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The interplay of heart rate variability and ventricular 
repolarization parameters in the obese state: a review
Akash Tomara, Himani Ahluwaliab, S Ramkumarc, Sanghamitra Pattnaikd, 
Debarshi Nandie and Prashant Raturif

The impact of obesity on heart rate variability (HRV) 
and ventricular repolarization, both vital indicators of 
cardiovascular health, is the focus of this review. Obesity, 
measured by BMI, waist circumference, and waist-to-
hip ratio, significantly increases cardiovascular disease 
(CVD) risk due to structural and autonomic heart changes. 
Findings show that obese individuals exhibit prolonged 
QT and Tpeak-to-Tend (Tpe) intervals, suggesting 
delayed ventricular recovery and greater arrhythmia risk. 
Additionally, obesity-induced autonomic imbalance favors 
sympathetic activity over parasympathetic, reducing HRV 
and raising arrhythmogenic potential. Elevated QT and Tpe 
intervals reflect extended cardiac recovery phases, which 
contribute to poor cardiac outcomes. The Tpe interval 
could serve as an early marker of cardiac dysfunction in 
obese populations, highlighting the importance of early 
intervention to reduce CVD risk and enhance treatment 

strategies for obesity-related cardiovascular changes. 
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Introduction
Obesity
Obesity is defined by the WHO as abnormal or exces-
sive fat that accumulates and presents a risk to health. 
In 2016, 39% of the world's adult population (39% in 
men and 40% in women) were overweight, while 13% 
of the world's adult population (11% in men and 15% 
in women) were reported as obese [1]. Obesity in a 
normal population has been classified by BMI. Obesity 
can also be measured by other factors such as total body 
fat percentage, waist circumference (WC), hip circum-
ference, waist-to-hip ratio (WHR), and skinfold thick-
ness [2]. In some studies, the association of abdominal 
obesity with various metabolic risk factors appears to 
be stronger than generalized adiposity [3,4]. Obesity is 
found to be a major risk factor for the development of 
type 2 diabetes, asthma, hypertension, stroke, coronary 
artery disease, cancer, liver and gallbladder diseases, 
sleep apnea, osteoarthritis, and gynecological compli-
cations [5–8].

Obesity and risk of cardiovascular diseases
Obesity is among the leading causes of elevated cardio-
vascular disease (CVD) mortality and morbidity in adults 
and children [9–11]. It is a fast-growing problem and is 
independently associated with many adverse health 
effects and an increased risk of premature death [5]. 
Cardiovascular mortality and morbidity have been shown 
to be elevated in individuals who have, particularly, a cen-
tral deposition of adipose tissue, that is, abdominal obesity 
[5,12]. It has been associated with elevated blood pressure, 
thus leading to hypertension, which in turn, leads to many 
other morbidities such as stroke, myocardial infarction, 
heart failure, and arterial aneurysms [13]. Obesity is also 
associated with dyslipidemia, diabetes, insulin resistance, 
and elevated levels of fibrinogen and C-reactive protein, 
all of which increase the risk of CVD events [14].

The adverse effects of obesity on cardiovascular func-
tion and structure are well documented [6,15]. There 
are alterations in the structure of cardiac tissue such as 
left atrial enlargement and remodeling, and ventricular 
hypertrophy. These changes may ultimately result in 
obesity-induced left ventricular diastolic and systolic 
dysfunction and right and left ventricular heart failure. 
Several hemodynamic changes, such as increased total 
blood volume, stroke volume, cardiac output, and an 
increase in pulmonary and left atrial pressure, are seen 
in an obese state [16,17]. So it is true to state that the 
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cardiovascular system faces the challenge of increased 
workload in obesity [6].

The difference of three layers of myocardium in their 
cardiac action potential
During the cardiac cycle, depolarization is triggered by 
the inward movement of positive ions (mainly sodium 
and calcium), while repolarization results from the out-
ward flow of potassium ions. The stability of electrical 
activity, particularly the plateau phase, is supported by 
redundancy and voltage-gated ion channel regulation 
[18,19]. Potassium channels play a key role in this, known 
as ‘repolarization reserve’.

The cardiac action potential is divided into five distinct 
phases, with different currents active in each phase as 
shown in Fig. 1.

