g004
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replicates, we found a mean distance of 0.6806 by this measure. This result suggests there is

sensitivity to outliers in the simplicial inference leading to variability replicate-to-replicate, but

that there is nonetheless similarity run-to-run relative to the variability in individual data sets.

Ontological term enrichment

To assess the functional and biological significance of the inferences made by our model in

each of the three test cases, we projected the data points from PC space back into genome Z-

score space. We then identified genes lists with statistically-significant increase or decrease in

Z-score as assessed by Bonferroni-corrected p-values. In the RNA and combined cases, we

used p = 0.01 after correction. In the DNA case, at the p = 0.01 level, DAVID [47] reported

that the number of genes provided was too large to process the results. As a result, we chose a

stricter threshold of p = 2.1905 × 10−11, the smallest value we could choose without producing

underflows in the p-value calculation.

Those genes that were statistically significantly upregulated were then evaluated on a per-

vertex basis by DAVID [47] for enrichment by functional terms corresponding to specific net-

works, pathways, or other functional classes. In our case, we have specific interest in enriched

tissues, diseases, and disease classes, as these areas provide the ability for the database to point

specifically to our dataset. As expected, the DAVID analysis revealed enrichment for several

terms related to breast cancer specifically, as well as breast tissue more broadly. In Tables 1–3,

Fig 5. Visualization of TCGA combined RNA-Seq and CNV data with inferred maximum likelihood simplicial complex structure.

The inferred structure of a tetrahedron and triangle sharing a point corresponds to two phylogenetic branches, one with four components

and one with three components. Data points, corresponding to distinct tumor samples plotted in principal component space, are color coded

by immunohistological subtype (red circle: Her2+, purple plus: ER/PR+, blue asterisk: triple-negative).

https://doi.org/10.1371/journal.pcbi.1005815.g005
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we provide the most significantly enriched terms for each of RNA, DNA, and combined RNA/

DNA deconvolution. Tables 1 and 2 present the ten most significantly enriched terms for

RNA and DNA, respectively. Complete lists of significantly enriched genes (p� 0.05) appear

in Supplementary Material as S1 and S2 Tables. Only seven terms were significantly enriched

for combined RNA/DNA deconvolution and therefore only those are listed in Table 3. Com-

parison of the method shows that DNA-only results in the largest number of distinct pathways

Table 1. Top DAVID term enrichment results for RNA expression deconvolution. The table provides the

ten most significantly enriched terms, identified by source repository and term, Benjamini-corrected p-values,

and associated vertices of the inferred simplicial complex.

Source Term p-value Vertex

GAD DISEASE CLASS Immune 3E-010 3

KEGG PATHWAY Allograft Rejection 4.7E-009 3

KEGG PATHWAY Cell adhesion molecules 2.4E-009 3

KEGG PATHWAY Graft-versus-host disease 3.8E-009 3

KEGG PATHWAY Antigen Processing and Presentation 3.3E-009 3

Reactome pathway Signaling in Immune System 2.8E-014 3

UP TISSUE Spleen 1.9E-017 3

UP TISSUE Blood 1.4E-012 3

UP TISSUE B-Cell 1.1E-011 3

UP TISSUE Lymph 3.1E-011 3

https://doi.org/10.1371/journal.pcbi.1005815.t001

Table 2. Top DAVID term enrichment for DNA copy number deconvolution. The table provides the ten most significantly enriched terms, identified by

source repository and term, Benjamini-corrected p-values, and associated vertices of the inferred simplicial complex.

Source Term p-value Vertex

KEGG PATHWAY Systemic lupus erythematosus 9.1E-012 1

KEGG PATHWAY Alcoholism 1.4E-010 1

UP TISSUE Blood 1.7E-005 1

UP TISSUE Spinal cord 1.4E-005 1

UP TISSUE Pancreas 0.0003 1

UNIGENE Blood normal 3rd 0.00034 1

UNIGENE mammary gland normal 3rd 0.00034 1

UNIGENE ear normal 3rd 7.8E-005 3

CGAP SAGE mammary gland breast carcinoma 4.4E-016 3

CGAP SAGE liver poorly differentiated adenocarcinoma 8.8E-006 3

https://doi.org/10.1371/journal.pcbi.1005815.t002

Table 3. DAVID term enrichment for combined RNA expression and DNA copy number deconvolution. The table provides significantly enriched terms,

identified by source repository and term, Benjamini-corrected p-values, and associated vertices of the inferred simplicial complex.