The ventricular myocardium is made of three layers: epi-
cardial, mid-myocardial (M), and endocardial, each with 
different repolarization characteristics as shown in Fig. 2. 
M cells, similar to Purkinje fibers, show prolonged action 
potential duration (APD) and early afterdepolarizations 
[20]. The endocardial layer has longer action potentials 
than the epicardium [21–23]. Transmural dispersion of 

repolarization, the difference in APD across myocar-
dial layers, is linked to re-entrant arrhythmias [20]. The 
Tpeak-to-Tend (Tpe) interval, Tpe/QT ratio, and Tpe/
QTc ratio are emerging markers for ventricular repolar-
ization, specifically measuring M cell repolarization [20]. 
Unlike the QT interval, which includes both depolariza-
tion and repolarization, the Tpe interval focuses on repo-
larization and is less influenced by heart rate due to the 
intrinsic properties of myocytes.

Obesity and its relationship with ventricular 
repolarization
Obesity leads to structural heart changes such as left atrial 
enlargement, ventricular hypertrophy, and remodeling, 
which affect heart function and electrical activity [16,17]. 
These changes include prolonged PR and QT intervals, 
reduced QRS amplitude, and altered ventricular repolar-
ization, seen on an ECG as the T wave. New parameters, 
such as the Tpe and JT intervals, are better indicators of 
ventricular repolarization [24–26].

Ventricular repolarization is influenced by factors such 
as age, gender, and BMI [20,27,28]. Obesity is linked to 
prolonged QT intervals, a risk factor for conditions such 
as long QT syndrome and arrhythmias. Increased BMI 
causes various ECG changes: increased P wave duration 
and dispersion [29,30], prolongation of the PR inter-
val [29,31], low QRS voltage in the limb leads [31,32], 
leftward shift of heart axis [31–33], various markers of 
left ventricular hypertrophy [34,35], and prolongation 
of corrected QT interval and the QT interval duration 
[32]. Moreover, alterations in the Tpe interval have been 
found in overweight and obese young adults [36]. These 
changes result from factors such as increased chest wall 
fat, pericardial fat, and sympathetic nervous system 
(SNS) activity [37]. As there is a relationship between 
free fatty acids, cardiac sympathetic nervous activity, 
and repolarization abnormalities, the QT interval dura-
tion and QTc interval duration have been reported to be 
increased in obesity and appear to be influenced by auto-
nomic tone. This autonomic dysfunction, with a sympa-
thovagal imbalance, is a potential mechanism underlying 
QT prolongation in obese subjects [38].

Research shows a positive correlation between obesity 
and ventricular repolarization markers (QT and Tpe 
intervals) [36,39,40]. Many studies have also shown a 
positive relation between obesity and ventricular repo-
larization variables, as overweight and obese individuals 
have prolonged QT interval, Tpe interval, and higher 
Tpe/QT ratio [36,39,40]. Kumar et al. [39] documented 
longer values of QTc interval in the obese group com-
pared with controls. Sharma et al. [40] also showed longer 
QTc interval values in Indian males recently. Hussain and 
Farooque [36] have also shown that ventricular repolari-
zation parameters (Tpe interval along with QT and QTc 
interval) are related to BMI, WHR, and body surface area. 

Fig. 1

Cardiac action potential showing different phases and ionic currents 
during these phases (created in Microsoft Paint).
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Vardar et al. [41] found that there is no relation between 
BMI and QT interval in normal healthy male individuals; 
however, they only took normal-weight and overweight 
populations in their study and did not mention about the 
obese population. Another study by Nomura et al. [42] 
also stated that obesity does not have any role in the pro-
longation of the QT interval; however, they studied these 
in coronary artery disease patients only.

QT interval prolongation is significant in life- 
threatening arrhythmias, with obesity-related autonomic 
dysfunction contributing to these electrical disturbances 
[18,21,22,43–45]. Perturbations of ventricular depo-
larization and repolarization (due to ischemia, bundle 
branch block, pre-excitation, extrasystolic beats, drugs, or 
genetic abnormalities of cardiac ion channels) can alter 
the T wave configurations and prolong QT interval dura-
tion, favoring arrhythmogenesis [43,44].

Obesity as a factor for deranged autonomic function
Obesity is often linked to autonomic dysfunction, increas-
ing sympathetic activity and reducing parasympathetic 
(vagal) tone, which impairs cardiac rhythm control. WHR, 
indicating visceral fat, is strongly connected to higher 
sympathetic and lower parasympathetic activity [46] and 
these changes directly affect the ventricular myocardium 
and cardiac repolarization duration [47]. The autonomic 
nervous system (ANS) governs many body functions, 
including metabolism [48–50]. In obese individuals, ANS 

alterations can promote further weight gain, creating a 
feedback loop where obesity worsens ANS activity. While 
WHR is a strong predictor of cardiac autonomic imbalance, 
BMI has a weaker association with heart rate variability 
(HRV), a marker of cardiac autonomic function. Some 
studies have also suggested that decreased sympathetic 
activity in obesity disrupts homeostasis, contributing to 
excess energy storage [51]. Small increases in WHR can 
raise the risk of cardiovascular issues due to these auto-
nomic changes [46]. Therefore, early testing for altered 
ANS function could help prevent complications [50].

Heart rate variability as a measure of cardiac 
autonomic function
HRV is the measurement of the interval between con-
secutive heartbeats that is analyzed, rather than the heart 
rate itself. HRV mirrors the regularity of heartbeats: more 
regularity means lower HRV, and vice versa [52]. HRV is 
a useful tool for assessing autonomic function, reflecting 
parasympathetic and sympathetic activity [52]. The clin-
ical relevance of HRV was first appreciated in 1965 when 
Hon and Lee [53] noted that fetal distress was preceded 
by alterations in interbeat intervals before any apprecia-
ble change occurred in heart rate. More interest in HRV 
began in the 1970s with studies on diabetic neuropathy 
and postinfarction mortality. Ewing et al. [54] devised 
several simple bedside tests of short-term RR differences 
to detect autonomic neuropathy in diabetic patients. 
The association of higher risk of postinfarction mortality 

Fig. 2

Different layers of myocardium have different repolarization phases (created in Microsoft Paint).
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with reduced HRV was first shown by Wolf et al. [55] in 
1977. By the 1980s, power spectral analysis became a key 
method for evaluating autonomic control. HRV gained 
further recognition for predicting mortality after myocar-
dial infarction [56] and remains a valuable tool for risk 
stratification in cardiology [52]. A table explaining the 
different HRV parameters is given in Supplementary 
Table 2, Supplemental digital content 1, http://links.lww.
com/CAEN/A66.

Reduced HRV is associated with CVDs and predicts poor 
outcomes in these conditions [57]. Understanding HRV’s 
complexities led to the formation of standards by the 
European Society of Cardiology and the North American 
Society of Pacing and Electrophysiology [52]. Although 
HRV is less direct than measures such as plasma catecho-
lamine or baroreflex sensitivity, it is widely accepted as 
a quantifier of ANS activity [58,59]. Lombardi and Stein 
[60] reviewed the relationship between HRV and ‘sym-
pathovagal’ balance, while Zuern et al. [61] and Huikuri 
and Stein [62] evaluated HRV and HRT as tools for risk 
assessment in patients recovering from myocardial infarc-
tion. Nonlinear indices of HRV, which reflect heart rate 
dynamics, have been shown to have greater prognostic 
value for cardiovascular events compared with traditional 
HRV indices [63,64]. Understanding HRV’s strengths 
and limitations allows its application in diagnosing clini-
cal conditions and developing effective therapies for dis-
eases that affect HRV.

Cardiac action potential affected by autonomic nervous 
system
The ANS plays a crucial role in maintaining cardiovas-
cular homeostasis. Research investigating the effects of 
gender and daily fluctuations on the ANS and cardiac 
repolarization markers has provided new insights into 
autonomic physiology [65]. Studies have shown that 
vagal tone decreases and sympathetic tone increases with 
age [66].

Experimentally it has been seen that intravenous cat-
echolamine administration reduces the dispersion of 
repolarization across the heart’s ventricles. Autonomic 
nerve discharges, as in physiological conditions, lead to 
localized neurotransmitter release, which shortens the 
refractory period and increases repolarization dispersion 
[67]. Thus, autonomic changes directly affect the ven-
tricular myocardium, impacting the duration of cardiac 
repolarization as well [47].

Lacunae in existing knowledge
Different studies propose the effects of obesity on many 
cardiac functions, but there is a paucity of research on the 
assessment of the Tpe interval as a marker of transmural 
dispersion of ventricular repolarization and its quality to 
measure and detect early changes in cardiac pathology. 
HRV as a measure of cardiac autonomic function and its 

effect on ventricular repolarization parameters (in terms 
of the parameter of Tpe interval) in obesity needs to be 
investigated more. This review proposes to investigate 
the interplay between obesity and altered autonomic 
functions, which may influence cardiac repolarization 
parameters.