Source Term p-value Vertex

UNIGENE Breast (mammary gland) cancer_disease_3rd 0.0083 2

GAD DISEASE CLASS Cancer 0.0022 4

GAD DISEASE breast cancer 5.1E-006 4

GAD DISEASE Breast Cancer 1.1E-005 4

GAD DISEASE Asthma—Autoimmune disease 0.0013 4

KEGG PATHWAY Melanoma 0.036 4

UNIGENE EST Breast (mammary gland) cancer_disease_3rd 0.02 4

https://doi.org/10.1371/journal.pcbi.1005815.t003
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enriched, followed by RNA-only, then combined. Combined, however, is most specifically

enriched for expected term classes broadly related to cancers and breast tissue. These results

may suggest that the combined data is more effective at achieving high specificity at a trade-off

in sensitivity.

Comparison with prior methods

While there are many deconvolution tools in this domain, the variations in data assumptions

of the methods make direct head-to-head comparison difficult. While TITAN [19] can make

inferences from similar copy number variation data to our method, it depends on knowledge

of alleleic frequency data at SNV sites unavailable to us in the present analysis. THetA [18] and

THetA2 [32] perform a comparable form of inference but are tuned specifically for inference

from a single tumor, making them unsuitable for comparison on a patient cohort for which

our methods are designed. PhyloWGS [33] is designed for whole-genome analysis like our

method, but depends on availability of variant allele fractions of novel somatic variants, a

model and data type again unsuited to the kind of cross-cohort analysis performed by our

method. SPRUCE [34] likewise depends on VAF data under the assumption that all samples

are drawn from a single patient, making it poorly suited to the kind of data for which our

method is designed. Canopy [35] likewise makes use of VAFs and allele-specific copy number

data unavailable to us and poorly suited to the kind of cross-cohort analysis for which our

method is designed. BitPhylogeny [36] likewise assumes a data type unavailable in our applica-

tion, methylation data in that case, making direct comparison on real data infeasible.

In order to allow for some comparison to an alternative in the literature, we choose to com-

pare to PyClone [37], as it is is a highly cited method producing similar output to our method

that can in principle make inferences from a common set of data to our method. PyClone can

work with copy number data and can optionally omit allele-specific frequency information

(although it is designed to make use of such information if it is available). We emphasize that

although PyClone can be run on a common data set to our method with some preprocessing,

it is tuned for very different assumptions on those data than our method. PyClone assumes

precise frequency estimates on small numbers of sites, as is appropriate to the targeted deep

sequencing data for which it was designed, while our method is designed to use less precise

data on large numbers of markers, as is appropriate for the whole exome or whole genome

data for which it was designed. Furthermore, PyClone is also designed for multiple samples

from a single tumor while ours is designed to work with cross-sectional data from distinct

tumors. While we can run both methods on a common set of data, we thus cannot devise a sin-

gle dataset that provides a fair test of both. Our intention in comparing the methods, then, is

not to show that our method is superior to PyClone but rather that our method is filling a

niche for which prior tools are not designed and to which they do not generalize well.

In order to preprocess the data in a format amenable to the PyClone system, we assume a

read length of 300, and baseline copy number of 2. For this analysis, we assume a copy number

of 2 for any region for which which there is no copy number alteration call in the data. We also

omit analysis of sex chromosomes. We omitted allele-specific copy numbers as input to

PyClone because this information is not part of the publicly-available version of TCGA data.

Although both our approach and PyClone can run on SNV data, it proved computationally

infeasible to include the SNVs in this dataset for the PyClone analysis, as PyClone is not

designed to handle such a large marker set nor to work with markers drawn from many geneti-

cally distinct tumors.

We first attempted to run the full dataset of all level 4 gene copy number breast tumor sam-

ples from TCGA through the PyClone pipeline on a workstation equipped with an Intel i7-
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4770K processor at 3.5GHz per core, with 32GB of RAM. However, the approach was unable

to complete in approximately 1 week of running time, which we inferred may be due to the

large number of genes (> 20,000) present in the full dataset, an amount well in excess of the

small targeted sequencing data assumed by PyClone, as well as by the fact the PyClone algo-

rithm runs on a single core. We thus pruned the list of genes (features) to a subset of corre-

sponding to known breast cancer driver genes from [48]. PyClone then successfully ran on the

set of tumor data points from the TCGA breast tumor dataset. PyClone output also differs

somewhat from that of our method, requiring some post-processing to facilitate comparison.

PyClone outputs mean and variance scores for each sample, for each cluster of mutations,

which can approximately relate to our vertices. Further, we consider a version of the means of

the scores normalized to sum to one analogous to the mixture fraction scores we generate. We

then test for similarities in Spearman correlation of our model’s inferred mixture fraction rank

to the rank of mixture fraction provided by PyClone.

Results of comparison of our method with PyClone appear in Table 4. The PyClone com-

parison points (Py1 to Py4) correspond to the inferred mutational cluster prevalences. To

make a fair comparison, we normalized the prevalences by their sums on a per-cluster basis to

derive a fractional composition estimate based on PyClone. We then used Spearman correla-

tion as a comparative tool to examine how similar in rank PyClone’s inferences of which clus-

ters of genes were dysregulated are to our ranking of fractional composition with respect to

inferred vertex amount. Because the vertices represent inferred pure subpopulations within

tumor samples and are in PC space, the vertices are equivalent to genomic profiles of the sub-

populations, where sets of genes are mutated. The correlation analysis provides a matrix of

correlations where each element corresponds to the correlation between dysregulation of one

Pyclone cluster and representation of one inferred subpopulation by our method. While in

this case the two methods produced equal numbers of clusters, we would not expect that to be

true for all data sets and the analysis does not assume the matrix dimensions are equal. There

is significant (p< 0.01) positive correlation between 3 of our 4 vertices and 3 of the 4 clusters

inferred by PyClone, signaling general agreement between methods in their estimate of

substructure.

We further sought to validate our approach by comparing correlation of PyClone infer-

ences to clinical labels supplied by TCGA (Table 5) with correlation of the inferences of our

simplicial complex approach to the TCGA clinical labels (Table 6). Considering both positive

and negative correlations, at the p�0.0001 level, our approach has four entries significantly

correlating to the clinical labels across two vertices, as compared to three entries across two

clusters in the case of PyClone. Additionally, including those at a weakly significant (p� 0.05)

level, our approach has five entries correlating three of the four vertices’ mixture fractions to

clinical subtypes, while PyClone has four entries across three of the four clusters’ mixture frac-

tions to clinical subtypes.

Table 4. Spearman correlation values (Rho values) among inferred vertices from simplicial complex unmixing by our method and subpopulation

clusters derived from PyClone applied to TCGA breast cancer CNV data. The Py prefix is used for PyClone clusters. For our estimates, we use the V pre-

fix. P-values for the comparisons appear in parentheses. Significant values (p<0.01) are marked in bold.

Py1 Py2 Py3 Py4

V1 -0.1269 (0.0012) 0.1305 (0.0009) 0.1137 (0.0037) 0.0312 (0.4283)

V2 -0.0914 (0.199) -0.0994 (0.0113) -0.0869 (0.0269) 0.209 (<0.00001)

V3 -0.0265 (0.5002) -0.026 (0.5083) -0.0237 (0.547) 0.039 (0.3212)

V4 0.204 (<0.0001) -0.0743 (0.0588) -0.0383 (0.3298) -0.1501 (<0.00001)

https://doi.org/10.1371/journal.pcbi.1005815.t004
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To provide an additional point of comparison, we also applied our method to TCGA

RNA-Seq data. PyClone is not designed to accommodate RNA-Seq data, so we provide results

only for our method. Table 7 shows the results. In this test case, the simplicial complex

approach retrieved significant (p� 0.01) correlation at each of the inferred vertices, and for

each of the subtypes, with a total of 9 significant entries.