Methods
We conducted a literature search for papers published up 
to October 2024 on the effect of ventricular parameters 
and HRV in obese state, using three medical databases: 
PubMed, Embase, and Scopus with the search strategy 
including the terms: ‘heart rate variability’, ‘ventricular 
repolarisation’ and ‘Obesity’. Qualitative and quantita-
tive data were extracted through the interpretation of 
each article in cycles to avoid missing on data of potential 
value.

Results
A total of 40 studies were then identified by excluding 
various studies. Studies published till October 2024, writ-
ten in English and pertaining to our study parameters 
were taken into consideration. A consort diagram of the 
studies included and excluded in this review is shown in 
Fig. 3. A table on the number of studies that were found 
after using the search strings mentioned in the methods 
section is given in Supplementary Table 1, Supplemental 
digital content 2, http://links.lww.com/CAEN/A67.

Discussion
Obesity has been known to be a common cause of cardi-
ovascular morbidity and mortality. In recent times, obe-
sity has been on the rise in developing nations [69], thus 
affecting populations as an important risk factor for car-
diovascular morbidities and sudden cardiac death (SCD) 
[15]. Obesity causes changes in the anatomic features of 
all organs in the body, including the heart. The cardiac 
changes include myocardial hypertrophy, fibrosis, focal 
myocardial disarray, and increased volume of epicardial 
fat [35]. All these changes have been associated with car-
diovascular morbidity and mortality. It also affects the 
functioning of all body systems, of which autonomic and 
cardiovascular systems are no exceptions.

Most of the time, individuals with a higher BMI also 
have higher WHR and WC. Increased BMI, WHR, and 
WC have already been stated as risk factors for cardiovas-
cular morbidity in a number of studies [6,8,11,35,40,70]. 
Ahmad et al. [70] documented a strong positive corre-
lation of WHR and WC with BMI in rural Malaysians 
(WC: r = 0.78, WHR: r = 0.24) with a P value <0.001. In 
another study conducted by Shirasawa et al. [71], wherein 
117 163 Japanese young adults were analyzed for central 
adiposity, positive correlations of WC and WHR with 
BMI and the risk of cardiovascular morbidity were also 
documented.

http://links.lww.com/CAEN/A66
http://links.lww.com/CAEN/A66
http://links.lww.com/CAEN/A67
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Many studies have shown higher values of blood pres-
sure in the obese [72]. Deshmukh et al. [73] documented 
positive correlations of SBP and DBP with BMI, WC, and 
WHR. Higher levels of blood pressure in an obese state 
have already been established as one of the many risk 
factors for the development of arteriosclerosis, athero-
sclerosis, coronary artery disease, and stroke [74].

The findings in studies done by Al-Qurashi et al. [75] 
and Yar [76] documented a higher heart rate in the obese 
Saudi population. Zhang et al. [77] documented higher 
values of heart rate in overweight individuals and also 
showed the risk of the development of diabetes in the 
follow-up of subjects with a higher value of BMI, WHR, 
and WC when compared to a normal-weight population. 
A positive linear correlation between resting heart rate 
(RHR) and BMI has also been recorded in the study 
done by Al-Qurashi et al. [75]. Another study conducted 
by Zhang et al. [78] suggests that an elevated heart rate is 
a warning sign of an increased risk of cardiovascular dys-
function and a risk factor for cardiac morbidity.

Obesity affects and alters hemodynamic and autonomic 
functions in the body [50]. It produces an increment in 

total blood volume and cardiac output, which is partly 
caused by the increased metabolic demand induced by 
excess body weight [7]. Thus, at any given level of activ-
ity, the cardiac workload is greater for obese subjects 
[16,79]. Additionally, in the obese population, fat contin-
uously accumulates in arterial vessels, blocking the blood 
flow of large arteries and increasing peripheral arterial 
resistance [7]. Obese subjects, however, have an overall 
higher cardiac output due to modulation in left ventricu-
lar muscle mass and lower total peripheral resistance, 
which can be explained by the fact that, in adipose tissue 
vascular beds, the resistance of blood flow decreases [80]. 
All these factors lead to an increase in heart rate, which 
can directly increase myocardial oxygen consumption 
and induce the breaking up of elastic fibers within the 
arterial wall along with other wear and tear in cardiovas-
cular tissue. An increased RHR in obese and overweight 
individuals could also be due to decreased parasympa-
thetic and increased sympathetic activity in obesity [81]. 
HRV values, when correlated with obesity indices, indi-
cate that obesity causes sympathovagal imbalance with 
a dominant sympathetic drive and decreased parasym-
pathetic action on the heart. Thus, the effect of obesity 

Fig. 3

Consort diagram of studies included in this review [68].



6 Cardiovascular Endocrinology & Metabolism  2025, Vol 14 No 1

on the cardiovascular system can be due to mechanical 
challenges posed by higher weight and alterations in the 
autonomic state of these individuals.

Obesity and electrocardiographic parameters
Longer PR intervals have already been established in 
obese populations, as shown by previous studies [31–33]. 
Mshui et al. [82] found a longer QTc interval in the obese 
group (445 ± 32 ms) compared with the normal-weight 
group (388 ± 29 ms), with a P value of <0.0001. A study 
on the Indian population, conducted by Hussain and 
Farooque [36], comparing QTc intervals with BMI, found 
significantly higher values of QTc intervals in overweight 
(390.17 ± 18.98 ms) and obese (413.56 ± 31.35 ms) subjects 
compared with normal-weight (374.83 ± 18.18 ms) subjects 
(P value <0.01). This has also been recorded in previous 
studies by Park et al. [28] on obese women and by Hussain 
and Farooque [36], who documented a positive correlation 
between normal-weight and obese populations. A previ-
ous study by Arslan et al. [83] in young men documented 
a statistically significant positive correlation of QTc inter-
val with WC (r = 0.357, P < 0.001). A study conducted by 
Hussain and Farooque [36] also previously documented a 
positive correlation of WHR with QTc (r = 0.54, P < 0.05). 
These studies signify that central obesity parameters such 
as WC and WHR affect the duration of the QTc interval, 
which is a parameter for measuring ventricular depolariza-
tion and repolarization in the cardiac cycle.

Inanir et al. [84] found a significantly shorter Tpe interval 
in the normal-weight control group (68.6 ± 8.1 ms) com-
pared with the obese group (79.2 ± 9.7 ms), with a P value 
of < 0.001. The study by Inanir et al. [84] also found that 
the values of Tpe were higher in the obese compared with 
normal-weight subjects, and a statistically significant posi-
tive correlation was also found between BMI and the Tpe 
interval (r = 0.458, P = 0.011) in subjects of all three groups. 
Another study conducted by Hussain and Farooque [36] 
in the Indian population showed shorter durations of the 
Tpe interval in the normal-weight (86.47 ± 13.32 ms) and 
overweight (87.04 ± 17.01 ms) groups, with longer values 
in the obese group (90.27 ± 11.77 ms). They also observed 
a statistically significant positive correlation of Tpe with 
BMI (r = 0.21, P < 0.05) and WHR (r = 0.25, P < 0.05). A 
recent study by Dykiert et al. [85] also found a relationship 
between Tpe interval and QT dispersion in the obese 
state. This finding signifies that in the obese state, as the 
values of these indices increase, the Tpe/QT ratio also 
increases. It has already been documented in studies that 
longer Tpe interval values are directly related to increased 
chances of cardiac morbidity (arrhythmia) [26,86] and a 
study by Panikkath et al. [87] stated that the risk of car-
diac mortality (SCD) increases with longer durations of 
the Tpe interval.

Prolonged QT and Tpe intervals in obese individuals 
suggest that there is altered cardiac electrophysiology, 