While a perfect comparison of our method with PyClone, or any prevailing method known

to us, is impossible given different data assumptions and input and output types, these com-

parisons provide clear evidence that our method is at least comparable in ability to identify

substructure among tumor data sets when given appropriate input data to its model assump-

tions. On the whole, we interpret the results as being in agreement on the tested BRCA TCGA

dataset, with our method providing the additional benefits of

1. Having the option to run on expression data, gene copy data, or heterogeneous combina-

tions thereof,

2. Not requiring matched tumor-normal data or assumptions about normal samples, and

3. Being amenable to much larger numbers of features, such as might be derived from whole-

genome data (WGS/WES), in comparison to PyClone or similar tools

Table 5. Spearman correlation from PyClone clusters derived from TCGA breast cancer CNV data to

clinical labels of samples. P-values for the correlations appear in parentheses. Significant values (p<0.01)

are marked in bold.

HER2+ HER2-;ER/PR+ TNBC

Py1 -0.0756 (0.0543) 0.1244 (0.0015) -0.0207 (0.5986)

Py2 -0.1702 (<0.0001) 0.0349 (0.3754) 0.0566 (0.1498)

Py3 -0.0383 (0.3307) 0.0709 (0.0711) 0.0343 (0.3835)

Py4 0.2451 (<0.0001) -0.2551 (<0.0001) 0.0032 (0.9345)

https://doi.org/10.1371/journal.pcbi.1005815.t005

Table 6. Spearman correlation of simplicial complex mixture fractions derived from TCGA breast CNV

cancer data to clinical labels of samples. P-values for the comparisons appear in parentheses. Significant

values (p<0.01) are marked in bold.

HER2+ HER2-;ER/PR+ TNBC

V1 0.1864 (<0.0001) -0.1830 (<0.0001) -0.0533 (0.1752)

V2 0.0117 (0.7670) 0.0252 (0.5222) -0.0026 (0.9467)

V3 -0.0782 (0.0467) 0.0215 (0.5853) 0.003 (0.9395)

V4 -0.2027 (<0.0001) 0.1566 (0.0001) 0.0711 (0.0706)

https://doi.org/10.1371/journal.pcbi.1005815.t006

Table 7. Spearman correlation values for simplicial complex unmixing fractional estimates from

TCGA breast cancer RNA-Seq data with TCGA-provided clinical subtypes. P-values for the comparisons

appear in parentheses. Significant values (p<0.01) are marked in bold.

HER2+ HER2-;ER/PR+ TNBC

V1 -0.1304 (<0.0001) 0.2235 (<0.0001) -0.2618 (<0.0001)

V2 0.004 (0.8969) -0.2397 (<0.0001) 0.3131 (<0.0001)

V3 -0.1029 (0.0009) 0.0033 (0.915) 0.0267 (0.3888)

V4 0.1636 (<0.0001) 0.0979 (0.0016) -0.1451 (<0.0001)

https://doi.org/10.1371/journal.pcbi.1005815.t007
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In cases where the constraints of PyClone (deep targeted sequencing, matched tumor-nor-

mal samples) are well-satisfied, it may perform more accurately than the general approach we

have developed, but in cases of lower read depth, datasets missing some or all normal matched

samples, or with whole-genome coverage, the simplicial complex approach may be more

appropriate.

We note that our method was not able to produce useful results on the trimmed list of

genes we produced to yield a manageable gene set for PyClone. We speculate that the high

noise in the data makes it infeasible to estimate simplicial structure from a small targeted gene

set, resulting in our method fragmenting the samples into many more clusters. Our approach

thus appears to be poorly suited to targeted gene sets and better to large or whole-genome data

sets, in contrast to PyClone, which is well tuned for small numbers of genes but not computa-

tionally feasible for whole-genome data.

In order to further validate the approach, we examined Spearman correlation with an

orthogonal data set. Onuchic et al. [28] developed a deconvolution approach based on DNA

methylation data from TCGA [46]. The result of the Onuchic et al. [28] approach was a decon-

volution of the data into constituent subtypes categorized into 5 cancer subgroups, a stromal

group, an immune group, and a normal group. The results of correlating our results to theirs

are shown in Table 8. There is significant (p< 0.01) positive correlation between what we esti-

mate as the fulcrum of the simplicial complex—correspondening to the most recent ancestor

in a phylogenetic interpretation—and the Onuchic et al. [28] estimate of stromal, immune,

and normal composition. Further, our vertex 1 correlates in a statistically significant and posi-

tive way to their estimates of cancer subtype 1 and cancer subtype 5.