as evidenced by an increased duration of both ventricu-
lar depolarization and repolarization. Since the Tpe/QT 
ratio is also higher in the obese, it, however, may imply 
that the duration of repolarization of the M cells of the 
myocardium contributes more to the total duration of  
the QT interval in the obese [88]. The prolongation of the 
Tpe interval may be attributed to the structural effects 
of obesity on the heart, which profoundly impacts the M 
cells of the myocardium. A multitude of factors in obe-
sity may contribute to these structural changes, as obe-
sity is associated with systemic inflammation, generalized 
enlargement of fat depots, and uncontrolled release of 
fatty acids into the circulation [89]. These features sup-
port the occurrence of cardiac adiposity, with an increase 
in intramyocardial triglyceride content and an enlarge-
ment of the volume of fat surrounding the heart and 
vessels. Triglyceride accumulation is associated with left 
ventricular hypertrophy and dysfunction, which may lead 
to longer ventricular repolarization parameters in over-
weight or obese individuals [27]. These increased values 
may lead to various cardiac morbidities (arrhythmias) and 
predisposition to SCD. There are also increased chances 
of long QT syndrome, which is itself an independent 
risk factor for cardiac mortality [43]. As previously men-
tioned, the Tpe interval measures the repolarization of 
the mid-myocardial layer (M cells) of the myocardium. 
It can be asserted that longer Tpe values may relate to 
abnormalities in this layer of the heart due to obesity. 
This indicates that obesity may play a role in local myo-
cardial changes occurring in the heart of an individual.

Thus, a prolonged Tpe interval also implies that the 
myocardium spends more time repolarizing, making it 
more susceptible to arrhythmogenic stimuli, as it is dur-
ing this phase that the heart is in a state of relative refrac-
tory period.

Obesity and autonomic function as assessed by heart 
rate variability
Earlier reports by Laederach-Hofmann [90] indicate that 
mid-frequency bands (a mix of sympathetic and para-
sympathetic tone) are negatively correlated with BMI 
and WHR, especially at rest, with WHR showing stronger 
significance. The high-frequency (HF) band, represent-
ing parasympathetic tone, is negatively correlated with 
BMI as well. Increased body weight reduces both sym-
pathetic and parasympathetic activity, with a relatively 
higher reduction in parasympathetic activity, contribut-
ing to higher sympathetic drive.

Rajalakshmi et al. [91] demonstrated decreased HRV, 
higher sympathetic, and lower parasympathetic nerve 
activity in obese participants, with BMI being a major 
determinant of time-domain and frequency-domain 
indices. The study by Bray [49] indicated that reduced 
sympathetic activity and increased vagal activity cause 
increased insulin secretion and changes in hepatic 
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metabolism, which facilitate nutrient storage and 
reduce mobilization, thereby disturbing energy home-
ostasis and leading to obesity. Studies on populations 
show that obese patients are more prone to ventricu-
lar arrhythmia and that obesity is a strong predictor of 
SCD in men [92]. Poliakova et al. [93] studied 97 men 
with no endocrinological or cardiovascular abnormali-
ties and related the obesity indices with the HRV of 
the subjects. They found BMI to be negatively signifi-
cantly associated with standard deviation of average RR 
interval (SDARR). They also identified a statistically 
significant negative correlation in the root mean square 
of standard deviation of all RR intervals (RMSSD) and 
the percentage of RR intervals more than 50 ms from 
the previous interval (pRR50) with WC as well. SDARR 
represents both SNS and parasympathetic nervous sys-
tem (PNS) activity in humans and is highly correlated 
with very low-frequency (VLF) and low-frequency 
(LF) band power, as well as total power in the measure-
ment of short-term HRV [94]. Thus, a negative correla-
tion of these parameters with obesity indices indicates 
decreased activity of both PNS and SNS. A previous 
study by Kleiger et al. [95] indicates that higher SDRR 
values decrease the risk of mortality in acute myocar-
dial infarction patients (5.3 times) when compared to 
those with lesser values of SDARR. A negative cor-
relation between WHR and RMSSD has been previ-
ously documented by studies done by Kim et al. [96] 
and Yi et al. [97], both of which found a strong negative 
correlation between the two. RMSSD was negatively 
associated with WC, a finding that aligns with previ-
ous studies by Windham et al. [98] and Farah et al. [99]. 
As RMSSD is an index for parasympathetic function 
reflecting vagal influence on the heart, lower values of 
RMSSD indicate decreased PNS activity in obese indi-
viduals. WHR and pRR50 were significantly negatively 
correlated, and pRR50 and WC were negatively corre-
lated, as documented in studies by Farah et al. [99] and 
Yi et al. [97]. The pRR50 is an index for measuring HF 
parameters in the heart and is closely correlated with 
PNS activity. It is also correlated with RMSSD and HF 
power, which provide insight into PNS activity. This 
is considered a more reliable index than short-term 
SDRR measurements for brief samples of 5 minutes 
[100]. Thus, the findings described in the above studies 
indicate a decreased parasympathetic tone in an obese 
state. The observations of reduced indices of parasym-
pathetic activity, that is, RMSSD and pRR50 in the 
time domain, and HF in the frequency domain imply 
that obese individuals have significantly reduced para-
sympathetic activity compared with normal-weight and 
overweight individuals. A higher LF/HF ratio, despite 
significantly lower LF and LF power%, also suggests 
derangement of both sympathetic and parasympa-
thetic limbs of the ANS in an obese state, with more 
pronounced parasympathetic derangement [101]. The 