Discussion

We have developed a novel method for taking better advantage of mixture substructure in

deconvolution of mixed genomic data from heterogeneous tumor samples. This contribution

is intended to advance a theoretical strategy for better resolving substructure in complex geno-

mic mixtures, a general strategy that might be incorporated into many existing approaches for

cell type deconvolution using assorted data types and inference models. The advances in the

present paper bring us closer to the goal of deriving precise models of complex mixture sub-

structure in the face of sparse, noisy genomic data without the need for extensive expert inter-

vention. For this purpose, we have introduced new strategies for automated inference of

subcluster dimensions, automated construction of a global simplicial complex structure, and

better deconvolution of submixtures on small samples with uncertain subclustering. We have

Table 8. Spearman correlation values for simplicial complex unmixing fractional estimates from TCGA breast cancer CNV data to fractional esti-

mates, based on methylation data, from Onuchic et al [28]. P-values for the comparisons appear in parentheses. Significant values (p<0.01) are marked

in bold.

Cancer1 Cancer2 Cancer3 Cancer4

V1 0.1026 (0.0009) -0.0151 (0.6261) -0.0137 (0.6586) 0.0411 (0.1855)

V2 -0.0196 (0.5298) 0.03 (0.3341) -0.0076 (0.8074) 0.0007 (0.982)

V3 0.047 (0.1306) 0.0133 (0.6697) -0.0003 (0.9932) 0.0171 (0.5822)

V4 -0.1562 (<0.0001) 0.0018 (0.9545) 0.0118 (0.7041) -0.0768 (0.0134)

Cancer5 Stromal Immune Normal

V1 0.091 (0.0034) -0.0666 (0.0321) -0.0467 (0.1332) -0.0399 (0.1989)

V2 0.0207 (0.5057) -0.0489 (0.1156) -0.0326 (0.2946) -0.0199 (0.5224)

V3 0.0171 (0.5822) -0.0726 (0.0194) -0.0607 (0.0506) -0.0433 (0.164)

V4 -0.0855 (0.0059) 0.1197 (0.0001) 0.103 (0.0009) 0.1008 (0.0012)

https://doi.org/10.1371/journal.pcbi.1005815.t008
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shown that we can automatically learn model structure from realistic sizes of data set without

degrading performance of the model relative to methods requiring significantly more user

intervention. We have further shown that this general approach is effective to varying degrees

on CNV, RNA-Seq, and heterogeneous data sets. We have further shown that our method has

comparable ability to resolve mixture structure to a leading deconvolution method, PyClone,

on a common data set, while demonstrating several advantages in relaxing assumptions on

data type, source, and quality.

The ultimate goal of the present work is to make sophisticated mixture deconvolution

approaches more widely accessible to a non-expert community, by allowing them to be incor-

porated more broadly into a variety of deconvolution approaches in the literature. Much work

still remains, though, both in better automating these approaches and improving inference

quality. There are still several (hyper-)parameters for which the task of automated learning

remains challenging. While automated dimension estimation appears valuable in improving

simplicial complex models, deriving accurate estimates is a significant challenge for sparse,

noisy data [49]. Integration of additional forms of genomic data into a common mixture

framework is likewise a promising but challenging direction for improving inference quality.

The computational framework presented here could also in principle be applied to many geno-

mic samples from a single patient (e.g., distinct tumor regions, sites, or timepoints), although

we do not explore that application here as data of this form is still scarce. The exact data needs

of the method would depend on the heterogeneity across samples. We would expect this inter-

sample heterogeneity to be substantially smaller for multiple samples from a single tumor than

for the application to distinct tumors examined here, but nonetheless higher than is required

for other tumor deconvolution methods that infer simpler underlying mixture models. Fur-

ther, while we have applied this approach here to two data types and their combination, the

same general strategy might be applied to many forms of genomic measurement (CNV, RNA

expression, SNV, epigenetic, proteomic) and technologies for assessing them (array, sequence,

or other high-throughput methods). Furthermore, as single-cell methods become more cost-

effective, combinations of bulk and single-cell data may prove particularly informative. Finally,

the simplicial complex models themselves require refinement to better capture the real sources

of genomic mixture substructure they are meant to model, including substructure imposed by

common pathways of subtype evolution, spatial constraints in the tumor microenvironment,

and other sources of mixture substructure that do not conform well to our current simplicial

complex model.
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