VLF band is known to be an index for long-term reg-
ulatory effects in the body and is ideally measured in 
24-hour recordings; in short-term HRV analysis, it may 
not be as reliable as parameters such as RMSSD and 
pRR50 [94].

A previous study by Rajalakshmi et al. [91] showed that 
HF power (ms²) was negatively correlated with BMI 
(r = −0.40), WC (r = −0.37), and WHR (r = −0.37), and 
there was also a negative correlation of high frequency 
normalized units (HFnu) with BMI (r = 0.32) and WC 
(r = 0.28). The HF band reflects parasympathetic activity 
and is referred to as the respiratory band because it cor-
responds to HRV related to the respiratory cycle. Total 
vagal blockage virtually eliminates HF oscillations [102]. 
The modulation of vagal tone helps maintain the dynamic 
autonomic regulation important for cardiovascular health. 
Deficient vagal inhibition is implicated in increased mor-
bidity [103]. Therefore, findings show that as obesity 
increases, there is a decrease in parameters measured in 
the HF band, such as HF power, HF power%, and HFnu. 
This shows that obese subjects have reduced parasym-
pathetic activity compared with normal-weight and over-
weight subjects.

High LF band reflects increased sympathetic activity [104]. 
Some earlier studies on sympathetic nerve activity in obese 
individuals have produced conflicting results; a few studies 
have shown a decrease [105,106], while many others have 
shown an increase in sympathetic activity in obesity [107–
113]. Newer studies, however, have been more toward 
increased sympathetic activity in the obese state [114].

The interplay
These findings suggest that the QTc interval is affected 
by autonomic activity in the heart. The Tpe interval, on 
the other hand, is unaffected by the autonomic modu-
lation occurring in the heart, which is also known to be 
less influenced by ANS modulations. All these findings 
indicate a significant impact of the obese state on car-
diac electrophysiology, which could be a consequence 
of hemodynamic, structural, and autonomic changes 
observed in obesity. Adipose tissue is metabolically active, 
releasing proinflammatory and arrhythmogenic adipocy-
tokines that influence ventricular APD by modulating 
ionic channel activity. These adipocytokines, together 
with autonomic neuropathy, contribute to arrhythmo-
genic risk. Neuropathy typically affects the longest nerve 
fibers first, with early signs seen as vagus nerve dener-
vation, leading to reduced HRV. As autonomic changes 
progress, local neurotransmitter release shortens the 
refractory period, directly affecting the ventricular myo-
cardium and thereby altering cardiac repolarization dura-
tion. This complex interaction between adipose-driven 
inflammation and autonomic neuropathy highlights their 
combined influence on cardiac electrical stability. To the 
best of our knowledge, this is one of the first reviews of 
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its kind to examine autonomic functions as measured by 
HRV and ventricular repolarization parameters. These 
findings have been described in Fig. 4.

Variations in measuring HRV and ventricular repolariza-
tion markers across studies could influence comparability. 
Most of the studies included in the review are cross- 
sectional in nature, limiting the ability to infer causation 
or long-term effects of obesity. While associations are 
documented, the underlying molecular mechanisms link-
ing obesity, HRV, and ventricular repolarization remain 
insufficiently explored.

Conclusion
This review highlights the significant impact of obesity 
on HRV and ventricular repolarization, which are critical 
markers of cardiovascular health. Obesity-induced struc-
tural and functional changes, including prolonged QT 
and Tpe intervals, suggest delayed cardiac recovery and 
increased arrhythmogenic risk. The autonomic imbal-
ance favoring sympathetic over parasympathetic activity 
exacerbates these risks. The Tpe interval emerges as a 
potential early marker for cardiac dysfunction in obese 
individuals, emphasizing the need for early intervention 
strategies to mitigate CVD risks. These findings under-
score the importance of integrating measures to address 
obesity in cardiovascular health management, fostering 
better treatment outcomes.
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